Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 409
Filtrar
1.
Cell ; 187(16): 4318-4335.e20, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38964327

RESUMO

Dexamethasone is a life-saving treatment for severe COVID-19, yet its mechanism of action is unknown, and many patients deteriorate or die despite timely treatment initiation. Here, we identify dexamethasone treatment-induced cellular and molecular changes associated with improved survival in COVID-19 patients. We observed a reversal of transcriptional hallmark signatures in monocytes associated with severe COVID-19 and the induction of a monocyte substate characterized by the expression of glucocorticoid-response genes. These molecular responses to dexamethasone were detected in circulating and pulmonary monocytes, and they were directly linked to survival. Monocyte single-cell RNA sequencing (scRNA-seq)-derived signatures were enriched in whole blood transcriptomes of patients with fatal outcome in two independent cohorts, highlighting the potential for identifying non-responders refractory to dexamethasone. Our findings link the effects of dexamethasone to specific immunomodulation and reversal of monocyte dysregulation, and they highlight the potential of single-cell omics for monitoring in vivo target engagement of immunomodulatory drugs and for patient stratification for precision medicine approaches.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Dexametasona , Monócitos , SARS-CoV-2 , Análise de Célula Única , Humanos , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Monócitos/metabolismo , Monócitos/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Masculino , Feminino , Transcriptoma , Pessoa de Meia-Idade , Idoso , Glucocorticoides/uso terapêutico , Glucocorticoides/farmacologia , Pulmão/patologia , Adulto
2.
Immunity ; 57(6): 1225-1242.e6, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38749446

RESUMO

Classical monocytes (CMs) are ephemeral myeloid immune cells that circulate in the blood. Emerging evidence suggests that CMs can have distinct ontogeny and originate from either granulocyte-monocyte- or monocyte-dendritic-cell progenitors (GMPs or MDPs). Here, we report surface markers that allowed segregation of murine GMP- and MDP-derived CMs, i.e., GMP-Mo and MDP-Mo, as well as their functional characterization, including fate definition following adoptive cell transfer. GMP-Mo and MDP-Mo yielded an equal increase in homeostatic CM progeny, such as blood-resident non-classical monocytes and gut macrophages; however, these cells differentially seeded various other selected tissues, including the dura mater and lung. Specifically, GMP-Mo and MDP-Mo differentiated into distinct interstitial lung macrophages, linking CM dichotomy to previously reported pulmonary macrophage heterogeneity. Collectively, we provide evidence for the existence of two functionally distinct CM subsets in the mouse that differentially contribute to peripheral tissue macrophage populations in homeostasis and following challenge.


Assuntos
Diferenciação Celular , Macrófagos , Monócitos , Animais , Monócitos/imunologia , Monócitos/citologia , Camundongos , Diferenciação Celular/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Pulmão/citologia , Pulmão/imunologia , Homeostase , Camundongos Endogâmicos C57BL , Células Dendríticas/imunologia , Linhagem da Célula , Transferência Adotiva
3.
Immunol Rev ; 323(1): 257-275, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38567833

RESUMO

Training and priming of innate immune cells involve preconditioning by PAMPs, DAMPs, and/or cytokines that elicits stronger induction of inflammatory genes upon secondary challenge. Previous models distinguish training and priming based upon whether immune activation returns to baseline prior to secondary challenge. Tolerance is a protective mechanism whereby potent stimuli induce refractoriness to secondary challenge. Training and priming are important for innate memory responses that protect against infection, efficacy of vaccines, and maintaining innate immune cells in a state of readiness; tolerance prevents toxicity from excessive immune activation. Dysregulation of these processes can contribute to pathogenesis of autoimmune/inflammatory conditions, post-COVID-19 hyperinflammatory states, or sepsis-associated immunoparalysis. Training, priming, and tolerance regulate similar "signature" inflammatory genes such as TNF, IL6, and IL1B and utilize overlapping epigenetic mechanisms. We review how interferons (IFNs), best known for activating JAK-STAT signaling and interferon-stimulated genes, also play a key role in regulating training, priming, and tolerance via chromatin-mediated mechanisms. We present new data on how monocyte-to-macrophage differentiation modulates IFN-γ-mediated priming, affects regulation of AP-1 and CEBP activity, and attenuates superinduction of inflammatory genes. We present a "training-priming continuum" model that integrates IFN-mediated priming into current concepts about training and tolerance and proposes a central role for STAT1 and IRF1.


Assuntos
Epigênese Genética , Células-Tronco Hematopoéticas , Tolerância Imunológica , Interferons , Monócitos , Humanos , Monócitos/imunologia , Monócitos/metabolismo , Interferons/metabolismo , Animais , Células-Tronco Hematopoéticas/metabolismo , Imunidade Inata , Transdução de Sinais , COVID-19/imunologia , SARS-CoV-2/imunologia , Diferenciação Celular , Memória Imunológica
4.
Proc Natl Acad Sci U S A ; 121(12): e2312290121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483999

RESUMO

Human cytomegalovirus (HCMV) infection of monocytes is essential for viral dissemination and persistence. We previously identified that HCMV entry/internalization and subsequent productive infection of this clinically relevant cell type is distinct when compared to other infected cells. We showed that internalization and productive infection required activation of epidermal growth factor receptor (EGFR) and integrin/c-Src, via binding of viral glycoprotein B to EGFR, and the pentamer complex to ß1/ß3 integrins. To understand how virus attachment drives entry, we compared infection of monocytes with viruses containing the pentamer vs. those without the pentamer and then used a phosphoproteomic screen to identify potential phosphorylated proteins that influence HCMV entry and trafficking. The screen revealed that the most prominent pentamer-biased phosphorylated protein was the lipid- and protein-phosphatase phosphatase and tensin homolog (PTEN). PTEN knockdown with siRNA or PTEN inhibition with a PTEN inhibitor decreased pentamer-mediated HCMV entry, without affecting trimer-mediated entry. Inhibition of PTEN activity affected lipid metabolism and interfered with the onset of the endocytic processes required for HCMV entry. PTEN inactivation was sufficient to rescue pentamer-null HCMV from lysosomal degradation. We next examined dephosphorylation of a PTEN substrate Rab7, a regulator of endosomal maturation. Inhibition of PTEN activity prevented dephosphorylation of Rab7. Phosphorylated Rab7, in turn, blocked early endosome to late endosome maturation and promoted nuclear localization of the virus and productive infection.


Assuntos
Monócitos , Internalização do Vírus , Humanos , Células Cultivadas , Monócitos/metabolismo , Citomegalovirus/fisiologia , Receptores ErbB/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(17): e2304199121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630712

RESUMO

Although anti-citrullinated protein autoantibodies (ACPAs) are a hallmark serological feature of rheumatoid arthritis (RA), the mechanisms and cellular sources behind the generation of the RA citrullinome remain incompletely defined. Peptidylarginine deiminase IV (PAD4), one of the key enzymatic drivers of citrullination in the RA joint, is expressed by granulocytes and monocytes; however, the subcellular localization and contribution of monocyte-derived PAD4 to the generation of citrullinated autoantigens remain underexplored. In this study, we demonstrate that PAD4 displays a widespread cellular distribution in monocytes, including expression on the cell surface. Surface PAD4 was enzymatically active and capable of citrullinating extracellular fibrinogen and endogenous surface proteins in a calcium dose-dependent manner. Fibrinogen citrullinated by monocyte-surface PAD4 could be specifically recognized over native fibrinogen by a panel of eight human monoclonal ACPAs. Several unique PAD4 substrates were identified on the monocyte surface via mass spectrometry, with citrullination of the CD11b and CD18 components of the Mac-1 integrin complex being the most abundant. Citrullinated Mac-1 was found to be a target of ACPAs in 25% of RA patients, and Mac-1 ACPAs were significantly associated with HLA-DRB1 shared epitope alleles, higher C-reactive protein and IL-6 levels, and more erosive joint damage. Our findings implicate the monocyte cell surface as a unique and consequential site of extracellular and cell surface autoantigen generation in RA.


Assuntos
Ácidos Aminossalicílicos , Artrite Reumatoide , Monócitos , Humanos , Desiminases de Arginina em Proteínas , Monócitos/metabolismo , Autoantígenos , Autoanticorpos , Fibrinogênio/metabolismo , Citrulina/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(10): e2312150121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412127

RESUMO

African swine fever, one of the major viral diseases of swine, poses an imminent threat to the global pig industry. The high-efficient replication of the causative agent African swine fever virus (ASFV) in various organs in pigs greatly contributes to the disease. However, how ASFV manipulates the cell population to drive high-efficient replication of the virus in vivo remains unclear. Here, we found that the spleen reveals the most severe pathological manifestation with the highest viral loads among various organs in pigs during ASFV infection. By using single-cell-RNA-sequencing technology and multiple methods, we determined that macrophages and monocytes are the major cell types infected by ASFV in the spleen, showing high viral-load heterogeneity. A rare subpopulation of immature monocytes represents the major population infected at late infection stage. ASFV causes massive death of macrophages, but shifts its infection into these monocytes which significantly arise after the infection. The apoptosis, interferon response, and antigen-presentation capacity are inhibited in these monocytes which benefits prolonged infection of ASFV in vivo. Until now, the role of immature monocytes as an important target by ASFV has been overlooked due to that they do not express classical monocyte marker CD14. The present study indicates that the shift of viral infection from macrophages to the immature monocytes is critical for maintaining prolonged ASFV infection in vivo. This study sheds light on ASFV tropism, replication, and infection dynamics, and elicited immune response, which may instruct future research on antiviral strategies.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/fisiologia , Baço/patologia , Replicação Viral , Macrófagos/patologia
7.
Circ Res ; 134(2): 189-202, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38152893

RESUMO

BACKGROUND: Diabetes is a major risk factor for atherosclerotic cardiovascular diseases with a 2-fold higher risk of cardiovascular events in people with diabetes compared with those without. Circulating monocytes are inflammatory effector cells involved in both type 2 diabetes (T2D) and atherogenesis. METHODS: We investigated the relationship between circulating monocytes and cardiovascular risk progression in people with T2D, using phenotypic, transcriptomic, and metabolomic analyses. cardiovascular risk progression was estimated with coronary artery calcium score in a cohort of 672 people with T2D. RESULTS: Coronary artery calcium score was positively correlated with blood monocyte count and frequency of the classical monocyte subtype. Unsupervised k-means clustering based on monocyte subtype profiles revealed 3 main endotypes of people with T2D at varying risk of cardiovascular events. These observations were confirmed in a validation cohort of 279 T2D participants. The predictive association between monocyte count and major adverse cardiovascular events was validated through an independent prospective cohort of 757 patients with T2D. Integration of monocyte transcriptome analyses and plasma metabolomes showed a disruption of mitochondrial pathways (tricarboxylic acid cycle, oxidative phosphorylation pathway) that underlined a proatherogenic phenotype. CONCLUSIONS: In this study, we provide evidence that frequency and monocyte phenotypic profile are closely linked to cardiovascular risk in patients with T2D. The assessment of monocyte frequency and count is a valuable predictive marker for risk of cardiovascular events in patients with T2D. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04353869.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Monócitos/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Fatores de Risco , Estudos Prospectivos , Cálcio/metabolismo , Fenótipo , Fatores de Risco de Doenças Cardíacas
8.
Circ Res ; 134(3): 269-289, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38174557

RESUMO

BACKGROUND: Extracellular vesicles (EVs) contain bioactive cargo including miRNAs and proteins that are released by cells during cell-cell communication. Endothelial cells (ECs) form the innermost lining of all blood vessels, interfacing with cells in the circulation and vascular wall. It is unknown whether ECs release EVs capable of governing recipient cells within these 2 separate compartments. Given their boundary location, we propose ECs use bidirectional release of distinct EV cargo in quiescent (healthy) and activated (atheroprone) states to communicate with cells within the circulation and blood vessel wall. METHODS: EVs were isolated from primary human aortic ECs (plate and transwell grown; ±IL [interleukin]-1ß activation), quantified, visualized, and analyzed by miRNA transcriptomics and proteomics. Apical and basolateral EC-EV release was determined by miRNA transfer, total internal reflection fluorescence and electron microscopy. Vascular reprogramming (RNA sequencing) and functional assays were performed on primary human monocytes or smooth muscle cells±EC-EVs. RESULTS: Activated ECs increased EV release, with miRNA and protein cargo related to atherosclerosis. EV-treated monocytes and smooth muscle cells revealed activated EC-EV altered pathways that were proinflammatory and atherogenic. ECs released more EVs apically, which increased with activation. Apical and basolateral EV cargo contained distinct transcriptomes and proteomes that were altered by EC activation. Notably, activated basolateral EC-EVs displayed greater changes in the EV secretome, with pathways specific to atherosclerosis. In silico analysis determined compartment-specific cargo released by the apical and basolateral surfaces of ECs can reprogram monocytes and smooth muscle cells, respectively, with functional assays and in vivo imaging supporting this concept. CONCLUSIONS: Demonstrating that ECs are capable of polarized EV cargo loading and directional EV secretion reveals a novel paradigm for endothelial communication, which may ultimately enhance the design of endothelial-based therapeutics for cardiovascular diseases such as atherosclerosis where ECs are persistently activated.


Assuntos
Aterosclerose , Vesículas Extracelulares , MicroRNAs , Humanos , Células Endoteliais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Vesículas Extracelulares/metabolismo , Comunicação Celular , Aterosclerose/metabolismo
9.
Circ Res ; 134(7): e17-e33, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420756

RESUMO

BACKGROUND: Microvascular complications are the major outcome of type 2 diabetes progression, and the underlying mechanism remains to be determined. METHODS: High-throughput RNA sequencing was performed using human monocyte samples from controls and diabetes. The transgenic mice expressing human CTSD (cathepsin D) in the monocytes was constructed using CD68 promoter. In vivo 2-photon imaging, behavioral tests, immunofluorescence, transmission electron microscopy, Western blot analysis, vascular leakage assay, and single-cell RNA sequencing were performed to clarify the phenotype and elucidate the molecular mechanism. RESULTS: Monocytes expressed high-level CTSD in patients with type 2 diabetes. The transgenic mice expressing human CTSD in the monocytes showed increased brain microvascular permeability resembling the diabetic microvascular phenotype, accompanied by cognitive deficit. Mechanistically, the monocytes release nonenzymatic pro-CTSD to upregulate caveolin expression in brain endothelium triggering caveolae-mediated transcytosis, without affecting the paracellular route of brain microvasculature. The circulating pro-CTSD activated the caveolae-mediated transcytosis in brain endothelial cells via its binding with low-density LRP1 (lipoprotein receptor-related protein 1). Importantly, genetic ablation of CTSD in the monocytes exhibited a protective effect against the diabetes-enhanced brain microvascular transcytosis and the diabetes-induced cognitive impairment. CONCLUSIONS: These findings uncover the novel role of circulatory pro-CTSD from monocytes in the pathogenesis of cerebral microvascular lesions in diabetes. The circulatory pro-CTSD is a potential target for the intervention of microvascular complications in diabetes.


Assuntos
Catepsina D , Diabetes Mellitus Tipo 2 , Monócitos , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Catepsina D/metabolismo , Catepsina D/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Precursores Enzimáticos , Camundongos Transgênicos , Monócitos/metabolismo , Transcitose/fisiologia
10.
Circ Res ; 134(9): 1113-1135, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662856

RESUMO

Epidemiological studies have found that transportation noise increases the risk for cardiovascular morbidity and mortality, with solid evidence for ischemic heart disease, heart failure, and stroke. According to the World Health Organization, at least 1.6 million healthy life years are lost annually from traffic-related noise in Western Europe. Traffic noise at night causes fragmentation and shortening of sleep, elevation of stress hormone levels, and increased oxidative stress in the vasculature and the brain. These factors can promote vascular (endothelial) dysfunction, inflammation, and arterial hypertension, thus elevating cardiovascular risk. The present review focusses on the indirect, nonauditory cardiovascular health effects of noise. We provide an updated overview of epidemiological research on the effects of transportation noise on cardiovascular risk factors and disease, and mechanistic insights based on the latest clinical and experimental studies and propose new risk markers to address noise-induced cardiovascular effects in the general population. We will discuss the potential effects of noise on vascular dysfunction, oxidative stress, and inflammation in humans and animals. We will elaborately explain the underlying pathomechanisms by alterations of gene networks, epigenetic pathways, circadian rhythm, signal transduction along the neuronal-cardiovascular axis, and metabolism. We will describe current and future noise mitigation strategies. Finally, we will conduct an overall evaluation of the status of the current evidence of noise as a significant cardiovascular risk factor.


Assuntos
Doenças Cardiovasculares , Ruído dos Transportes , Estresse Oxidativo , Humanos , Ruído dos Transportes/efeitos adversos , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/epidemiologia , Animais , Fatores de Risco de Doenças Cardíacas , Exposição Ambiental/efeitos adversos , Fatores de Risco
11.
Circ Res ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105287

RESUMO

BACKGROUND: Monocytes are a critical innate immune system cell type that serves homeostatic and immunoregulatory functions. They have been identified historically by the cell surface expression of CD14 and CD16. However, recent single-cell studies have revealed that they are much more heterogeneous than previously realized. METHODS: We utilized cellular indexing of transcriptomes and epitopes by sequencing (cellular indexing of transcriptomes and epitopes by sequencing) and single-cell RNA sequencing to describe the comprehensive transcriptional and phenotypic landscape of 437 126 monocytes. RESULTS: This high-dimensional multimodal approach identified vast phenotypic diversity and functionally distinct subsets, including IFN-responsive, MHCIIhi, monocyte-platelet aggregates, as well as nonclassical, sand several subpopulations of classical monocytes. Using flow cytometry, we validated the existence of MHCII+CD275+ MHCIIhi, CD42b+ monocyte-platelet aggregates, CD16+CD99- nonclassical monocytes, and CD99+ classical monocytes. Each subpopulation exhibited unique characteristics, developmental trajectories, transcriptional regulation, and tissue distribution. In addition, alterations associated with cardiovascular disease risk factors, including race, smoking, and hyperlipidemia were identified. Moreover, the effect of hyperlipidemia was recapitulated in mouse models of elevated cholesterol. CONCLUSIONS: This integrative and cross-species comparative analysis provides a new perspective on the comparison of alterations in monocytes in pathological conditions and offers insights into monocyte-driven mechanisms in cardiovascular disease and the potential for monocyte subpopulation targeted therapies.

12.
Circ Res ; 134(8): 970-986, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38456277

RESUMO

BACKGROUND: While platelets have well-studied hemostatic functions, platelets are immune cells that circulate at the interface between the vascular wall and white blood cells. The physiological implications of these constant transient interactions are poorly understood. Activated platelets induce and amplify immune responses, but platelets may also maintain immune homeostasis in healthy conditions, including maintaining vascular integrity and T helper cell differentiation, meaning that platelets are central to both immune responses and immune quiescence. Clinical data have shown an association between low platelet counts (thrombocytopenia) and immune dysfunction in patients with sepsis and extracorporeal membrane oxygenation, further implicating platelets as more holistic immune regulators, but studies of platelet immune functions in nondisease contexts have had limited study. METHODS: We used in vivo models of thrombocytopenia and in vitro models of platelet and monocyte interactions, as well as RNA-seq and ATAC-seq (assay for transposase-accessible chromatin with sequencing), to mechanistically determine how resting platelet and monocyte interactions immune program monocytes. RESULTS: Circulating platelets and monocytes interact in a CD47-dependent manner to regulate monocyte metabolism, histone methylation, and gene expression. Resting platelet-monocyte interactions limit TLR (toll-like receptor) signaling responses in healthy conditions in an innate immune training-like manner. In both human patients with sepsis and mouse sepsis models, thrombocytopenia exacerbated monocyte immune dysfunction, including increased cytokine production. CONCLUSIONS: Thrombocytopenia immune programs monocytes in a manner that may lead to immune dysfunction in the context of sepsis. This is the first demonstration that sterile, endogenous cell interactions between resting platelets and monocytes regulate monocyte metabolism and pathogen responses, demonstrating platelets to be immune rheostats in both health and disease.


Assuntos
Sepse , Trombocitopenia , Camundongos , Animais , Humanos , Monócitos/metabolismo , Trombocitopenia/metabolismo , Plaquetas/metabolismo , Imunidade , Sepse/metabolismo , Ativação Plaquetária
13.
J Biol Chem ; : 107638, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39121996

RESUMO

Successful pregnancy relies on a coordinated interplay between endocrine, immune, and metabolic processes to sustain fetal growth and development. The orchestration of these processes involves multiple signaling pathways driving cell proliferation, differentiation, angiogenesis, and immune regulation necessary for a healthy pregnancy. Among the molecules supporting placental development and maternal tolerance, the families of pregnancy-specific glycoproteins and galectins are of great interest in reproductive biology. We previously found that PSG1 can bind to galectin-1 (GAL-1). Herein, we characterized the interaction between PSG1 and other members of the galectin family expressed during pregnancy, including galectin-3, -7, -9, and -13 (GAL-3, GAL-7, GAL-9, and GAL-13). We observed that PSG1 binds to GAL-1, -3, and -9, with the highest apparent affinity seen for GAL-9, and that the interaction of PSG1 with GAL-9 is carbohydrate-dependent. We further investigated the ability of PSG1 to regulate GAL-9 responses in human monocytes, a murine macrophage cell line, and T-cells, and determined whether PSG1 binds to both carbohydrate recognition domains of GAL-9. Additionally, we compared the apparent affinity of GAL-9 binding to PSG1 with other known GAL-9 ligands in these cells, Tim-3 and CD44. Lastly, we explored functional conservation between murine and human PSGs by determining that Psg23, a highly expressed member of the murine Psg family, can bind some murine galectins despite differences in amino acid composition and domain structure.

14.
Circulation ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005211

RESUMO

BACKGROUND: Activation of the immune system contributes to cardiovascular diseases. The role of human-specific long noncoding RNAs in cardioimmunology is poorly understood. METHODS: Single-cell sequencing in peripheral blood mononuclear cells revealed a novel human-specific long noncoding RNA called HEAT4 (heart failure-associated transcript 4). HEAT4 expression was assessed in several in vitro and ex vivo models of immune cell activation, as well as in the blood of patients with heart failure (HF), acute myocardial infarction, or cardiogenic shock. The transcriptional regulation of HEAT4 was verified through cytokine treatment and single-cell sequencing. Loss-of-function and gain-of-function studies and multiple RNA-protein interaction assays uncovered a mechanistic role of HEAT4 in the monocyte anti-inflammatory gene program. HEAT4 expression and function was characterized in a vascular injury model in NOD.CB17-Prkdc scid/Rj mice. RESULTS: HEAT4 expression was increased in the blood of patients with HF, acute myocardial infarction, or cardiogenic shock. HEAT4 levels distinguished patients with HF from people without HF and predicted all-cause mortality in a cohort of patients with HF over 7 years of follow-up. Monocytes, particularly anti-inflammatory CD16+ monocytes, which are increased in patients with HF, are the primary source of HEAT4 expression in the blood. HEAT4 is transcriptionally activated by treatment with anti-inflammatory interleukin-10. HEAT4 activates anti-inflammatory and inhibits proinflammatory gene expression. Increased HEAT4 levels result in a shift toward more CD16+ monocytes. HEAT4 binds to S100A9, causing a monocyte subtype switch, thereby reducing inflammation. As a result, HEAT4 improves endothelial barrier integrity during inflammation and promotes vascular healing after injury in mice. CONCLUSIONS: These results characterize a novel endogenous anti-inflammatory pathway that involves the conversion of monocyte subtypes into anti-inflammatory CD16+ monocytes. The data identify a novel function for the class of long noncoding RNAs by preventing protein secretion and suggest long noncoding RNAs as potential targets for interventions in the field of cardioimmunology.

15.
Eur J Immunol ; : e2451044, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014923

RESUMO

Human cytomegalovirus is a medically important pathogen. Previously, using murine CMV (MCMV), we provided evidence that both neutralizing and nonneutralizing antibodies can confer protection from viral infection in vivo. In this study, we report that serum derived from infected animals had a greater protective capacity in MCMV-infected RAG-/- mice than serum from animals immunized with purified virus. The protective activity of immune serum was strictly dependent on functional Fcγ receptors (FcγR). Deletion of individual FcγRs or combined deletion of FcγRI and FcγRIV had little impact on the protection afforded by serum. Adoptive transfer of CD115-positive cells from noninfected donors demonstrated that monocytes represent important cellular mediators of the protective activity provided by immune serum. Our studies suggest that Fc-FcγR interactions and monocytic cells are critical for antibody-mediated protection against MCMV infection in vivo. These findings may provide new avenues for the development of novel strategies for more effective CMV vaccines or antiviral immunotherapies.

16.
Eur J Immunol ; : e2451029, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873882

RESUMO

Cellular metabolism is a key determinant of immune cell function. Here we found that CD14+ monocytes from Sub-Saharan Africans produce higher levels of IL-10 following TLR-4 stimulation and are bioenergetically distinct from monocytes from Europeans. Through metabolomic profiling, we identified the higher IL-10 production to be driven by increased baseline production of NADPH oxidase-dependent reactive oxygen species, supported by enhanced pentose phosphate pathway activity. Together, these data indicate that NADPH oxidase-derived ROS is a metabolic checkpoint in monocytes that governs their inflammatory profile and uncovers a metabolic basis for immunological differences across geographically distinct populations.

17.
Eur J Immunol ; : e2451170, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39072714

RESUMO

Acinetobacter baumannii is an opportunistic Gram-negative bacterium representing one of the leading causes of ventilator-associated pneumonia. The development of pneumonia results from a complex interplay between pathogens and pulmonary innate mucosal immunity. Therefore, the knowledge of the host immune responses is pivotal for the development of effective therapeutics to treat A. baumannii infections. Previous studies were conducted using cell lines and animal models, but a comprehensive understanding of the interaction between A. baumannii and primary human immune cells is still lacking. To bridge this gap, we investigated the response of primary monocytes, macrophages, and dendritic cells to the A. baumannii-type strain and an epidemic clinical isolate. We found that all immune cells trigger different responses when interacting with A. baumannii. In particular, macrophages and monocytes mediate bacterial clearance, whereas monocytes and dendritic cells activate a late response through the production of cytokines, chemokines, and the expression of co-stimulatory molecules. The epidemic strain induces lower expression of interleukin-10 and CD80 compared with the type strain, potentially constituting two immune evasion strategies.

18.
J Virol ; 98(2): e0188823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289104

RESUMO

Human cytomegalovirus (HCMV) utilizes peripheral blood monocytes as a means to systemically disseminate throughout the host. Following viral entry, HCMV stimulates non-canonical Akt signaling leading to the activation of mTORC1 and the subsequent translation of select antiapoptotic proteins within infected monocytes. However, the full extent to which the HCMV-initiated Akt/mTORC1 signaling axis reshapes the monocyte translatome is unclear. We found HCMV entry alone was able to stimulate widescale changes to mRNA translation levels and that inhibition of mTOR, a component of mTORC1, dramatically attenuated HCMV-induced protein synthesis. Although monocytes treated with normal myeloid growth factors also exhibited increased levels of translation, mTOR inhibition had no effect, suggesting HCMV activation of mTOR stimulates the acquisition of a unique translatome within infected monocytes. Indeed, polyribosomal profiling of HCMV-infected monocytes identified distinct prosurvival transcripts that were preferentially loaded with ribosomes when compared to growth factor-treated cells. Sirtuin 1 (SIRT1), a deacetylase that exerts prosurvival effects through regulation of the PI3K/Akt pathway, was found to be highly enriched following HCMV infection in an mTOR-dependent manner. Importantly, SIRT1 inhibition led to the death of HCMV-infected monocytes while having minimal effect on uninfected cells. SIRT1 also supported a positive feedback loop to sustain Akt/mTORC1 signaling following viral entry. Taken together, HCMV profoundly reshapes mRNA translation in an mTOR-dependent manner to enhance the synthesis of select factors necessary for the survival of infected monocytes.IMPORTANCEHuman cytomegalovirus (HCMV) infection is a significant cause of morbidity and mortality among the immunonaïve and immunocompromised. Peripheral blood monocytes are a major cell type responsible for disseminating the virus from the initial site of infection. In order for monocytes to mediate viral spread within the host, HCMV must subvert the naturally short lifespan of these cells. In this study, we performed polysomal profiling analysis, which demonstrated HCMV to globally redirect mRNA translation toward the synthesis of cellular prosurvival factors within infected monocytes. Specifically, HCMV entry into monocytes induced the translation of cellular SIRT1 to generate an antiapoptotic state. Defining the precise mechanisms through which HCMV stimulates survival will provide insight into novel anti-HCMV drugs able to target infected monocytes.


Assuntos
Citomegalovirus , Interações entre Hospedeiro e Microrganismos , Alvo Mecanístico do Complexo 1 de Rapamicina , Monócitos , Biossíntese de Proteínas , RNA Mensageiro , Humanos , Apoptose , Sobrevivência Celular/genética , Citomegalovirus/crescimento & desenvolvimento , Citomegalovirus/patogenicidade , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/patologia , Infecções por Citomegalovirus/transmissão , Infecções por Citomegalovirus/virologia , Retroalimentação Fisiológica , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Monócitos/virologia , Fosfatidilinositol 3-Quinases/metabolismo , Polirribossomos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Sirtuína 1/biossíntese , Sirtuína 1/genética , Sirtuína 1/metabolismo , Internalização do Vírus
19.
J Virol ; 98(3): e0146923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38345385

RESUMO

Grass carp reovirus (GCRV), particularly the highly prevalent type II GCRV (GCRV-II), causes huge losses in the aquaculture industry. However, little is known about the mechanisms by which GCRV-II invades grass carp and further disseminates among tissues. In the present study, monocytes/macrophages (Mo/Mφs) were isolated from the peripheral blood of grass carp and infected with GCRV-II. The results of indirect immunofluorescent microscopy, transmission electron microscopy, real-time quantitative RT-PCR (qRT-PCR), western blot (WB), and flow cytometry analysis collectively demonstrated that GCRV-II invaded Mo/Mφs and replicated in them. Additionally, we observed that GCRV-II induced different types (M1 and M2) of polarization of Mo/Mφs in multiple tissues, especially in the brain, head kidney, and intestine. To assess the impact of different types of polarization on GCRV-II replication, we recombinantly expressed and purified the intact cytokines CiIFN-γ2, CiIL-4/13A, and CiIL-4/13B and successfully induced M1 and M2 type polarization of macrophages using these cytokines through in vitro experiments. qRT-PCR, WB, and flow cytometry analyses showed that M2 macrophages had higher susceptibility to GCRV-II infection than other types of Mo/Mφs. In addition, we found GCRV-II induced apoptosis of Mo/Mφs to facilitate virus replication and dissemination and also detected the presence of GCRV-II virus in plasma. Collectively, our findings indicated that GCRV-II could invade immune cells Mo/Mφs and induce apoptosis and polarization of Mo/Mφs for efficient infection and dissemination, emphasizing the crucial role of Mo/Mφs as a vector for GCRV-II infection.IMPORTANCEType II grass carp reovirus (GCRV) is a prevalent viral strain and causes huge losses in aquaculture. However, the related dissemination pathway and mechanism remain largely unclear. Here, our study focused on phagocytic immune cells, monocytes/macrophages (Mo/Mφs) in blood and tissues, and explored whether GCRV-II can invade Mo/Mφs and replicate and disseminate via Mo/Mφs with their differentiated type M1 and M2 macrophages. Our findings demonstrated that GCRV-II infected Mo/Mφs and replicated in them. Furthermore, GCRV-II infection induces an increased number of M1 and M2 macrophages in grass carp tissues and a higher viral load in M2 macrophages. Furthermore, GCRV-II induced Mo/Mφs apoptosis to release viruses, eventually infecting more cells. Our study identified Mo/Mφs as crucial components in the pathway of GCRV-II dissemination and provides a solid foundation for the development of treatment strategies for GCRV-II infection.


Assuntos
Carpas , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Animais , Apoptose , Citocinas , Doenças dos Peixes/metabolismo , Doenças dos Peixes/patologia , Doenças dos Peixes/virologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/virologia , Monócitos/metabolismo , Infecções por Reoviridae/metabolismo , Infecções por Reoviridae/patologia , Infecções por Reoviridae/veterinária , Replicação Viral
20.
J Virol ; 98(5): e0036324, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38661384

RESUMO

HIV-1 has a broad range of nuanced interactions with the immune system, and the incorporation of cellular proteins by nascent virions continues to redefine our understanding of the virus-host relationship. Proteins located at the sites of viral egress can be selectively incorporated into the HIV-1 envelope, imparting new functions and phenotypes onto virions, and impacting viral spread and disease. Using virion capture assays and western blot, we show that HIV-1 can incorporate the myeloid antigen CD14 into its viral envelope. Virion-incorporated CD14 remained biologically active and able to bind its natural ligand, bacterial lipopolysaccharide (LPS), as demonstrated by flow virometry and immunoprecipitation assays. Using a Toll-like receptor 4 (TLR4) reporter cell line, we also demonstrated that virions with bound LPS can trigger TLR4 signaling to activate transcription factors that regulate inflammatory gene expression. Complementary assays with THP-1 monocytes demonstrated enhanced secretion of inflammatory cytokines like tumor necrosis factor alpha (TNF-α) and the C-C chemokine ligand 5 (CCL5), when exposed to LPS-loaded virus. These data highlight a new type of interplay between HIV-1 and the myeloid cell compartment, a previously well-established cellular contributor to HIV-1 pathogenesis and inflammation. Persistent gut inflammation is a hallmark of chronic HIV-1 infection, and contributing to this effect is the translocation of microbes across the gut epithelium. Our data herein provide proof of principle that virion-incorporated CD14 could be a novel mechanism through which HIV-1 can drive chronic inflammation, facilitated by HIV-1 particles binding bacterial LPS and initiating inflammatory signaling in TLR4-expressing cells.IMPORTANCEHIV-1 establishes a lifelong infection accompanied by numerous immunological changes. Inflammation of the gut epithelia, exacerbated by the loss of mucosal T cells and cytokine dysregulation, persists during HIV-1 infection. Feeding back into this loop of inflammation is the translocation of intestinal microbes across the gut epithelia, resulting in the systemic dissemination of bacterial antigens, like lipopolysaccharide (LPS). Our group previously demonstrated that the LPS receptor, CD14, can be readily incorporated by HIV-1 particles, supporting previous clinical observations of viruses derived from patient plasma. We now show that CD14 can be incorporated by several primary HIV-1 isolates and that this virion-incorporated CD14 can remain functional, enabling HIV-1 to bind to LPS. This subsequently allowed CD14+ virions to transfer LPS to monocytic cells, eliciting pro-inflammatory signaling and cytokine secretion. We posit here that virion-incorporated CD14 is a potential contributor to the dysregulated immune responses present in the setting of HIV-1 infection.


Assuntos
Infecções por HIV , HIV-1 , Receptores de Lipopolissacarídeos , Lipopolissacarídeos , Vírion , Humanos , Quimiocina CCL5/metabolismo , Infecções por HIV/virologia , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , HIV-1/imunologia , HIV-1/fisiologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/metabolismo , Monócitos/metabolismo , Monócitos/imunologia , Monócitos/virologia , Transdução de Sinais , Células THP-1 , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA