Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125679

RESUMO

Dent disease-1 (DD-1) is a rare X-linked tubular disorder characterized by low-molecular-weight proteinuria (LMWP), hypercalciuria, nephrolithiasis and nephrocalcinosis. This disease is caused by inactivating mutations in the CLCN5 gene which encodes the voltage-gated ClC-5 chloride/proton antiporter. Currently, the treatment of DD-1 is only supportive and focused on delaying the progression of the disease. Here, we generated and characterized a Clcn5 knock-in mouse model that carries a pathogenic CLCN5 variant, c. 1566_1568delTGT; p.Val523del, which has been previously detected in several DD-1 unrelated patients, and presents the main clinical manifestations of DD-1 such as high levels of urinary b2-microglobulin, phosphate and calcium. Mutation p.Val523del causes partial ClC-5 retention in the endoplasmic reticulum. Additionally, we assessed the ability of sodium 4-phenylbutyrate, a small chemical chaperone, to ameliorate DD-1 symptoms in this mouse model. The proposed model would be of significant value in the investigation of the fundamental pathological processes underlying DD-1 and in the development of effective therapeutic strategies for this rare condition.


Assuntos
Canais de Cloreto , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Fenilbutiratos , Proteinúria , Animais , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Camundongos , Proteinúria/tratamento farmacológico , Fenilbutiratos/farmacologia , Fenilbutiratos/uso terapêutico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/tratamento farmacológico , Mutação , Masculino , Humanos , Doença de Dent/tratamento farmacológico , Doença de Dent/genética , Nefrolitíase
2.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176165

RESUMO

Lennox-Gastaut Syndrome (LGS) is a developmental and epileptic encephalopathy (DEE) characterized by multiple seizure types, electroencephalogram (EEG) patterns, and cognitive decline. Its etiology has a prominent genetic component, including variants in GABRB3 that encodes the GABAA receptor (GABAAR) ß3 subunit. LGS has an unknown pathophysiology, and few animal models are available for studying LGS. The objective of this study was to evaluate Gabrb3+/N328D knock-in mice as a model for LGS. We generated a heterozygous knock-in mouse expressing Gabrb3 (c.A982G, p.N238D), a de novo mutation identified in a patient with LGS. We investigated Gabrb3+/N328D mice for features of LGS. In 2-4-month-old male and female C57BL/J6 wild-type and Gabrb3+/N328D mice, we investigated seizure severity using video-monitored EEG, cognitive impairment using a suite of behavioral tests, and profiled GABAAR subunit expression by Western blot. Gabrb3+/N328D mice showed spontaneous seizures and signs of cognitive impairment, including deficits in spatial learning, memory, and locomotion. Moreover, Gabrb3+/N328D mice showed reduced ß3 subunit expression in the cerebellum, hippocampus, and thalamus. This phenotype of epilepsy and neurological impairment resembles the LGS patient phenotype. We conclude that Gabrb3+/N328D mice provide a good model for investigating the pathophysiology and therapeutic intervention of LGS and DEEs.


Assuntos
Epilepsia , Síndrome de Lennox-Gastaut , Masculino , Feminino , Camundongos , Animais , Síndrome de Lennox-Gastaut/diagnóstico , Receptores de GABA-A/genética , Camundongos Endogâmicos C57BL , Epilepsia/genética , Convulsões , Mutação , Eletroencefalografia , Ácido gama-Aminobutírico/genética
3.
Pancreatology ; 22(8): 1099-1111, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36379850

RESUMO

BACKGROUND & AIMS: The CEL gene encodes the digestive enzyme carboxyl ester lipase. CEL-HYB1, a hybrid allele of CEL and its adjacent pseudogene CELP, is a genetic variant suggested to increase the risk of chronic pancreatitis (CP). Our aim was to develop a mouse model for CEL-HYB1 that enables studies of pancreatic disease mechanisms. METHODS: We established a knock-in mouse strain where the variable number of tandem repeat (VNTR) region of the endogenous mouse Cel gene was substituted with the mutated VNTR of the human CEL-HYB1 allele. Heterozygous and homozygous Cel-HYB1 mice and littermate wildtype controls were characterized with respect to pancreatic pathology and function. RESULTS: We successfully constructed a mouse model with pancreatic expression of a humanized CEL-HYB1 protein. The Cel-HYB1 mice spontaneously developed features of CP including inflammation, acinar atrophy and fatty replacement, and the phenotype became more pronounced as the animals aged. Moreover, Cel-HYB1 mice were normoglycemic at age 6 months, whereas at 12 months they exhibited impaired glucose tolerance. Immunostaining of pancreatic tissue indicated the formation of CEL protein aggregates, and electron microscopy showed dilated endoplasmic reticulum. Upregulation of the stress marker BiP/GRP78 was seen in pancreatic parenchyma obtained both from Cel-HYB1 animals and from a human CEL-HYB1 carrier. CONCLUSIONS: We have developed a new mouse model for CP that confirms the pathogenicity of the human CEL-HYB1 variant. Our findings place CEL-HYB1 in the group of genes that increase CP risk through protein misfolding-dependent pathways.


Assuntos
Lipase , Pancreatite Crônica , Humanos , Camundongos , Animais , Idoso , Lactente , Lipase/genética , Pancreatite Crônica/genética , Alelos , Repetições Minissatélites , Fatores de Risco
4.
J Biol Chem ; 295(7): 1943-1959, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31919099

RESUMO

Dental enamel comprises interwoven arrays of extremely long and narrow crystals of carbonated hydroxyapatite called enamel rods. Amelogenin (AMELX) is the predominant extracellular enamel matrix protein and plays an essential role in enamel formation (amelogenesis). Previously, we have demonstrated that full-length AMELX forms higher-order supramolecular assemblies that regulate ordered mineralization in vitro, as observed in enamel rods. Phosphorylation of the sole AMELX phosphorylation site (Ser-16) in vitro greatly enhances its capacity to stabilize amorphous calcium phosphate (ACP), the first mineral phase formed in developing enamel, and prevents apatitic crystal formation. To test our hypothesis that AMELX phosphorylation is critical for amelogenesis, we generated and characterized a hemizygous knockin (KI) mouse model with a phosphorylation-defective Ser-16 to Ala-16 substitution in AMELX. Using EM analysis, we demonstrate that in the absence of phosphorylated AMELX, KI enamel lacks enamel rods, the hallmark component of mammalian enamel, and, unlike WT enamel, appears to be composed of less organized arrays of shorter crystals oriented normal to the dentinoenamel junction. KI enamel also exhibited hypoplasia and numerous surface defects, whereas heterozygous enamel displayed highly variable mosaic structures with both KI and WT features. Importantly, ACP-to-apatitic crystal transformation occurred significantly faster in KI enamel. Secretory KI ameloblasts also lacked Tomes' processes, consistent with the absence of enamel rods, and underwent progressive cell pathology throughout enamel development. In conclusion, AMELX phosphorylation plays critical mechanistic roles in regulating ACP-phase transformation and enamel crystal growth, and in maintaining ameloblast integrity and function during amelogenesis.


Assuntos
Amelogênese/genética , Amelogenina/genética , Fosfatos de Cálcio/metabolismo , Esmalte Dentário/crescimento & desenvolvimento , Animais , Esmalte Dentário/metabolismo , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Proteínas da Matriz Extracelular/genética , Humanos , Camundongos , Modelos Animais , Fosforilação/genética
5.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34769001

RESUMO

Charcot-Marie-Tooth disease type 2A (CMT2A) is the most common hereditary axonal neuropathy caused by mutations in MFN2 encoding Mitofusin-2, a multifunctional protein located in the outer mitochondrial membrane. In order to study the effects of a novel MFN2K357T mutation associated with early onset, autosomal dominant severe CMT2A, we generated a knock-in mouse model. While Mfn2K357T/K357T mouse pups were postnatally lethal, Mfn2+/K357T heterozygous mice were asymptomatic and had no histopathological changes in their sciatic nerves up to 10 months of age. However, immunofluorescence analysis of Mfn2+/K357T mice revealed aberrant mitochondrial clustering in the sciatic nerves from 6 months of age, in optic nerves from 8 months, and in lumbar spinal cord white matter at 10 months, along with microglia activation. Ultrastructural analyses confirmed dysmorphic mitochondrial aggregates in sciatic and optic nerves. After exposure of 6-month-old mice to lipopolysaccharide, Mfn2+/K357T mice displayed a higher immune response, a more severe motor impairment, and increased CNS inflammation, microglia activation, and macrophage infiltrates. Overall, ubiquitous Mfn2K357T expression renders the CNS and peripheral nerves of Mfn2+/K357T mice more susceptible to mitochondrial clustering, and augments their response to inflammation, modeling some cellular mechanisms that may be relevant for the development of neuropathy in patients with CMT2A.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/patologia , Animais , Modelos Animais de Doenças , Imunidade/genética , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/patologia , Proteínas Mitocondriais/genética
6.
BMC Neurosci ; 20(1): 13, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894120

RESUMO

BACKGROUND: Knock-in (KI) mouse models of Alzheimer's disease (AD) that endogenously overproduce Aß without non-physiological overexpression of amyloid precursor protein (APP) provide important insights into the pathogenic mechanisms of AD. Previously, we reported that AppNL-G-F mice, which harbor three familial AD mutations (Swedish, Beyreuther/Iberian, and Arctic) exhibited emotional alterations before the onset of definitive cognitive deficits. To determine whether these mice exhibit deficits in learning and memory at more advanced ages, we compared the Morris water maze performance of AppNL-G-F and AppNL mice, which harbor only the Swedish mutation, with that of wild-type (WT) C57BL/6J mice at the age of 24 months. To correlate cognitive deficits and neuroinflammation, we also examined Aß plaque formation and reactive gliosis in these mice. RESULTS: In the Morris water maze, a spatial task, 24-month-old AppNL-G-F/NL-G-F mice exhibited significantly poorer spatial learning than WT mice during the hidden training sessions, but similarly to WT mice during the visible training sessions. Not surprisingly, AppNL-G-F/NL-G-F mice also exhibited spatial memory deficits both 1 and 7 days after the last training session. By contrast, 24-month-old AppNL/NL mice had intact spatial learning and memory relative to WT mice. Immunohistochemical analyses revealed that 24-month-old AppNL-G-F/NL-G-F mice developed massive Aß plaques and reactive gliosis (microgliosis and astrocytosis) throughout the brain, including the cortex and hippocampus. By contrast, we observed no detectable brain pathology in AppNL/NL mice despite overproduction of human Aß40 and Aß42 in their brains. CONCLUSIONS: Aß plaque formation, followed by sustained neuroinflammation, is necessary for the induction of definitive cognitive deficits in App-KI mouse models of AD. Our data also indicate that introduction of the Swedish mutation alone in endogenous APP is not sufficient to produce either AD-related brain pathology or cognitive deficits in mice.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Gliose/metabolismo , Placa Amiloide/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Gliose/patologia , Gliose/psicologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/psicologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/patologia , Placa Amiloide/psicologia , Memória Espacial/fisiologia
7.
BMC Neurosci ; 19(1): 46, 2018 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-30055565

RESUMO

BACKGROUND: Alzheimer's disease (AD), the most common cause of dementia, is characterized by the progressive deposition of amyloid-ß (Aß) peptides and neurofibrillary tangles. Mouse models of Aß amyloidosis generated by knock-in (KI) of a humanized Aß sequence provide distinct advantages over traditional transgenic models that rely on overexpression of amyloid precursor protein (APP). In App-KI mice, three familial AD-associated mutations were introduced into the endogenous mouse App locus to recapitulate Aß pathology observed in AD: the Swedish (NL) mutation, which elevates total Aß production; the Beyreuther/Iberian (F) mutation, which increases the Aß42/Aß40 ratio; and the Arctic (G) mutation, which promotes Aß aggregation. AppNL-G-F mice harbor all three mutations and develop progressive Aß amyloidosis and neuroinflammatory response in broader brain areas, whereas AppNL mice carrying only the Swedish mutation exhibit no overt AD-related pathological changes. To identify behavioral alterations associated with Aß pathology, we assessed emotional and cognitive domains of AppNL-G-F and AppNL mice at different time points, using the elevated plus maze, contextual fear conditioning, and Barnes maze tasks. RESULTS: Assessments of emotional domains revealed that, in comparison with wild-type (WT) C57BL/6J mice, AppNL-G-F/NL-G-F mice exhibited anxiolytic-like behavior that was detectable from 6 months of age. By contrast, AppNL/NL mice exhibited anxiogenic-like behavior from 15 months of age. In the contextual fear conditioning task, both AppNL/NL and AppNL-G-F/NL-G-F mice exhibited intact learning and memory up to 15-18 months of age, whereas AppNL-G-F/NL-G-F mice exhibited hyper-reactivity to painful stimuli. In the Barnes maze task, AppNL-G-F/NL-G-F mice exhibited a subtle decline in spatial learning ability at 8 months of age, but retained normal memory functions. CONCLUSION: AppNL/NL and AppNL-G-F/NL-G-F mice exhibit behavioral changes associated with non-cognitive, emotional domains before the onset of definitive cognitive deficits. Our observations consistently indicate that AppNL-G-F/NL-G-F mice represent a model for preclinical AD. These mice are useful for the study of AD prevention rather than treatment after neurodegeneration.


Assuntos
Peptídeos beta-Amiloides/genética , Amiloidose/genética , Comportamento Animal/fisiologia , Emoções/fisiologia , Técnicas de Introdução de Genes , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Transtornos Cognitivos/genética , Disfunção Cognitiva/genética , Modelos Animais de Doenças , Camundongos Transgênicos
8.
J Allergy Clin Immunol ; 139(4): 1253-1265.e14, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27568081

RESUMO

BACKGROUND: Anaphylaxis can proceed through distinct IgE- or IgG-dependent pathways, which have been investigated in various mouse models. We developed a novel mouse strain in which the human low-affinity IgG receptor locus, comprising both activating (hFcγRIIA, hFcγRIIIA, and hFcγRIIIB) and inhibitory (hFcγRIIB) hFcγR genes, has been inserted into the equivalent murine locus, corresponding to a locus swap. OBJECTIVE: We sought to determine the capabilities of hFcγRs to induce systemic anaphylaxis and identify the cell types and mediators involved. METHODS: hFcγR expression on mouse and human cells was compared to validate the model. Passive systemic anaphylaxis was induced by injection of heat-aggregated human intravenous immunoglobulin and active systemic anaphylaxis after immunization and challenge. Anaphylaxis severity was evaluated based on hypothermia and mortality. The contribution of receptors, mediators, or cell types was assessed based on receptor blockade or depletion. RESULTS: The human-to-mouse low-affinity FcγR locus swap engendered hFcγRIIA/IIB/IIIA/IIIB expression in mice comparable with that seen in human subjects. Knock-in mice were susceptible to passive and active anaphylaxis, accompanied by downregulation of both activating and inhibitory hFcγR expression on specific myeloid cells. The contribution of hFcγRIIA was predominant. Depletion of neutrophils protected against hypothermia and mortality. Basophils contributed to a lesser extent. Anaphylaxis was inhibited by platelet-activating factor receptor or histamine receptor 1 blockade. CONCLUSION: Low-affinity FcγR locus-switched mice represent an unprecedented model of cognate hFcγR expression. Importantly, IgG-related anaphylaxis proceeds within a native context of activating and inhibitory hFcγRs, indicating that, despite robust hFcγRIIB expression, activating signals can dominate to initiate a severe anaphylactic reaction.


Assuntos
Anafilaxia/imunologia , Receptores de IgG/imunologia , Animais , Modelos Animais de Doenças , Proteínas Ligadas por GPI/imunologia , Técnicas de Introdução de Genes , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL
9.
J Mol Cell Cardiol ; 105: 89-98, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28302382

RESUMO

The Nkx2.5 gene encodes a transcription factor that plays a critical role in heart development. In humans, heterozygous mutations in NKX2.5 result in congenital heart defects (CHDs). However, the molecular mechanisms by which these mutations cause the disease remain unknown. NKX2.5-R142C is a mutation that was reported to be associated with atrial septal defect (ASD) and atrioventricular (AV) block in 13-patients from one family. The R142C mutation is located within both the DNA-binding domain and the nuclear localization sequence of NKX2.5 protein. The pathogenesis of CHDs in humans with R142C point mutation is not well understood. To examine the functional deficit associated with this mutation in vivo, we generated and characterized a knock-in mouse that harbours the human mutation R142C. Systematic structural and functional examination of the embryonic, newborn, and adult mice revealed that the homozygous embryos Nkx2.5R141C/R141C are developmentally arrested around E10.5 with delayed heart morphogenesis and downregulation of Nkx2.5 target genes, Anf, Mlc2v, Actc1 and Cx40. Histological examination of Nkx2.5R141C/+ newborn hearts showed that 36% displayed ASD, with at least 80% 0f adult heterozygotes displaying a septal defect. Moreover, heterozygous Nkx2.5R141C/+ newborn mice have downregulation of ion channel genes with 11/12 adult mice manifesting a prolonged PR interval that is indicative of 1st degree AV block. Collectively, the present study demonstrates that mice with the R141C point mutation in the Nkx2.5 allele phenocopies humans with the NKX2.5 R142C point mutation.


Assuntos
Estudos de Associação Genética , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/fisiopatologia , Proteína Homeobox Nkx-2.5/genética , Mutação , Animais , Modelos Animais de Doenças , Ecocardiografia , Feminino , Expressão Gênica , Marcação de Genes , Vetores Genéticos/genética , Genótipo , Cardiopatias Congênitas/diagnóstico , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo
10.
J Biol Chem ; 291(39): 20563-73, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27519416

RESUMO

Methylmalonic aciduria (MMAuria), caused by deficiency of methylmalonyl-CoA mutase (MUT), usually presents in the newborn period with failure to thrive and metabolic crisis leading to coma or even death. Survivors remain at risk of metabolic decompensations and severe long term complications, notably renal failure and neurological impairment. We generated clinically relevant mouse models of MMAuria using a constitutive Mut knock-in (KI) allele based on the p.Met700Lys patient mutation, used homozygously (KI/KI) or combined with a knockout allele (KO/KI), to study biochemical and clinical MMAuria disease aspects. Transgenic Mut(ki/ki) and Mut(ko/ki) mice survive post-weaning, show failure to thrive, and show increased methylmalonic acid, propionylcarnitine, odd chain fatty acids, and sphingoid bases, a new potential biomarker of MMAuria. Consistent with genetic dosage, Mut(ko/ki) mice have lower Mut activity, are smaller, and show higher metabolite levels than Mut(ki/ki) mice. Further, Mut(ko/ki) mice exhibit manifestations of kidney and brain damage, including increased plasma urea, impaired diuresis, elevated biomarkers, and changes in brain weight. On a high protein diet, mutant mice display disease exacerbation, including elevated blood ammonia, and catastrophic weight loss, which, in Mut(ki/ki) mice, is rescued by hydroxocobalamin treatment. This study expands knowledge of MMAuria, introduces the discovery of new biomarkers, and constitutes the first in vivo proof of principle of cobalamin treatment in mut-type MMAuria.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Dosagem de Genes , Metilmalonil-CoA Mutase , Fenótipo , Característica Quantitativa Herdável , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Amônia/metabolismo , Animais , Biomarcadores/sangue , Encéfalo/metabolismo , Encéfalo/patologia , Carnitina/análogos & derivados , Carnitina/sangue , Proteínas Alimentares/efeitos adversos , Proteínas Alimentares/farmacologia , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Rim/metabolismo , Rim/patologia , Ácido Metilmalônico/sangue , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo , Camundongos , Camundongos Knockout
11.
Eur J Immunol ; 45(6): 1596-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25903647

RESUMO

Ectopic gene expression studies in primary immune cells have been notoriously difficult to perform due to the limitations in conventional transfection and viral transduction methods. Although replication-defective adenoviruses provide an attractive alternative for gene delivery, their use has been hampered by the limited susceptibility of murine leukocytes to adenoviral infection, due to insufficient expression of the human coxsackie/adenovirus receptor (CAR). In this issue of the European Journal of Immunology, Heger et al. [Eur. J. Immunol. 2015. 45: XXXX-XXXX] report the generation of transgenic mice that enable conditional Cre/loxP-mediated expression of human CAR. The authors demonstrate that this R26/CAG-CAR∆1(StopF) mouse strain facilitates the faithful monitoring of Cre activity in situ as well as the specific and efficient adenoviral transduction of primary immune cell populations in vitro. Further tweaking of the system towards more efficient gene transfer in vivo remains a future challenge.


Assuntos
Adenoviridae/genética , Marcação de Genes , Genes Reporter , Vetores Genéticos/genética , Recombinação Homóloga , Integrases/metabolismo , Transdução Genética , Animais , Humanos
12.
Eur J Immunol ; 45(6): 1614-20, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25787118

RESUMO

Replication-deficient recombinant adenoviruses are potent vectors for the efficient transient expression of exogenous genes in resting immune cells. However, most leukocytes are refractory to efficient adenoviral transduction as they lack expression of the coxsackie/adenovirus receptor (CAR). To circumvent this obstacle, we generated the R26/CAG-CARΔ1(StopF) (where R26 is ROSA26 and CAG is CMV early enhancer/chicken ß actin promoter) knock-in mouse line. This strain allows monitoring of in situ Cre recombinase activity through expression of CARΔ1. Simultaneously, CARΔ1 expression permits selective and highly efficient adenoviral transduction of immune cell populations, such as mast cells or T cells, directly ex vivo in bulk cultures without prior cell purification or activation. Furthermore, we show that CARΔ1 expression dramatically improves adenoviral infection of in vitro differentiated conventional and plasmacytoid dendritic cells (DCs), basophils, mast cells, as well as Hoxb8-immortalized hematopoietic progenitor cells. This novel dual function mouse strain will hence be a valuable tool to rapidly dissect the function of specific genes in leukocyte physiology.


Assuntos
Adenoviridae/genética , Marcação de Genes , Genes Reporter , Vetores Genéticos/genética , Recombinação Homóloga , Integrases/metabolismo , Transdução Genética , Animais , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Expressão Gênica , Marcação de Genes/métodos , Humanos , Integrases/genética , Leucócitos/imunologia , Leucócitos/metabolismo , Camundongos , Camundongos Transgênicos , Células Mieloides/citologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Especificidade de Órgãos
13.
Am J Physiol Regul Integr Comp Physiol ; 311(2): R307-14, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27280431

RESUMO

McArdle disease (muscle glycogenosis type V) is a disease caused by myophosphorylase deficiency leading to "blocked" glycogen breakdown. A significant but varying glycogen accumulation in especially distal hind limb muscles of mice affected by McArdle disease has recently been demonstrated. In this study, we investigated how myophosphorylase deficiency affects glucose metabolism in hind limb muscle of 20-wk-old McArdle mice and vastus lateralis muscles from patients with McArdle disease. Western blot analysis and activity assay demonstrated that glycogen synthase was inhibited in glycolytic muscle from McArdle mice. The level and activation of proteins involved in contraction-induced glucose transport (AMPK, GLUT4) and glycogen synthase inhibition were increased in quadriceps muscle of McArdle mice. In addition, pCaMKII in quadriceps was reduced, suggesting lower insulin-induced glucose uptake, which could lead to lower glycogen accumulation. In comparison, tibialis anterior, extensor digitorum longus, and soleus had massive glycogen accumulation, but few, if any, changes or adaptations in glucose metabolism compared with wild-type mice. The findings suggest plasticity in glycogen metabolism in the McArdle mouse that is related to myosin heavy chain type IIB content in muscles. In patients, the level of GLUT4 was vastly increased, as were hexokinase II and phosphofructokinase, and glycogen synthase was more inhibited, suggesting that patients adapt by increasing capture of glucose for direct metabolism, thereby significantly reducing glycogen buildup compared with the mouse model. Hence, the McArdle mouse may be a useful tool for further comparative studies of disease mechanism caused by myophosphorylase deficiency and basic studies of metabolic adaptation in muscle.


Assuntos
Glucose/metabolismo , Doença de Depósito de Glicogênio Tipo V/metabolismo , Complexos Multienzimáticos , Músculo Esquelético/metabolismo , Adolescente , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Especificidade da Espécie , Adulto Jovem
14.
Open Biol ; 13(6): 220353, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37311538

RESUMO

Neuromedin U (NMU) is an evolutionary conserved neuropeptide that has been implicated in multiple processes, such as circadian regulation, energy homeostasis, reward processing and stress coping. Although the central expression of NMU has been addressed previously, the lack of specific and sensitive tools has prevented a comprehensive characterization of NMU-expressing neurons in the brain. We have generated a knock-in mouse model constitutively expressing Cre recombinase under the Nmu promoter. We have validated the model using a multi-level approach based on quantitative reverse-transcription polymerase chain reactions, in situ hybridization, a reporter mouse line and an adenoviral vector driving Cre-dependent expression of a fluorescent protein. Using the Nmu-Cre mouse, we performed a complete characterization of NMU expression in adult mouse brain, unveiling a potential midline NMU modulatory circuit with the ventromedial hypothalamic nucleus (VMH) as a key node. Moreover, immunohistochemical analysis suggested that NMU neurons in the VMH mainly constitute a unique population of hypothalamic cells. Taken together, our results suggest that Cre expression in the Nmu-Cre mouse model largely reflects NMU expression in the adult mouse brain, without altering endogenous NMU expression. Thus, the Nmu-Cre mouse model is a powerful and sensitive tool to explore the role of NMU neurons in mice.


Assuntos
Neuropeptídeos , Hormônios Peptídicos , Animais , Camundongos , Neurônios , Integrases/genética , Neuropeptídeos/genética , Modelos Animais de Doenças
15.
Brain Commun ; 5(1): fcad010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756307

RESUMO

Huntingtin-lowering approaches that target huntingtin expression are a major focus for therapeutic intervention for Huntington's disease. When the cytosine, adenine and guanine repeat is expanded, the huntingtin pre-mRNA is alternatively processed to generate the full-length huntingtin and HTT1a transcripts. HTT1a encodes the aggregation-prone and highly pathogenic exon 1 huntingtin protein. In evaluating huntingtin-lowering approaches, understanding how the targeting strategy modulates levels of both transcripts and the huntingtin protein isoforms that they encode will be essential. Given the aggregation-propensity of exon 1 huntingtin, the impact of a given strategy on the levels and subcellular location of aggregated huntingtin will need to be determined. We have developed and applied sensitive molecular approaches to monitor the levels of aggregated and soluble huntingtin isoforms in tissue lysates. We have used these, in combination with immunohistochemistry, to map the appearance and accumulation of aggregated huntingtin throughout the CNS of zQ175 mice, a model of Huntington's disease frequently chosen for preclinical studies. Aggregation analyses were performed on tissues from zQ175 and wild-type mice at monthly intervals from 1 to 6 months of age. We developed three homogeneous time-resolved fluorescence assays to track the accumulation of aggregated huntingtin and showed that two of these were specific for the exon 1 huntingtin protein. Collectively, the homogeneous time-resolved fluorescence assays detected huntingtin aggregation in the 10 zQ175 CNS regions by 1-2 months of age. Immunohistochemistry with the polyclonal S830 anti-huntingtin antibody showed that nuclear huntingtin aggregation, in the form of a diffuse nuclear immunostain, could be visualized in the striatum, hippocampal CA1 region and layer IV of the somatosensory cortex by 2 months. That this diffuse nuclear immunostain represented aggregated huntingtin was confirmed by immunohistochemistry with a polyglutamine-specific antibody, which required formic acid antigen retrieval to expose its epitope. By 6 months of age, nuclear and cytoplasmic inclusions were widely distributed throughout the brain. Homogeneous time-resolved fluorescence analysis showed that the comparative levels of soluble exon 1 huntingtin between CNS regions correlated with those for huntingtin aggregation. We found that soluble exon 1 huntingtin levels decreased over the 6-month period, whilst those of soluble full-length mutant huntingtin remained unchanged, data that were confirmed for the cortex by immunoprecipitation and western blotting. These data support the hypothesis that exon 1 huntingtin initiates the aggregation process in knock-in mouse models and pave the way for a detailed analysis of huntingtin aggregation in response to huntingtin-lowering treatments.

16.
eNeuro ; 10(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37923392

RESUMO

The retina has diverse neuronal cell types derived from a common pool of retinal progenitors. Many molecular drivers, mostly transcription factors, have been identified to promote different cell fates. In Drosophila, atonal is required for specifying photoreceptors. In mice, there are two closely related atonal homologs, Atoh1 and Atoh7 While Atoh7 is known to promote the genesis of retinal ganglion cells, there is no study on the function of Atoh1 in retinal development. Here, we crossed Atoh1Cre/+ mice to mice carrying a Cre-dependent TdTomato reporter to track potential Atoh1-lineage neurons in retinas. We characterized a heterogeneous group of TdTomato+ retinal neurons that were detected at the postnatal stage, including glutamatergic amacrine cells, AII amacrine cells, and BC3b bipolar cells. Unexpectedly, we did not observe TdTomato+ retinal neurons in the mice with an Atoh1-FlpO knock-in allele and a Flp-dependent TdTomato reporter, suggesting Atoh1 is not expressed in the mouse retina. Consistent with these data, conditional removal of Atoh1 in the retina did not cause any observable phenotypes. Importantly, we did not detect Atoh1 expression in the retina at multiple ages using mice with Atoh1-GFP knock-in allele. Therefore, we conclude that Atoh1Cre/+ mice have ectopic Cre expression in the retina and that Atoh1 is not required for retinal development.


Assuntos
Células Amácrinas , Retina , Camundongos , Animais , Células Amácrinas/metabolismo , Camundongos Transgênicos , Alelos , Retina/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
17.
Ophthalmol Sci ; 3(1): 100229, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36420180

RESUMO

Purpose: Pathogenic variants in FAM161A are the most common cause of retinitis pigmentosa in Israel. Two founder pathogenic variants explain the vast majority of cases of Jewish origin, 1 being a nonsense variant (p.Arg523∗). The aim of this study was to generate a knock-in (KI) mouse model harboring the corresponding p.Arg512∗ pathogenic variant and characterize the course of retinal disease. Design: Experimental study of a mouse animal model. Subjects/Participants/Controls: A total of 106 Fam161a knock-in mice and 29 wild-type mice with C57BL/6J background particiapted in this study. Methods: Homozygous Fam161a p.Arg512∗ KI mice were generated by Cyagen Biosciences. Visual acuity (VA) was evaluated using optomotor tracking response and retinal function was assessed by electroretinography (ERG). Retinal structure was examined in vivo using OCT and fundus autofluorescence imaging. Retinal morphometry was evaluated by histologic and immunohistochemical (IHC) analyses. Main Outcome Measures: Visual and retinal function assessments, clinical imaging examinations, quantitative histology, and IHC studies of KI as compared with wild-type (WT) mice retinas. Results: The KI model was generated by replacing 3 bp, resulting in p.Arg512∗. Homozygous KI mice that had progressive loss of VA and ERG responses until the age of 18 months, with no detectable response at 21 months. OCT showed complete loss of the outer nuclear layer at 21 months. Fundus autofluorescence imaging revealed progressive narrowing of blood vessels and formation of patchy hyper-autofluorescent and hypo-autofluorescent spots. Histologic analysis showed progressive loss of photoreceptor nuclei. Immunohistochemistry staining showed Fam161a expression mainly in photoreceptors cilia and the outer plexiform layer (OPL) in WT mice retinas, whereas faint expression was evident mainly in the cilia and OPL of KI mice. Conclusions: The Fam161a - p.Arg512∗ KI mouse model is characterized by widespread retinal degeneration with relatively slow progression. Surprisingly, disease onset is delayed and progression is slower compared with the previously reported knock-out model. The common human null mutation in the KI mouse model is potentially amenable for correction by translational read-through-inducing drugs and by gene augmentation therapy and RNA editing, and can serve to test these treatments as a first step toward possible application in patients. Financial Disclosures: The author(s) have no proprietary or commercial interest in any materials discussed in this article.

18.
CNS Neurosci Ther ; 28(2): 237-246, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767694

RESUMO

AIMS: This study aimed to explore the pathomechanism of a mutation on the leucine-rich glioma inactivated 1 gene (LGI1) identified in a family having autosomal dominant lateral temporal lobe epilepsy (ADLTE), using a precise knock-in mouse model. METHODS AND RESULTS: A novel LGI1 mutation, c.152A>G; p. Asp51Gly, was identified by whole exome sequencing in a Chinese family with ADLTE. The pathomechanism of the mutation was explored by generating Lgi1D51G knock-in mice that precisely phenocopied the epileptic symptoms of human patients. The Lgi1D51G/D51G mice showed spontaneous recurrent generalized seizures and premature death. The Lgi1D51G/+ mice had partial epilepsy, with half of them displaying epileptiform discharges on electroencephalography. They also showed enhanced sensitivity to the convulsant agent pentylenetetrazole. Mechanistically, the secretion of Lgi1 was impaired in the brain of the D51G knock-in mice and the protein level was drastically reduced. Moreover, the antiepileptic drugs, carbamazepine, oxcarbazepine, and sodium valproate, could prolong the survival time of Lgi1D51G/D51G mice, and oxcarbazepine appeared to be the most effective. CONCLUSIONS: We identified a novel epilepsy-causing mutation of LGI1 in humans. The Lgi1D51G/+ mouse model, precisely phenocopying epileptic symptoms of human patients, could be a useful tool in future studies on the pathogenesis and potential therapies for epilepsy.


Assuntos
Modelos Animais de Doenças , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Animais , Criança , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linhagem
19.
Mol Neurobiol ; 59(1): 495-522, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34716557

RESUMO

Spinocerebellar ataxia type 3 is the most common autosomal dominant inherited ataxia worldwide, caused by a CAG repeat expansion in the Ataxin-3 gene resulting in a polyglutamine (polyQ)-expansion in the corresponding protein. The disease is characterized by neuropathological, phenotypical, and specific transcriptional changes in affected brain regions. So far, there is no mouse model available representing all the different aspects of the disease, yet highly needed for a better understanding of the disease pathomechanisms. Here, we characterized a novel Ataxin-3 knock-in mouse model, expressing a heterozygous or homozygous expansion of 304 CAACAGs in the murine Ataxin-3 locus using biochemical, behavioral, and transcriptomic approaches. We compared neuropathological, and behavioral features of the new knock-in model with the in SCA3 research mostly used YAC84Q mouse model. Further, we compared transcriptional changes found in cerebellar samples of the SCA3 knock-in mice and post-mortem human SCA3 patients. The novel knock-in mouse is characterized by the expression of a polyQ-expansion in the murine Ataxin-3 protein, leading to aggregate formation, especially in brain regions known to be vulnerable in SCA3 patients, and impairment of Purkinje cells. Along these neuropathological changes, the mice showed a reduction in body weight accompanied by gait and balance instability. Transcriptomic analysis of cerebellar tissue revealed age-dependent differential expression, enriched for genes attributed to myelinating oligodendrocytes. Comparing these changes with those found in cerebellar tissue of SCA3 patients, we discovered an overlap of differentially expressed genes pointing towards similar gene expression perturbances in several genes linked to myelin sheaths and myelinating oligodendrocytes.


Assuntos
Ataxina-3/genética , Cerebelo/metabolismo , Modelos Animais de Doenças , Doença de Machado-Joseph/genética , Oligodendroglia/metabolismo , Fenótipo , Animais , Ataxina-3/metabolismo , Doença de Machado-Joseph/metabolismo , Camundongos , Camundongos Transgênicos , Células de Purkinje/metabolismo
20.
Neuropsychopharmacol Rep ; 42(3): 272-280, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35582933

RESUMO

AIM: Type 2 diabetes mellitus (T2DM) is an increased risk factor for Alzheimer's disease (AD); however, the relationship between the 2 conditions is controversial. High-fat diet (HFD) causes cognitive impairment with/without Aß accumulation in middle-aged or aged transgenic (Tg) and knock-in (KI) AD mouse models, except for metabolic disorders, which commonly occur in all mice types. Alternatively, whether HFD in early life has an impact on nutrient metabolism and neurological phenotypes in young AD mouse models is not known. In the present study, we examined the effects of HFD on young APPKINL-G-F/NL-G-F mice, one of the novel KI-AD mouse models. METHODS: The mice were categorized by diet into 2 experimental groups, normal diet (ND) and HFD. Four-week-old wild-type (WT) and APPKINL-G-F/NL-G-F mice were fed ND or HFD for 9 weeks. Both types of mice on ND and HFD were examined during young adulthood. RESULTS: HFD caused T2DM-related metabolic disturbances in both young WT and APPKINL-G-F/NL-G-F mice, whereas impaired thermoregulation and shortage of alternative energy sources specifically occurred in young APPKINL-G-F/NL-G-F mice. However, HFD had no impact on the cognitive function, Aß levels, and phosphorylation of hippocampal insulin receptor substrate 1 (IRS1) at all the 3 Ser sites in both types of mice. CONCLUSION: HFD is effective in causing metabolic disturbances in young WT and APPKINL-G-F/NL-G-F mice but is ineffective in inducing neurological disorders in both types of mice, suggesting that the aging effects, along with long-term HFD, facilitate neurological alterations.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Cognição , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Nutrientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA