Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.999
Filtrar
1.
Cell ; 182(3): 685-712.e19, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32645325

RESUMO

The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Pneumonia Viral/metabolismo , Proteômica/métodos , Células A549 , Enzima de Conversão de Angiotensina 2 , Animais , Antivirais/farmacologia , COVID-19 , Células CACO-2 , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Fosforilação , Pneumonia Viral/virologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptor Tirosina Quinase Axl
2.
Cell ; 175(4): 947-961.e17, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401435

RESUMO

Interactions between the gut microbiota, diet, and the host potentially contribute to the development of metabolic diseases. Here, we identify imidazole propionate as a microbially produced histidine-derived metabolite that is present at higher concentrations in subjects with versus without type 2 diabetes. We show that imidazole propionate is produced from histidine in a gut simulator at higher concentrations when using fecal microbiota from subjects with versus without type 2 diabetes and that it impairs glucose tolerance when administered to mice. We further show that imidazole propionate impairs insulin signaling at the level of insulin receptor substrate through the activation of p38γ MAPK, which promotes p62 phosphorylation and, subsequently, activation of mechanistic target of rapamycin complex 1 (mTORC1). We also demonstrate increased activation of p62 and mTORC1 in liver from subjects with type 2 diabetes. Our findings indicate that the microbial metabolite imidazole propionate may contribute to the pathogenesis of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal , Imidazóis/metabolismo , Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/microbiologia , Células HEK293 , Histidina/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Sequestossoma-1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Annu Rev Cell Dev Biol ; 35: 501-521, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31590586

RESUMO

The dual leucine zipper-bearing kinase (DLK) and leucine zipper-bearing kinase (LZK) are evolutionarily conserved MAPKKKs of the mixed-lineage kinase family. Acting upstream of stress-responsive JNK and p38 MAP kinases, DLK and LZK have emerged as central players in neuronal responses to a variety of acute and traumatic injuries. Recent studies also implicate their function in astrocytes, microglia, and other nonneuronal cells, reflecting their expanding roles in the multicellular response to injury and in disease. Of particular note is the potential link of these kinases to neurodegenerative diseases and cancer. It is thus critical to understand the physiological contexts under which these kinases are activated, as well as the signal transduction mechanisms that mediate specific functional outcomes. In this review we first provide a historical overview of the biochemical and functional dissection of these kinases. We then discuss recent findings on regulating their activity to enhance cellular protection following injury and in disease, focusing on but not limited to the nervous system.


Assuntos
Zíper de Leucina/genética , MAP Quinase Quinase Quinases/metabolismo , Neurônios/metabolismo , Estresse Fisiológico/genética , Animais , Axônios/metabolismo , Humanos , MAP Quinase Quinase Quinases/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/virologia , Neuroglia/metabolismo , Neurônios/virologia , Regeneração/genética , Regeneração/fisiologia , Células-Tronco/metabolismo , Estresse Fisiológico/fisiologia , Ferimentos e Lesões/genética , Ferimentos e Lesões/metabolismo
4.
Mol Cell ; 84(1): 142-155, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38118452

RESUMO

Cellular homeostasis is continuously challenged by environmental cues and cellular stress conditions. In their defense, cells need to mount appropriate stress responses that, dependent on the cellular context, signaling intensity, and duration, may have diverse outcomes. The stress- and mitogen-activated protein kinase (SAPK/MAPK) system consists of well-characterized signaling cascades that sense and transduce an array of different stress stimuli into biological responses. However, the physical and chemical nature of stress signals and how these are sensed by individual upstream MAP kinase kinase kinases (MAP3Ks) remain largely ambiguous. Here, we review the existing knowledge of how individual members of the large and diverse group of MAP3Ks sense specific stress signals through largely non-redundant mechanisms. We emphasize the large knowledge gaps in assigning function and stress signals for individual MAP3K family members and touch on the potential of targeting this class of proteins for clinical benefit.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno , MAP Quinase Quinase Quinases , Animais , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Mamíferos/metabolismo
5.
Mol Cell ; 83(17): 3140-3154.e7, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37572670

RESUMO

Peroxiredoxins (Prdxs) utilize reversibly oxidized cysteine residues to reduce peroxides and promote H2O2 signal transduction, including H2O2-induced activation of P38 MAPK. Prdxs form H2O2-induced disulfide complexes with many proteins, including multiple kinases involved in P38 MAPK signaling. Here, we show that a genetically encoded fusion between a Prdx and P38 MAPK is sufficient to hyperactivate the kinase in yeast and human cells by a mechanism that does not require the H2O2-sensing cysteine of the Prdx. We demonstrate that a P38-Prdx fusion protein compensates for loss of the yeast scaffold protein Mcs4 and MAP3K activity, driving yeast into mitosis. Based on our findings, we propose that the H2O2-induced formation of Prdx-MAPK disulfide complexes provides an alternative scaffold and signaling platform for MAPKK-MAPK signaling. The demonstration that formation of a complex with a Prdx is sufficient to modify the activity of a kinase has broad implications for peroxide-based signal transduction in eukaryotes.


Assuntos
Peroxirredoxinas , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Cisteína/metabolismo , Dissulfetos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Oxirredução , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Mol Cell ; 83(22): 4062-4077.e5, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37977118

RESUMO

Abnormal increases in cell size are associated with senescence and cell cycle exit. The mechanisms by which overgrowth primes cells to withdraw from the cell cycle remain unknown. We address this question using CDK4/6 inhibitors, which arrest cells in G0/G1 and are licensed to treat advanced HR+/HER2- breast cancer. We demonstrate that CDK4/6-inhibited cells overgrow during G0/G1, causing p38/p53/p21-dependent cell cycle withdrawal. Cell cycle withdrawal is triggered by biphasic p21 induction. The first p21 wave is caused by osmotic stress, leading to p38- and size-dependent accumulation of p21. CDK4/6 inhibitor washout results in some cells entering S-phase. Overgrown cells experience replication stress, resulting in a second p21 wave that promotes cell cycle withdrawal from G2 or the subsequent G1. We propose that the levels of p21 integrate signals from overgrowth-triggered stresses to determine cell fate. This model explains how hypertrophy can drive senescence and why CDK4/6 inhibitors have long-lasting effects in patients.


Assuntos
Proteína Supressora de Tumor p53 , Humanos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclo Celular , Divisão Celular , Proteína Supressora de Tumor p53/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo
7.
Mol Cell ; 81(11): 2303-2316.e8, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33991485

RESUMO

Glutaminase regulates glutaminolysis to promote cancer cell proliferation. However, the mechanism underlying glutaminase activity regulation is largely unknown. Here, we demonstrate that kidney-type glutaminase (GLS) is highly expressed in human pancreatic ductal adenocarcinoma (PDAC) specimens with correspondingly upregulated glutamine dependence for PDAC cell proliferation. Upon oxidative stress, the succinyl-coenzyme A (CoA) synthetase ADP-forming subunit ß (SUCLA2) phosphorylated by p38 mitogen-activated protein kinase (MAPK) at S79 dissociates from GLS, resulting in enhanced GLS K311 succinylation, oligomerization, and activity. Activated GLS increases glutaminolysis and the production of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione, thereby counteracting oxidative stress and promoting tumor cell survival and tumor growth in mice. In addition, the levels of SUCLA2 pS79 and GLS K311 succinylation, which were mutually correlated, were positively associated with advanced stages of PDAC and poor prognosis for patients. Our findings reveal critical regulation of GLS by SUCLA2-coupled GLS succinylation regulation and underscore the regulatory role of metabolites in glutaminolysis and PDAC development.


Assuntos
Carcinoma Ductal Pancreático/genética , Glutaminase/genética , Neoplasias Pancreáticas/genética , Succinato-CoA Ligases/genética , Animais , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/enzimologia , Carcinoma Ductal Pancreático/mortalidade , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glutaminase/metabolismo , Glutamina/metabolismo , Glutationa/metabolismo , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , NADP/metabolismo , Estresse Oxidativo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/mortalidade , Fosforilação , Prognóstico , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Succinato-CoA Ligases/metabolismo , Ácido Succínico/metabolismo , Análise de Sobrevida , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
EMBO J ; 43(4): 507-532, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191811

RESUMO

Metabolic syndrome combines major risk factors for cardiovascular disease, making deeper insight into its pathogenesis important. We here explore the mechanistic basis of metabolic syndrome by recruiting an essential patient cohort and performing extensive gene expression profiling. The mitochondrial fatty acid metabolism enzyme acyl-CoA synthetase medium-chain family member 3 (ACSM3) was identified to be significantly lower expressed in the peripheral blood of metabolic syndrome patients. In line, hepatic ACSM3 expression was decreased in mice with metabolic syndrome. Furthermore, Acsm3 knockout mice showed glucose and lipid metabolic abnormalities, and hepatic accumulation of the ACSM3 fatty acid substrate lauric acid. Acsm3 depletion markedly decreased mitochondrial function and stimulated signaling via the p38 MAPK pathway cascade. Consistently, Acsm3 knockout mouse exhibited abnormal mitochondrial morphology, decreased ATP contents, and enhanced ROS levels in their livers. Mechanistically, Acsm3 deficiency, and lauric acid accumulation activated nuclear receptor Hnf4α-p38 MAPK signaling. In line, the p38 inhibitor Adezmapimod effectively rescued the Acsm3 depletion phenotype. Together, these findings show that disease-associated loss of ACSM3 facilitates mitochondrial dysfunction via a lauric acid-HNF4a-p38 MAPK axis, suggesting a novel therapeutic vulnerability in systemic metabolic dysfunction.


Assuntos
Ácidos Láuricos , Síndrome Metabólica , Humanos , Camundongos , Animais , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Fígado/metabolismo , Ácidos Graxos/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/farmacologia
9.
Mol Cell ; 74(2): 254-267.e10, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30824372

RESUMO

DNA damage response (DDR) involves dramatic transcriptional alterations, the mechanisms of which remain ill defined. Here, we show that following genotoxic stress, the RNA-binding motif protein 7 (RBM7) stimulates RNA polymerase II (Pol II) transcription and promotes cell viability by activating the positive transcription elongation factor b (P-TEFb) via its release from the inhibitory 7SK small nuclear ribonucleoprotein (7SK snRNP). This is mediated by activation of p38MAPK, which triggers enhanced binding of RBM7 with core subunits of 7SK snRNP. In turn, P-TEFb relocates to chromatin to induce transcription of short units, including key DDR genes and multiple classes of non-coding RNAs. Critically, interfering with the axis of RBM7 and P-TEFb provokes cellular hypersensitivity to DNA-damage-inducing agents due to activation of apoptosis. Our work uncovers the importance of stress-dependent stimulation of Pol II pause release, which enables a pro-survival transcriptional response that is crucial for cell fate upon genotoxic insult.


Assuntos
Fator B de Elongação Transcricional Positiva/genética , RNA Polimerase II/genética , Proteínas de Ligação a RNA/genética , Transcrição Gênica , Apoptose/genética , Sobrevivência Celular/genética , Dano ao DNA/genética , Células HEK293 , Humanos , RNA Longo não Codificante/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
10.
EMBO Rep ; 25(8): 3456-3485, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38877170

RESUMO

T cells are pivotal in the adaptive immune defense, necessitating a delicate balance between robust response against infections and self-tolerance. Their activation involves intricate cross-talk among signaling pathways triggered by the T-cell antigen receptors (TCR) and co-stimulatory or inhibitory receptors. The molecular regulation of these complex signaling networks is still incompletely understood. Here, we identify the adaptor protein ABIN1 as a component of the signaling complexes of GITR and OX40 co-stimulation receptors. T cells lacking ABIN1 are hyper-responsive ex vivo, exhibit enhanced responses to cognate infections, and superior ability to induce experimental autoimmune diabetes in mice. ABIN1 negatively regulates p38 kinase activation and late NF-κB target genes. P38 is at least partially responsible for the upregulation of the key effector proteins IFNG and GZMB in ABIN1-deficient T cells after TCR stimulation. Our findings reveal the intricate role of ABIN1 in T-cell regulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transdução de Sinais , Linfócitos T Citotóxicos , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Proteína Relacionada a TNFR Induzida por Glucocorticoide , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Ativação Linfocitária/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores OX40/metabolismo , Receptores OX40/genética , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
11.
EMBO Rep ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349750

RESUMO

Epithelial-immune cell communication is pivotal to control microbial infections. We show that glycosylphosphatidylinositol-linked aspartyl proteases (Yapsins) of the human opportunistic pathogenic yeast Candida glabrata (Cg) thwart epithelial cell (EC)-neutrophil signalling by targeting the EC protein, Arpc1B (actin nucleator Arp2/3 complex subunit), which leads to actin disassembly and impeded IL-8 secretion by ECs. Further, the diminished IL-8 secretion inhibits neutrophil migration, and protects Cg from the neutrophil-mediated killing. CgYapsin-dependent Arpc1B degradation requires Arginine-142 in Arpc1B, and leads to reduced Arpc1B-p38 MAPK interaction and downregulated p38 signalling. Consistently, Arpc1B or p38 deletion promotes survival of the Cg aspartyl protease-deficient mutant in ECs. Importantly, kidneys of the protease-deficient mutant-infected mice display elevated immune cell infiltration and cytokine secretion, implicating CgYapsins in immune response suppression in vivo. Besides delineating Cg-EC interplay, our results uncover a novel target, Arpc1B, that pathogens attack to constrain the host signalling networks, and link Arpc1B mechanistically with p38 activation.

12.
EMBO Rep ; 25(6): 2635-2661, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38730210

RESUMO

Obesity is characterized by low-grade inflammation, energy imbalance and impaired thermogenesis. The role of regulatory T cells (Treg) in inflammation-mediated maladaptive thermogenesis is not well established. Here, we find that the p38 pathway is a key regulator of T cell-mediated adipose tissue (AT) inflammation and browning. Mice with T cells specifically lacking the p38 activators MKK3/6 are protected against diet-induced obesity, leading to an improved metabolic profile, increased browning, and enhanced thermogenesis. We identify IL-35 as a driver of adipocyte thermogenic program through the ATF2/UCP1/FGF21 pathway. IL-35 limits CD8+ T cell infiltration and inflammation in AT. Interestingly, we find that IL-35 levels are reduced in visceral fat from obese patients. Mechanistically, we demonstrate that p38 controls the expression of IL-35 in human and mouse Treg cells through mTOR pathway activation. Our findings highlight p38 signaling as a molecular orchestrator of AT T cell accumulation and function.


Assuntos
Interleucinas , Obesidade , Linfócitos T Reguladores , Termogênese , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Interleucinas/metabolismo , Obesidade/metabolismo , Camundongos , Humanos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
J Biol Chem ; : 107806, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307301

RESUMO

Bone morphogenetic proteins (BMPs) are involved in several cellular responsive actions, such as development, cell differentiation, and apoptosis, via their specific transmembrane receptors. In particular, BMPs promote the differentiation and maturation of bone and cartilage from mesenchymal stem cells. Based on comprehensive analyses performed with a large number of antibodies, mitogen- and stress-activated protein kinase (MSK)1 was found to be immediately phosphorylated in the mouse chondrocyte precursor cell line, ATDC5, upon BMP-6 stimulation. The overexpression and knockdown of MSK1 in ATDC5 cells also enhanced and suppressed BMP-6-induced chondrocyte differentiation, respectively. Similar to ATDC5 cells, an ex vivo organ culture system using mouse embryonic metatarsal bones also demonstrated that BMP-6-mediated MSK1 activation might play a role in chondrocyte differentiation. Using several inhibitors, the p38 kinase pathway was confirmed to be implicated in BMP-6-induced phosphorylation of MSK1. Furthermore, MSK1 mutants lacking kinase activities and those lacking serine/threonine residues targeted by p38 kinase severely impaired their ability to potentiate BMP-6-induced chondrogenic differentiation of ATDC5 cells. Interestingly, a loss-of-function study for Smad4 perturbed BMP-6-induced phosphorylation of p38 kinase to inhibit BMP-6-mediated chondrocyte differentiation via MSK1 activation. Overall, both Smad-dependent and independent pathways require BMP-6-induced chondrocyte differentiation via MSK1 activation in ATDC5 cells.

14.
J Biol Chem ; 300(8): 107494, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925326

RESUMO

The commitment of stem cells to differentiate into osteoblasts is a highly regulated and complex process that involves the coordination of extrinsic signals and intrinsic transcriptional machinery. While rodent osteoblastic differentiation has been extensively studied, research on human osteogenesis has been limited by cell sources and existing models. Here, we systematically dissect human pluripotent stem cell-derived osteoblasts to identify functional membrane proteins and their downstream transcriptional networks involved in human osteogenesis. Our results reveal an enrichment of type II transmembrane serine protease CORIN in humans but not rodent osteoblasts. Functional analyses demonstrated that CORIN depletion significantly impairs osteogenesis. Genome-wide chromatin immunoprecipitation enrichment and mechanistic studies show that p38 MAPK-mediated CCAAT enhancer binding protein delta (CEBPD) upregulation is required for CORIN-modulated osteogenesis. Contrastingly, the type I transmembrane heparan sulfate proteoglycan SDC1 enriched in mesenchymal stem cells exerts a negative regulatory effect on osteogenesis through a similar mechanism. Chromatin immunoprecipitation-seq, bulk and single-cell transcriptomes, and functional validations indicated that CEBPD plays a critical role in controlling osteogenesis. In summary, our findings uncover previously unrecognized CORIN-mediated CEBPD transcriptomic networks in driving human osteoblast lineage commitment.


Assuntos
Proteína delta de Ligação ao Facilitador CCAAT , Osteoblastos , Osteogênese , Serina Endopeptidases , Humanos , Osteoblastos/metabolismo , Osteoblastos/citologia , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/genética , Perfilação da Expressão Gênica , Diferenciação Celular , Animais , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Transcriptoma , Camundongos
15.
Eur J Immunol ; 54(10): e2350704, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38973082

RESUMO

Secretory IgA is crucial for preventing the invasion of entero-pathogens via intestinal mucosa. While it is well-established that Transforming growth factor ß1 (TGF-ß1) regulates IgA production in human and mouse B cells, our previous investigation revealed different functions of TGF-ß1 in IgA generation in pigs compared with humans and mice, with the underlying mechanism remaining elusive. In this study, IgM+ B cells from porcine Peyer's patches (PPs) were isolated and stimulated with recombinant porcine TGF-ß1 to evaluate the effect of TGF-ß1 on pigs. The results showed that antibody production from B cells of PPs was impaired by TGF-ß1 ex vivo. Furthermore, TGF-ß1 treatment led to a decrease in the expression of germ-line transcript αand postswitch transcript α. Moreover, we observed that TGF-ß1 predominantly inhibited the phosphorylation of p38-mitogen-activated protein kinases (MAPK), confirming the involvement of the p38-MAPK pathway in porcine IgA generation and IgA class switch recombination. The application of p38-MAPK inhibitor resulted in decreased B-cell differentiation levels. Collectively, this study demonstrates that exogenous TGF-ß1 restrains the production and class switch recombination of IgA antibodies by inhibiting p38-MAPK signaling in porcine PPs B cells, which may constitute a component of TGF-ß1-mediated inhibition of B-cell activation.


Assuntos
Linfócitos B , Imunoglobulina A , Switching de Imunoglobulina , Nódulos Linfáticos Agregados , Fator de Crescimento Transformador beta1 , Animais , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Suínos , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/imunologia , Fator de Crescimento Transformador beta1/genética , Switching de Imunoglobulina/imunologia , Linfócitos B/imunologia , Imunoglobulina A/imunologia , Diferenciação Celular/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células Cultivadas , Fosforilação , Formação de Anticorpos/imunologia , Camundongos
16.
FASEB J ; 38(18): e70064, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39295162

RESUMO

12-hydroxyeicosatetraenoic acid (12-HETE), a major metabolite of arachidonic acid, is converted by 12/15-lipoxygenase and implicated in diabetic retinopathy (DR). Our previous study demonstrated a positive correlation between 12-HETE and the prevalence of DR. However, reasons for the increased production of 12-HETE are unclear, and the underlying mechanisms through which 12-HETE promotes DR are unknown. This study aimed to elucidate the correlation between 12-HETE and DR onset, investigate potential mechanisms through which 12-HETE promotes DR, and seek explanations for the increased production of 12-HETE in diabetes. We conducted a prospective cohort study, which revealed that higher serum 12-HETE levels could induce DR. Additionally, G protein-coupled receptor 31 (GPR31), a high-affinity receptor for 12-HETE, was expressed in human retinal microvascular endothelial cells (HRMECs). 12-HETE/GPR31-mediated HRMEC inflammation occurred via the p38 MAPK pathway. 12-HETE levels were significantly higher in the retina of mice with high-fat diet (HFD)- and streptozotocin (STZ)-induced diabetes than in those with only STZ-induced diabetes and healthy controls. They were positively correlated with the levels of inflammatory cytokines in the retina, indicating that HFD could induce increased 12-HETE synthesis in patients with diabetes in addition to hyperglycemia. Conclusively, 12-HETE is a potential risk factor for DR. The 12-HETE/GPR31 axis plays a crucial role in HRMEC dysfunction and could be a novel target for DR prevention and control. Nevertheless, further research is warranted to provide comprehensive insights into the complex underlying mechanisms of 12-HETE in DR.


Assuntos
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Diabetes Mellitus Experimental , Retinopatia Diabética , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G , Retinopatia Diabética/metabolismo , Retinopatia Diabética/etiologia , Retinopatia Diabética/patologia , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Humanos , Animais , Receptores Acoplados a Proteínas G/metabolismo , Camundongos , Masculino , Diabetes Mellitus Experimental/metabolismo , Feminino , Células Endoteliais/metabolismo , Pessoa de Meia-Idade , Estudos Prospectivos , Células Cultivadas
17.
FASEB J ; 38(16): e23862, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39162681

RESUMO

Anterior cruciate ligament (ACL) injuries pose a significant challenge due to their limited healing potential, often resulting in premature arthritis. The factors and mechanisms contributing to this inadequate healing process remain elusive. During the acute phase of injury, ACL tissues express elevated periostin levels that decline over time. The functional significance of periostin in ligament biology remains understudied. In this study, we investigated the functional and mechanistic implications of periostin deficiency in ACL biology, utilizing ligament fibroblasts derived from patients and a murine model of ACL rupture. Our investigations unveiled that periostin knockdown compromised fibroblast growth characteristics, hindered the egress of progenitor cells from explants, and arrested cell-cycle progression, resulting in the accumulation of cells in the G0/G1 phase and moderate apoptosis. Concurrently, a significant reduction in the expression of cell-cycle and matrix-related genes was observed. Moreover, periostin deficiency triggered apoptosis through STAT3Y705/p38MAPK signaling and induced cellular senescence through increased production of reactive oxygen species (ROS). Mechanistically, inhibition of ROS production mitigated cell senescence in these cells. Notably, in vivo data revealed that ACL in Postn-/- mice exhibited a higher tearing frequency than wild-type mice under equivalent loading conditions. Furthermore, injured ACL with silenced periostin expression, achieved through nanoparticle-siRNA complex delivery, displayed an elevated propensity for apoptosis and senescence compared to intact ACL in C57BL/6 mice. Together, our findings underscore the pivotal role of periostin in ACL health, injury, and potential for healing.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Senescência Celular , Fibroblastos , Periostina , Espécies Reativas de Oxigênio , Animais , Feminino , Humanos , Masculino , Camundongos , Ligamento Cruzado Anterior/metabolismo , Lesões do Ligamento Cruzado Anterior/metabolismo , Lesões do Ligamento Cruzado Anterior/patologia , Apoptose , Células Cultivadas , Senescência Celular/fisiologia , Fibroblastos/metabolismo , Camundongos Endogâmicos C57BL , Periostina/genética , Periostina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo
18.
EMBO Rep ; 24(2): e55472, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36507874

RESUMO

The transcription factor EB (TFEB) regulates energy homeostasis and cellular response to a wide variety of stress conditions, including nutrient deprivation, oxidative stress, organelle damage, and pathogens. Here we identify S401 as a novel phosphorylation site within the TFEB proline-rich domain. Phosphorylation of S401 increases significantly in response to oxidative stress, UVC light, growth factors, and LPS, whereas this increase is prevented by p38 MAPK inhibition or depletion, revealing a new role for p38 MAPK in TFEB regulation. Mutation of S401 in THP1 cells demonstrates that the p38 MAPK/TFEB pathway plays a particularly relevant role during monocyte differentiation into macrophages. TFEB-S401A monocytes fail to upregulate the expression of multiple immune genes in response to PMA-induced differentiation, including critical cytokines, chemokines, and growth factors. Polarization of M0 macrophages into M1 inflammatory macrophages is also aberrant in TFEB-S401A cells. These results indicate that TFEB-S401 phosphorylation links differentiation signals to the transcriptional control of monocyte differentiation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Diferenciação Celular , Macrófagos , Monócitos , Proteínas Quinases p38 Ativadas por Mitógeno , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosforilação
19.
Mol Cell ; 66(5): 698-710.e5, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28506461

RESUMO

TNF is an inflammatory cytokine that upon binding to its receptor, TNFR1, can drive cytokine production, cell survival, or cell death. TNFR1 stimulation causes activation of NF-κB, p38α, and its downstream effector kinase MK2, thereby promoting transcription, mRNA stabilization, and translation of target genes. Here we show that TNF-induced activation of MK2 results in global RIPK1 phosphorylation. MK2 directly phosphorylates RIPK1 at residue S321, which inhibits its ability to bind FADD/caspase-8 and induce RIPK1-kinase-dependent apoptosis and necroptosis. Consistently, a phospho-mimetic S321D RIPK1 mutation limits TNF-induced death. Mechanistically, we find that phosphorylation of S321 inhibits RIPK1 kinase activation. We further show that cytosolic RIPK1 contributes to complex-II-mediated cell death, independent of its recruitment to complex-I, suggesting that complex-II originates from both RIPK1 in complex-I and cytosolic RIPK1. Thus, MK2-mediated phosphorylation of RIPK1 serves as a checkpoint within the TNF signaling pathway that integrates cell survival and cytokine production.


Assuntos
Apoptose/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Caspase 8/metabolismo , Relação Dose-Resposta a Droga , Proteína de Domínio de Morte Associada a Fas/metabolismo , Células HT29 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Complexos Multiproteicos , NF-kappa B/metabolismo , Necrose , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção
20.
Cell Mol Life Sci ; 81(1): 253, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852108

RESUMO

Post-transcriptional regulation of cytokine/chemokine mRNA turnover is critical for immune processes and contributes to the mammalian cellular response to diverse inflammatory stimuli. The ubiquitous RNA-binding protein human antigen R (HuR) is an integral regulator of inflammation-associated mRNA fate. HuR function is regulated by various post-translational modifications that alter its subcellular localization and ability to stabilize target mRNAs. Both poly (ADP-ribose) polymerase 1 (PARP1) and p38 mitogen-activated protein kinases (MAPKs) have been reported to regulate the biological function of HuR, but their specific regulatory and crosstalk mechanisms remain unclear. In this study, we show that PARP1 acts via p38 to synergistically promote cytoplasmic accumulation of HuR and stabilization of inflammation-associated mRNAs in cells under inflammatory conditions. Specifically, p38 binds to auto-poly ADP-ribosylated (PARylated) PARP1 resulting in the covalent PARylation of p38 by PARP1, thereby promoting the retention and activity of p38 in the nucleus. In addition, PARylation of HuR facilitates the phosphorylation of HuR at the serine 197 site mediated by p38, which then increases the translocation of HuR to the cytoplasm, ultimately stabilizing the inflammation-associated mRNA expression at the post-transcriptional level.


Assuntos
Citoplasma , Proteína Semelhante a ELAV 1 , Inflamação , Poli(ADP-Ribose) Polimerase-1 , RNA Mensageiro , Proteínas Quinases p38 Ativadas por Mitógeno , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Citoplasma/metabolismo , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Fosforilação , Regulação da Expressão Gênica , Animais , Poli ADP Ribosilação/genética , Células HEK293 , Núcleo Celular/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA