Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(1): e2205316, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36394201

RESUMO

Recently, flexible stretchable sensors have been gaining attention for their excellent adaptability for electronic skin applications. However, the preparation of stretchable strain sensors that achieve dual-mode sensing while still retaining ultra-low detection limit of strain, high sensitivity, and low cost is a pressing task. Herein, a high-performance dual-mode stretchable strain sensor (DMSSS) based on biomimetic scorpion foot slit microstructures and multi-walled carbon nanotubes (MWCNTs)/graphene (GR)/silicone rubber (SR)/Fe3 O4 nanocomposites is proposed, which can accurately sense strain and magnetic stimuli. The DMSSS exhibits a large strain detection range (≈160%), sensitivity up to 100.56 (130-160%), an ultra-low detection limit of strain (0.16% strain), and superior durability (9000 cycles of stretch/release). The sensor can accurately recognize sign language movement, as well as realize object proximity information perception and whole process information monitoring. Furthermore, human joint movements and micro-expressions can be monitored in real-time. Therefore, the DMSSS of this work opens up promising prospects for applications in sign language pose recognition, non-contact sensing, human-computer interaction, and electronic skin.


Assuntos
Nanocompostos , Nanotubos de Carbono , Humanos , Nanotubos de Carbono/química , Movimento , Fenômenos Físicos , Fenômenos Magnéticos
2.
Small ; 19(45): e2303814, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37415552

RESUMO

Halide hybrid perovskites are a kind of intriguing contenders for X-ray detection, and their low detection limits (LoDs) have played a crucial part in X-ray safety inspection and medical examination. However, there is still a significant challenge in manufacturing perovskite X-ray detectors with low LoDs. Herein, attributed to the bulk photovoltaic effect (BPVE) of a Dion-Jacobson (DJ) type 2D halide hybrid perovskite polar structure (3-methylaminopropylamine)PbBr4 (1), self-powered X-ray detection with low detection limit is successfully realized. Specifically, the crystal-based detector of 1 exhibits a low dark current at zero bias, which reduces the noise current (0.34 pA), leading to a low detection limit (58.3 nGyair s-1 ) which is two orders of magnitude lower than that of under external voltage bias. The combination of BPVE and LoDs of halide hybrid perovskite provides an efficient strategy to achieve passive X-ray detection with low doses.

3.
Small ; 19(50): e2304201, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658508

RESUMO

2D Ruddlesden-Popper (RP) perovskites have been intensively investigated due to their superior stability and outstanding optoelectrical properties. However, investigations on 2D RP perovskites are mainly focused on A-site substituted perovskites and few reports are on X-site substituted perovskites especially in X-ray detection field. Here, X-site substituted 2D RP perovskite Cs2 Pb(SCN)2 Br2 polycrystalline wafers are prepared and systematically studied for X-ray detection. The obtained wafers show a large resistivity of 2.0 × 1010 Ω cm, a high ion activation energy of 0.75 eV, a small current drift of 2.39 × 10-6 nA cm-1 s-1 V-1 , and charge carrier mobility-lifetime product under X-ray as high as 1.29 × 10-4 cm2 V-1 . These merits enable Cs2 Pb(SCN)2 Br2 wafer detectors with a sensitivity of 216.3 µC Gyair -1 cm-2 , a limit of detection of 42.4 nGyair s-1 , and good imaging ability with high spatial resolution of 1.08 lp mm-1 . In addition, Cs2 Pb(SCN)2 Br2 wafer detectors demonstrate excellent operational stability under high working field up to 2100 V cm-1 after continuous X-ray irradiation with a total dose of 45.2 Gyair . The promising features such as short octahedral spacing and weak ion migration will open up a new perspective and opportunity for SCN-based 2D perovskites in X-ray detection.

4.
Chemistry ; 29(15): e202203595, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36592116

RESUMO

Palladium is a key element in fuel cells, electronic industries, and organic catalysis. At the same time, chromium is essential in leather, electroplating, and metallurgical industries. However, their unpremeditated leakage into aquatic systems has caused human health and environmental apprehensions. Herein, we reported the development of an sp2 carbon-conjugated fluorescent covalent organic framework with a guanidine moiety (sp2 c-gCOF) that showed excellent thermal and chemical stability. The sp2 c-gCOF showed effective sensing, capture, and recovery/removal of Pd(II) and Cr(VI) ions, which could be due to the highly accessible pore walls decorated with guanidine moieties. The fluorescent sp2 c-gCOF showed higher selectivity for Pd(II) and Cr(VI) ions, with an ultra-low detection limit of 2.7 and 3.2 nM, respectively. The analysis of the adsorption properties with a pseudo-second-order kinetic model showed that sp2 c-gCOF could successfully and selectively remove both Pd(II) and Cr(VI) ions from aqueous solutions. The polymer also showed excellent capture efficacy even after seven consecutive adsorption-desorption cycles. Hence, this study reveals the potential of fluorescent sp2 c-gCOF for detecting, removing, and recovering valuable metals and hazardous ions from wastewater, which would be useful for economic benefit, environmental safety, human health, and sustainability. The post-synthetic modification of sp2 c-COF with suitable functionalities could also be useful for sensing and extracting other water pollutants and valuable materials from an aqueous system.

5.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446708

RESUMO

Hydrogen sulfide (H2S) is widely found in oil and natural gas wells and industrial wastewater tanks. Owing to its high toxicity, the monitoring and detection of H2S in the air is essential. However, recent techniques for the quantitative detection of H2S gas suffer from limitations such as high cost, complicated operation, and insufficient sensitivity, preventing their practical application in industry. Thus, we have developed a portable test paper for real-time and inexpensive monitoring of H2S gas by color changes. The test paper had a significantly low H2S detection limit of 200 ppb, which is considered safe for humans. Moreover, the color of the test paper did not change noticeably when exposed to CO2, N2, O2, and air environments, indicating that the test paper is selective for H2S gas and can be stored for a long time. In addition, we fitted a color difference linear model between the color difference values (ΔE) and the concentrations of H2S gas. The establishment of the linear model substantiates that the test paper can provide accurate intensity information when detecting H2S gas leakage.


Assuntos
Sulfeto de Hidrogênio , Humanos , Sulfeto de Hidrogênio/análise , Gás Natural , Campos de Petróleo e Gás , Indústrias
6.
Angew Chem Int Ed Engl ; 62(19): e202302435, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36892282

RESUMO

Perovskite single crystals and polycrystalline films have complementary merits and deficiencies in X-ray detection and imaging. Herein, we report preparation of dense and smooth perovskite microcrystalline films with both merits of single crystals and polycrystalline films through polycrystal-induced growth and hot-pressing treatment (HPT). Utilizing polycrystalline films as seeds, multi-inch-sized microcrystalline films can be in situ grown on diverse substrates with maximum grain size reaching 100 µm, which endows the microcrystalline films with comparable carrier mobility-lifetime (µτ) product as single crystals. As a result, self-powered X-ray detectors with impressive sensitivity of 6.1×104  µC Gyair -1 cm-2 and low detection limit of 1.5 nGyair s-1 are achieved, leading to high-contrast X-ray imaging at an ultra-low dose rate of 67 nGyair s-1 . Combining with the fast response speed (186 µs), this work may contribute to the development of perovskite-based low-dose X-ray imaging.

7.
J Immunoassay Immunochem ; 43(6): 579-604, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36106387

RESUMO

Lateral flow immunoassay is the leading Point of Care test and is becoming increasingly essential for its versatile properties. The attraction of lateral flow assay (LFA) has reached its prime position during recent SARS-CoV-2 pandemic and Ebola, Zika epidemics in third world countries where primary screening of the disease and financial issues are very important. During the last decade traditional methodology of LFA was limited to visual detection and qualitative assessment only. However, recently researchers are focusing on the development and improvement of this tool to enhance its specificity, assessment power (quantitative) to make it an alternative to traditional lab-based technology. Modifying working principle and instrumentation, combination of different modern molecular techniques such as Reverse transcription loop mediated isothermal amplification (RT-LAMP), Clustered regularly inter-spaced short palindromic repeat (CRISPR-Cas), Recombinase amplification polymerase (RPA), also association of image-based software, involvement of nanotechnology, implementation of LFA ruler have established authenticity and ultra-specific detection level. These leading immunochromatographic techniques offer simultaneous detection of different analytes from a single sample unit into one multiplex strip and provide the necessary information. This review is a foremost attempt to encompass recent advances of lateral flow assays in combination with molecular biology techniques along with improvements of assay components for improved diagnostic sensitivity and specificity. Some infectious disease diagnosis by LFA with its reporter and low detection limit have also been mentioned in this review.


Assuntos
COVID-19 , Infecção por Zika virus , Zika virus , COVID-19/diagnóstico , Humanos , Imunoensaio/métodos , Pandemias , Recombinases , SARS-CoV-2 , Sensibilidade e Especificidade
8.
Nanotechnology ; 32(37)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34062528

RESUMO

Effectively and quantificationally detecting hazardous gas n-butanol is very significant in daily life, which can bring about a safe living condition for humans. In this study, the one-dimensional In2O3nanorods were successfully synthesized via hydrothermal route and post-heat treatment. Noticeably, one-dimensional nanorods structures were obtained and the products presented a superior growth orientation along with (222) plane. Additionally, systematical gas-sensing measurements of the sensor made from In2O3nanorods towards hazardous n-butanol gas were conducted. Results exhibited that the fabricated sensor showed excellent n-butanol sensing properties, with aspects to a superior response value of 342.20 with concentration 100 ppm at 240 °C, remarkable selectivity, fast response/recovery times (77.5/34.2 s) and good stability. More interestingly, the detection limit of sensor as low as 500 ppb and a good linearity relationship between response values and n-butanol concentrations was presented. Gas-sensitive properties of this sensor are better than previously reported in n-butanol detection. All results demonstrate that one-dimensional In2O3nanorod is a promising sensor material to practical applications in effectively detecting n-butanol gas.

9.
Ecotoxicol Environ Saf ; 228: 112995, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34801924

RESUMO

Rapid and sensitive detection of mercury vapor is of great significance for environmental protection and human health. But the detection method enabling low detection limitation and rapid response at room temperature simultaneously has rarely been reported. In this work, we propose a gold particles decorated reduced graphene oxide sensor for mercury vapor detection. After adding the gold particles, the reduced graphene oxide sensors' response sensitivity increase by more than 16 times and the response time significantly decreases, which is far less below the results reported by others. The sensor performance improvement should attribute to the distribution of the decorated gold particles, which insert into the layered graphene sheets, as demonstrated by the SEM and XRD results. The increased layer spacing of graphene sheets is conductive to the faster entry/exit of mercury vapor and increases the effective sensing area of graphene. What's more, the first-principles calculation results confirm the mercury-philicity of gold particles, which also contributes to the increased sensitivity. We further test more performance of the gold particles decorated reduced graphene oxide sensor to mercury vapor, which shows a linear response, low detection limit and good repeatability. The proposed sensor shows rapid response/recovery (6/8 s), low detection limit (0.01 ng/mL), linear response, good repeatability and room temperature detection simultaneously, which shows great application potential for mercury vapor detection.

10.
Mikrochim Acta ; 186(8): 554, 2019 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-31327055

RESUMO

A composite prepared from zinc oxide and graphene oxide nanoribbons (ZnO/GONR) is demonstrated to enable improved room temperature (RT) detection of nitrogen dioxide (NO2). Low-cost hydrothermal synthesis is used to construct the composite. The properties of the resistive sensor, including the sensitivity, response and recovery times, repeatability and selectivity, were investigated in the NO2 concentration range from 1 to 50 ppm at RT. The sensor, typically operated at a voltage of 5 V, exhibits a low detection limit of 1 ppm, a fast response-recovery time, and excellent repeatability which outperforms that of pure ZnO sensors. The sensing mechanism is explained in terms of a redox reaction between NO2 and oxygen anions on the surface of the ZnO/GONR composite. Graphical abstract Schematic representation of the NO2 sensing mechanisms on the surface of the ZnO/GONR composite and overall improved NO2 gas-sensing performance.

11.
Mikrochim Acta ; 186(6): 383, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31140009

RESUMO

The authors constructed a voltammetric zearalenone (ZEN) aptasensor based on use of porous platinum nanotubes, gold nanoparticles (p-PtNTs/AuNPs) and thionine (Thi) labelled graphene oxide (GO). The p-PtNTs were synthesized in-situ based on tellurium nanowires as sacrificial templates. Subsequently, thiol-modified aptamers were self-assembled on the AuNPs that had been electrodeposited on the surface of the modified electrode. The presence of p-PtNTs on the electrode increases the loading with AuNPs and aptamers. It also warrants that the Thi-labelled GO can be assembled onto the aptamer via π interactions. In the presence of ZEN, it will be bound by the aptamer. The GO/Thi conjugate will be released from the aptamer, and this causes a decrease in Thi current. Under the optimal conditions and at a typical working potential of -0.22 V (vs. Ag/AgCl), the method has a linear range that covers the 0.5 pg·mL-1 to 0.5 µg·mL-1 ZEN concentraion range and a lower detection limit of 0.17 pg·mL-1. Graphical abstract Voltammetric zearalenone aptasensor based on use of porous platinum nanotubes/gold nanoparticles and thionine labelled graphene oxide was fabricated for the detection of zearalenone.

12.
Mikrochim Acta ; 185(10): 488, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30280258

RESUMO

An aptamer based assay is described for the colorimetric detection of adenosine. The presence of adenosine triggers the deformation of hairpin DNA oligonucleotide (HP1) containing adenosine aptamer and then hybridizes another unlabeled hairpin DNA oligonucleotide (HP2). This leads to the formation of a double strand with a blunt 3' terminal. After exonuclease III (Exo III)-assisted degradation, the guanine-rich strand (GRS) is released from HP2. Hence, the adenosine-HP1 complex is released to the solution where it can hybridize another HP2 and initiate many cycles of the digestion reaction with the assistance of Exo III. This leads to the generation of a large number of GRS strands after multiple cycles. The GRS stabilize the red AuNPs against aggregation in the presence of potassium ions. If, however, GRS forms a G-quadruplex, it loses its ability to protect gold nanoparticles (AuNPs) from salt-induced AuNP aggregation. Therefore, the color of the solution changes from red to blue which can be visually observed. This colorimetric assay has a 0.13 nM detection limit and a wide linear range that extends from 5 nM to 1 µM. Graphical abstract Schematic presentation of a colorimetric aptamer biosensor for adenosine detection based on DNA cycling amplification and salt-induced aggregation of gold nanoparticles.


Assuntos
Adenosina/análise , Aptâmeros de Nucleotídeos/genética , Técnicas Biossensoriais/métodos , DNA/genética , Ouro/química , Nanopartículas Metálicas/química , Sais/química , Aptâmeros de Nucleotídeos/química , Colorimetria , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico , Hibridização de Ácido Nucleico
13.
Mikrochim Acta ; 186(1): 28, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30564953

RESUMO

An aptamer-based fluorometric assay is described for the determination of bisphenol A (BPA). The aptamer against BPA is first attached to the surface of the red AuNPs, and this prevents the AuNPs from salt-induced formation of a blue-colored aggregate. Hence, the blue fluorescence of added nitrogen-doped carbon dots (NCDots) is quenched via an inner filter effect (IFE) caused by the red AuNPs. After addition of BPA, the BPA/aptamer complex is formed, and the AuNPs are no longer stabilized agains aggregation. This weakens the IFE and results in the recovery of the fluorescence of the NCDots which is measured best at excitation/emission wavelengths of 300/420 nm. The recovered fluorescence increases linearly in the 10 to 250 nM and 250 to 900 nM BPA concentration ranges, and the detection limit is 3.3 nM. The method was successfully applied to the determination of BPA in spiked environmental tap water samples. Graphical abstract Schematic presentation of a fluorometric aptamer based assay for bisphenol A (BPA). It is based on the inner filter effect of gold nanoparticles (AuNPs) on the fluorescence of nitrogen-doped carbon dots (NCDots).

14.
Sensors (Basel) ; 18(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424483

RESUMO

An aerosol electrometer with enhanced detection limit was developed for measuring the collected particles electrical current ranging from -50 pA to 50 pA with no range switching necessary. The detection limit was enhanced by suppressing the electric current measurement noise and improving the detection efficiency. A theoretical model for the aerosol electrometer has been established to investigate the noise effect factors and verified experimentally. The model showed that the noise was a function of ambient temperature, and it was affected by the characteristics of feedback resistor and operational amplifier simultaneously. The Faraday cup structure of the aerosol electrometer was optimized by adopting a newly designed cup-shaped metal filter which increased the surface area of the cup; thus the particle interception efficiency was improved. The aerosol electrometer performance-linearity, noise and the particle detection efficiency, were evaluated experimentally. When compared with TSI-3068B, a 99.4% ( R 2 ) statistical correlation was achieved. The results also showed that the root mean square noise and the peak-to-peak noise were 0.31 fA and 1.55 fA, respectively. The particle detection efficiency was greater than 99.3% when measuring particle diameter larger than 7.0 nm.

15.
Sensors (Basel) ; 16(5)2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27187386

RESUMO

A highly sensitive refractive index sensor with low detection limit based on an asymmetric optical microfiber coupler is proposed. It is composed of a silica optical microfiber and an As2Se3 optical microfiber. Due to the asymmetry of the microfiber materials, a single-notch transmission spectrum is demonstrated by the large refractive index difference between the two optical microfibers. Compared with the symmetric coupler, the bandwidth of the asymmetric structure is over one order of magnitude narrower than that of the former. Therefore, the asymmetric optical microfiber coupler based sensor can reach over one order of magnitude smaller detection limit, which is defined as the minimal detectable refractive index change caused by the surrounding analyte. With the advantage of large evanescent field, the results also show that a sensitivity of up to 3212 nm per refractive index unit with a bandwidth of 12 nm is achieved with the asymmetric optical microfiber coupler. Furthermore, a maximum sensitivity of 4549 nm per refractive index unit can be reached while the radii of the silica optical microfiber and As2Se3 optical microfiber are 0.5 µm and a 0.128 µm, respectively. This sensor component may have important potential for low detection-limit physical and biochemical sensing applications.

16.
Anal Chim Acta ; 1305: 342580, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38677837

RESUMO

BACKGROUND: The accurate and rapid detection of blood lead concentration is of paramount importance for assessing human lead exposure levels. Fluorescent protein-based probes, known for their high detection capabilities and low toxicity, are extensively used in analytical sciences. However, there is currently a shortage of such probes designed for ultrasensitive detection of Pb2+, and no reported probes exist for the quantitative detection of Pb2+ in blood samples. This study aims to fill this critical void by developing and evaluating a novel fluorescent protein-based probe that promises accurate and rapid lead quantification in blood. RESULTS: A simple and small-molecule fluorescent protein-based probe was successfully constructed herein using a peptide PbrBD designed for Pb2+ recognition coupled to a single fluorescent protein, sfGFP. The probe retains a three-coordinate configuration to identify Pb2+ and has a high affinity for it with a Kd' of 1.48 ± 0.05 × 10-17 M. It effectively transfers the conformational changes of the peptide to the chromophore upon Pb2+ binding, leading to fast fluorescence quenching and a sensitive response to Pb2+. The probe offers a broad dynamic response range of approximately 37-fold and a linear detection range from 0.25 nM to 3500 nM. More importantly, the probe can resist interference of metal ions in living organisms, enabling quantitative analysis of Pb2+ in the picomolar to millimolar range in serum samples with a recovery percentage of 96.64%-108.74 %. SIGNIFICANCE: This innovative probe, the first to employ a single fluorescent protein-based probe for ultrasensitive and precise analysis of Pb2+ in animal and human serum, heralds a significant advancement in environmental monitoring and public health surveillance. Furthermore, as a genetically encoded fluorescent probe, this probe also holds potential for the in vivo localization and concentration monitoring of Pb2+.


Assuntos
Chumbo , Proteínas Luminescentes , Animais , Humanos , Chumbo/sangue , Chumbo/química , Limite de Detecção , Proteínas Luminescentes/química , Espectrometria de Fluorescência
17.
Discov Nano ; 19(1): 107, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913270

RESUMO

The imperative development of a cutting-edge environmental gas sensor is essential to proficiently monitor and detect hazardous gases, ensuring comprehensive safety and awareness. Nanostructures developed from metal oxides are emerging as promising candidates for achieving superior performance in gas sensors. NO2 is one of the toxic gases that affects people as well as the environment so its detection is crucial. The present study investigates the gas sensing capability of copper oxide-based sensor for 5 ppm of NO2 gas at 100 °C. The sensing material was synthesized using a facile precipitation method and characterized by XRD, FE-SEM, UV-visible spectroscopy, photoluminescence spectroscopy, XPS and BET techniques. The developed material shows a response equal to 67.1% at optimal temperature towards 5 ppm NO2 gas. The sensor demonstrated an impressive detection limit of 300 ppb, along with a commendable percentage response of 5.2%. Under optimized conditions, the synthesized material demonstrated its high selectivity, as evidenced by the highest percentage response recorded for NO2 gas among NO2, NH3, CO, CO2 and H2S.

18.
ACS Appl Mater Interfaces ; 16(28): 36649-36657, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38961051

RESUMO

Thick polycrystalline perovskite films synthesized by using solution processes show great potential in X-ray detection applications. However, due to the evaporation of the solvent, many pinholes and defects appear in the thick films, which deteriorate their optoelectronic properties and diminish their X-ray detection performance. Therefore, the preparation of large area and dense perovskite thick films is desired. Herein, we propose an effective strategy of filling the pores with a saturated precursor solution. By adding the saturated perovskite solution to the polycrystalline perovskite thick film, the original perovskite film will not be destroyed because of the solution-solute equilibrium relationship. Instead, it promotes in situ crystal growth within the thick film during the annealing process. The loosely packed grains in the original thick perovskite film are connected, and the pores and defects are partially filled and fixed. Finally, a much denser perovskite thick film with improved optoelectronic properties has been obtained. The optimized thick film exhibits an X-ray sensitivity of 1616.01 µC Gyair-1 cm-2 under an electric field of 44.44 V mm-1 and a low detection limit of 28.64 nGyair s-1 under an electric field of 22.22 V mm-1. These values exceed the 323.86 µC Gyair-1 cm-2 and 40.52 nGyair s-1 of the pristine perovskite thick film measured under the same conditions. The optimized thick film also shows promising working stability and X-ray imaging capability.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123676, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38039642

RESUMO

A novel fluorescent probe N'-(2-hydroxybenzylidene)-indole-3-formylhydrazine (JHK) was designed and synthesized based on the condensation reaction of indole-3-formylhydrazine and salicylaldehyde. The probe JHK solution could highly selectively recognize Al3+ by the obvious fluorescence enhancement (288-fold) after adding Al3+. And the probe solution with Al3+ had a very high fluorescence quantum yield (89.29 %). The detection limit was calculated to be 1.135 nM, which was significantly lower than many reported detection limits, indicating that the probe JHK had pretty good sensitivity. The ratio of JHK to Al3+ (1:1) and the sensing mechanism were determined by Job's plot, 1H NMR spectra, FTIR spectra, ESI-MS and Gaussian calculation. The probe solution and medium-speed filter paper were successfully used to make test papers for more convenient detection of Al3+. Furthermore, the probe JHK had been successfully applied to the detection of Al3+ in real water, zebrafish and living cells.


Assuntos
Corantes Fluorescentes , Hidrazinas , Peixe-Zebra , Animais , Corantes Fluorescentes/química , Limite de Detecção , Imagem Óptica , Indóis , Espectrometria de Fluorescência/métodos
20.
Crit Rev Anal Chem ; : 1-34, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506453

RESUMO

Optimizing materials and associated structures for detecting various environmental gas pollutant concentrations has been a major challenge in environmental sensing technology. Semiconducting metal oxides (SMOs) fabricated at the nanoscale are a class of sensor technology in which metallic species are functionalized with various dopants to modify their chemiresistivity and crystalline scaffolding properties. Studies focused on recent advances of gas sensors utilizing metal oxide nanostructures with a special emphasis on the structure-surface property relationships of some typical n-type and p-type SMOs for efficient gas detection are presented. Strategies to enhance the gas sensor performances are also discussed. These oxide material sensors have several advantages such as ease of handling, portability, and doped-based SMO sensing detection ability of environmental gas pollutants at low temperatures. SMO sensors have displayed excellent sensitivity, selectivity, and robustness. In addition, the hybrid SMO sensors showed exceptional selectivity to some CWAs when irradiated with visible light while also displaying high reversibility and humidity independence. Results showed that TiO2 surfaces can sense 50 ppm SO2 in the presence of UV light and under operating temperatures of 298-473 K. Hybrid SMO displayed excellent gas sensing response. For example, a CuO-ZnO nanoparticle network of a 4:1 vol.% CuO/ZnO ratio exhibited responses three times greater than pure CuO sensors and six times greater than pure ZnO sensors toward H2S. This review provides a critical discussion of modified gas pollutant sensing capabilities of metal oxide nanoparticles under ambient conditions, focusing on reported results during the past two decades on gas pollutants sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA