Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 469
Filtrar
1.
Annu Rev Immunol ; 42(1): 347-373, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941603

RESUMO

Plasmacytoid dendritic cells (pDCs) represent a unique cell type within the innate immune system. Their defining property is the recognition of pathogen-derived nucleic acids through endosomal Toll-like receptors and the ensuing production of type I interferon and other soluble mediators, which orchestrate innate and adaptive responses. We review several aspects of pDC biology that have recently come to the fore. We discuss emerging questions regarding the lineage affiliation and origin of pDCs and argue that these cells constitute an integral part of the dendritic cell lineage. We emphasize the specific function of pDCs as innate sentinels of virus infection, particularly their recognition of and distinct response to virus-infected cells. This essential evolutionary role of pDCs has been particularly important for the control of coronaviruses, as demonstrated by the recent COVID-19 pandemic. Finally, we highlight the key contribution of pDCs to systemic lupus erythematosus, in which therapeutic targeting of pDCs is currently underway.


Assuntos
COVID-19 , Células Dendríticas , Imunidade Inata , Lúpus Eritematoso Sistêmico , SARS-CoV-2 , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , COVID-19/imunologia , Animais , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Lúpus Eritematoso Sistêmico/imunologia , Receptores Toll-Like/metabolismo , Diferenciação Celular , Linhagem da Célula
2.
Cell ; 186(25): 5536-5553.e22, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38029747

RESUMO

Mycobacterium tuberculosis (Mtb) causes 1.6 million deaths annually. Active tuberculosis correlates with a neutrophil-driven type I interferon (IFN) signature, but the cellular mechanisms underlying tuberculosis pathogenesis remain poorly understood. We found that interstitial macrophages (IMs) and plasmacytoid dendritic cells (pDCs) are dominant producers of type I IFN during Mtb infection in mice and non-human primates, and pDCs localize near human Mtb granulomas. Depletion of pDCs reduces Mtb burdens, implicating pDCs in tuberculosis pathogenesis. During IFN-driven disease, we observe abundant DNA-containing neutrophil extracellular traps (NETs) described to activate pDCs. Cell-type-specific disruption of the type I IFN receptor suggests that IFNs act on IMs to inhibit Mtb control. Single-cell RNA sequencing (scRNA-seq) indicates that type I IFN-responsive cells are defective in their response to IFNγ, a cytokine critical for Mtb control. We propose that pDC-derived type I IFNs act on IMs to permit bacterial replication, driving further neutrophil recruitment and active tuberculosis disease.


Assuntos
Interferon Tipo I , Tuberculose , Humanos , Camundongos , Animais , Macrófagos/microbiologia , Citocinas , Neutrófilos , Células Dendríticas
3.
Cell ; 181(5): 1080-1096.e19, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32380006

RESUMO

Environmental signals shape host physiology and fitness. Microbiota-derived cues are required to program conventional dendritic cells (cDCs) during the steady state so that they can promptly respond and initiate adaptive immune responses when encountering pathogens. However, the molecular underpinnings of microbiota-guided instructive programs are not well understood. Here, we report that the indigenous microbiota controls constitutive production of type I interferons (IFN-I) by plasmacytoid DCs. Using genome-wide analysis of transcriptional and epigenetic regulomes of cDCs from germ-free and IFN-I receptor (IFNAR)-deficient mice, we found that tonic IFNAR signaling instructs a specific epigenomic and metabolic basal state that poises cDCs for future pathogen combat. However, such beneficial biological function comes with a trade-off. Instructed cDCs can prime T cell responses against harmless peripheral antigens when removing roadblocks of peripheral tolerance. Our data provide fresh insights into the evolutionary trade-offs that come with successful adaptation of vertebrates to their microbial environment.


Assuntos
Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Microbiota/imunologia , Imunidade Adaptativa/imunologia , Imunidade Adaptativa/fisiologia , Animais , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/microbiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/fisiologia , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais/imunologia
4.
Immunity ; 55(3): 405-422.e11, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35180378

RESUMO

Developmental origins of dendritic cells (DCs) including conventional DCs (cDCs, comprising cDC1 and cDC2 subsets) and plasmacytoid DCs (pDCs) remain unclear. We studied DC development in unmanipulated adult mice using inducible lineage tracing combined with clonal DNA "barcoding" and single-cell transcriptome and phenotype analysis (CITE-seq). Inducible tracing of Cx3cr1+ hematopoietic progenitors in the bone marrow showed that they simultaneously produce all DC subsets including pDCs, cDC1s, and cDC2s. Clonal tracing of hematopoietic stem cells (HSCs) and of Cx3cr1+ progenitors revealed clone sharing between cDC1s and pDCs, but not between the two cDC subsets or between pDCs and B cells. Accordingly, CITE-seq analyses of differentiating HSCs and Cx3cr1+ progenitors identified progressive stages of pDC development including Cx3cr1+ Ly-6D+ pro-pDCs that were distinct from lymphoid progenitors. These results reveal the shared origin of pDCs and cDCs and suggest a revised scheme of DC development whereby pDCs share clonal relationship with cDC1s.


Assuntos
Linfócitos B , Células Dendríticas , Animais , Contagem de Células , Coreia , Células-Tronco Hematopoéticas , Camundongos
5.
Immunity ; 54(11): 2514-2530.e7, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34717796

RESUMO

Human plasmacytoid dendritic cells (pDCs) are interleukin-3 (IL-3)-dependent cells implicated in autoimmunity, but the role of IL-3 in pDC biology is poorly understood. We found that IL-3-induced Janus kinase 2-dependent expression of SLC7A5 and SLC3A2, which comprise the large neutral amino acid transporter, was required for mammalian target of rapamycin complex 1 (mTORC1) nutrient sensor activation in response to toll-like receptor agonists. mTORC1 facilitated increased anabolic activity resulting in type I interferon, tumor necrosis factor, and chemokine production and the expression of the cystine transporter SLC7A11. Loss of function of these amino acid transporters synergistically blocked cytokine production by pDCs. Comparison of in vitro-activated pDCs with those from lupus nephritis lesions identified not only SLC7A5, SLC3A2, and SLC7A11 but also ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2) as components of a shared transcriptional signature, and ENPP2 inhibition also blocked cytokine production. Our data identify additional therapeutic targets for autoimmune diseases in which pDCs are implicated.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Regulação da Expressão Gênica , Sistemas de Transporte de Aminoácidos/metabolismo , Autoimunidade , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Suscetibilidade a Doenças , Metabolismo Energético , Humanos , Imunidade , Transdução de Sinais
6.
Immunity ; 52(6): 1022-1038.e7, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32454024

RESUMO

Class-switched antibodies to double-stranded DNA (dsDNA) are prevalent and pathogenic in systemic lupus erythematosus (SLE), yet mechanisms of their development remain poorly understood. Humans and mice lacking secreted DNase DNASE1L3 develop rapid anti-dsDNA antibody responses and SLE-like disease. We report that anti-DNA responses in Dnase1l3-/- mice require CD40L-mediated T cell help, but proceed independently of germinal center formation via short-lived antibody-forming cells (AFCs) localized to extrafollicular regions. Type I interferon (IFN-I) signaling and IFN-I-producing plasmacytoid dendritic cells (pDCs) facilitate the differentiation of DNA-reactive AFCs in vivo and in vitro and are required for downstream manifestations of autoimmunity. Moreover, the endosomal DNA sensor TLR9 promotes anti-dsDNA responses and SLE-like disease in Dnase1l3-/- mice redundantly with another nucleic acid-sensing receptor, TLR7. These results establish extrafollicular B cell differentiation into short-lived AFCs as a key mechanism of anti-DNA autoreactivity and reveal a major contribution of pDCs, endosomal Toll-like receptors (TLRs), and IFN-I to this pathway.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Comunicação Celular , DNA/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interferon Tipo I/metabolismo , Animais , Anticorpos Antinucleares/imunologia , Autoantígenos/imunologia , Autoimunidade , Biomarcadores , Ligante de CD40/deficiência , Comunicação Celular/genética , Comunicação Celular/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Endodesoxirribonucleases/deficiência , Imunofluorescência , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Centro Germinativo/patologia , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos , Camundongos Knockout , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo
7.
Immunity ; 50(1): 37-50, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650380

RESUMO

Plasmacytoid dendritic cells (pDCs) are a unique sentinel cell type that can detect pathogen-derived nucleic acids and respond with rapid and massive production of type I interferon. This review summarizes our current understanding of pDC biology, including transcriptional regulation, heterogeneity, role in antiviral immune responses, and involvement in immune pathology, particularly in autoimmune diseases, immunodeficiency, and cancer. We also highlight the remaining gaps in our knowledge and important questions for the field, such as the molecular basis of unique interferon-producing capacity of pDCs. A better understanding of cell type-specific positive and negative control of pDC function should pave the way for translational applications focused on this immune cell type.


Assuntos
Doenças Autoimunes/imunologia , Diferenciação Celular , Células Dendríticas/fisiologia , Neoplasias/imunologia , Viroses/imunologia , Animais , Regulação da Expressão Gênica , Humanos , Imunidade Celular , Interferon Tipo I/metabolismo
8.
Immunol Rev ; 323(1): 241-256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38553621

RESUMO

The discovery of toll-like receptors (TLRs) and the subsequent recognition that endogenous nucleic acids (NAs) could serve as TLR ligands have led to essential insights into mechanisms of healthy immune responses as well as pathogenic mechanisms relevant to systemic autoimmune and inflammatory diseases. In systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis, NA-containing immune complexes serve as TLR ligands, with distinct implications depending on the additional immune stimuli available. Plasmacytoid dendritic cells (pDCs), the robust producers of type I interferon (IFN-I), are providing critical insights relevant to TLR-mediated healthy immune responses and tissue repair, as well as generation of inflammation, autoimmunity and fibrosis, processes central to the pathogenesis of many autoimmune diseases. In this review, we describe recent data characterizing the role of platelets and NA-binding chemokines in modulation of TLR signaling in pDCs, as well as implications for how the IFN-I products of pDCs contribute to the generation of inflammation and wound healing responses by monocyte/macrophages. Chemokine modulators of TLR-mediated B cell tolerance mechanisms and interactions between TLR signaling and metabolic pathways are also considered. The modulators of TLR signaling and their contribution to the pathogenesis of systemic autoimmune diseases suggest new opportunities for identification of novel therapeutic targets.


Assuntos
Doenças Autoimunes , Autoimunidade , Células Dendríticas , Inflamação , Interferon Tipo I , Transdução de Sinais , Receptores Toll-Like , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Inflamação/imunologia , Receptores Toll-Like/metabolismo , Doenças Autoimunes/imunologia , Interferon Tipo I/metabolismo , Plaquetas/imunologia , Plaquetas/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Tolerância Imunológica , Imunomodulação , Quimiocinas/metabolismo
9.
Immunity ; 48(4): 730-744.e5, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29669251

RESUMO

Although characterization of T cell exhaustion has unlocked powerful immunotherapies, the mechanisms sustaining adaptations of short-lived innate cells to chronic inflammatory settings remain unknown. During murine chronic viral infection, we found that concerted events in bone marrow and spleen mediated by type I interferon (IFN-I) and Toll-like receptor 7 (TLR7) maintained a pool of functionally exhausted plasmacytoid dendritic cells (pDCs). In the bone marrow, IFN-I compromised the number and the developmental capacity of pDC progenitors, which generated dysfunctional pDCs. Concurrently, exhausted pDCs in the periphery were maintained by self-renewal via IFN-I- and TLR7-induced proliferation of CD4- subsets. On the other hand, pDC functional loss was mediated by TLR7, leading to compromised IFN-I production and resistance to secondary infection. These findings unveil the mechanisms sustaining a self-perpetuating pool of functionally exhausted pDCs and provide a framework for deciphering long-term exhaustion of other short-lived innate cells during chronic inflammation.


Assuntos
Autorrenovação Celular/imunologia , Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Glicoproteínas de Membrana/imunologia , Receptor 7 Toll-Like/imunologia , Células 3T3 , Animais , Proteínas de Transporte/biossíntese , Linhagem Celular , Proliferação de Células , Proteínas de Ligação a DNA/biossíntese , Células Dendríticas/citologia , Humanos , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/biossíntese , Proteínas Repressoras , Transdução de Sinais/imunologia , Fator de Transcrição 4/biossíntese , Fatores de Transcrição/biossíntese
10.
Proc Natl Acad Sci U S A ; 121(12): e2312404121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478694

RESUMO

Plasmacytoid dendritic cells (pDCs) produce type I interferons (IFNs) after sensing viral/bacterial RNA or DNA by toll-like receptor (TLR) 7 or TLR9, respectively. However, aberrant pDCs activation can cause adverse effects on the host and contributes to the pathogenesis of type I IFN-related autoimmune diseases. Here, we show that heparin interacts with the human pDCs-specific blood dendritic cell antigen 2 (BDCA-2) but not with related lectins such as DCIR or dectin-2. Importantly, BDCA-2-heparin interaction depends on heparin sulfation and receptor glycosylation and results in inhibition of TLR9-driven type I IFN production in primary human pDCs and the pDC-like cell line CAL-1. This inhibition is mediated by unfractionated and low-molecular-weight heparin, as well as endogenous heparin from plasma, suggesting that the local blood environment controls the production of IFN-α in pDCs. Additionally, we identified an activation-dependent soluble form of BDCA-2 (solBDCA-2) in human plasma that functions as heparin antagonist and thereby increases TLR9-driven IFN-α production in pDCs. Of importance, solBDCA-2 levels in the serum were increased in patients with scrub typhus (an acute infectious disease caused by Orientia tsutsugamushi) compared to healthy control subjects and correlated with anti-dsDNA antibodies titers. In contrast, solBDCA-2 levels in plasma from patients with bullous pemphigoid or psoriasis were reduced. In summary, this work identifies a regulatory network consisting of heparin, membrane-bound and solBDCA-2 modulating TLR9-driven IFN-α production in pDCs. This insight into pDCs function and regulation may have implications for the treatment of pDCs-related autoimmune diseases.


Assuntos
Doenças Autoimunes , Interferon Tipo I , Humanos , Interferon Tipo I/metabolismo , Heparina/metabolismo , Receptor Toll-Like 9/metabolismo , Células Dendríticas , Doenças Autoimunes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA