RESUMO
The systematics of the genus Hydnum have undergone important advances, and many new species have been described with the aid of molecular data. A revision of old names that refer to Hydnum s. str., considering the knowledge now available, might reveal prioritary names of recently described species. This study focuses on the study of names that refer to white Hydnum in Europe, among which earlier synonyms of Hydnum reginae (=Hydnum albidum s. auct. pl. eur.) are potentially found, a species characterized by producing white basidiomata and smaller spores than any other European species. Our revision revealed the existence of three earlier names based on European material, namely H. pallidum Raddi, H. album Fr. and H. heimii Maas Geest. The earliest of those, Hydnum pallidum, is epitypified using material from Tuscany (Italy), from where it was originally described, and hence, it becomes the correct name for H. albidum s. auct. pl. eur. A full description and photographs of H. pallidum are provided, and further comments on other names that refer to white Hydnum based on European material are made.
RESUMO
For several hundred years, millions of fungal sporocarps have been collected and deposited in worldwide collections (fungaria) to support fungal taxonomy. Owing to large-scale digitization programs, metadata associated with the records are now becoming publicly available, including information on taxonomy, sampling location, collection date and habitat/substrate information. This metadata, as well as data extracted from the physical fungarium specimens themselves, such as DNA sequences and biochemical characteristics, provide a rich source of information not only for taxonomy but also for other lines of biological inquiry. Here, we highlight and discuss how this information can be used to investigate emerging topics in fungal global change biology and beyond. Fungarium data are a prime source of knowledge on fungal distributions and richness patterns, and for assessing red-listed and invasive species. Information on collection dates has been used to investigate shifts in fungal distributions as well as phenology of sporocarp emergence in response to climate change. In addition to providing material for taxonomy and systematics, DNA sequences derived from the physical specimens provide information about fungal demography, dispersal patterns, and are emerging as a source of genomic data. As DNA analysis technologies develop further, the importance of fungarium specimens as easily accessible sources of information will likely continue to grow.This article is part of the theme issue 'Biological collections for understanding biodiversity in the Anthropocene'.