Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anim Biotechnol ; : 2379883, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051919

RESUMO

This study investigates the transcriptome-level alterations that influence production traits and early fattening stage myogenesis in Hanwoo cattle, specifically focusing on the highly prized Longissimus dorsi (LD) and Psoas major (PM) skeletal muscles, which hold significant commercial value. We conducted RNA sequencing analysis on LD and PM muscles from 14 Hanwoo steers (n = 7, each group) at the age of 10 months, all fed the same diet. Our results unveiled a total of 374 and 206 up-regulated differentially expressed genes (DEGs) in LD and PM muscles, respectively, with statistical significance (p < 0.05) and a log2fold change ≥ 1. Genes governing muscle development processes, such as PAX3, MYL3, COL11A1, and MYL6B, were found to be expressed at higher levels in both tissues. Conversely, genes regulating lipid metabolism, including FABP3, FABP4, LEP, ADIPOQ, and PLIN1, exhibited higher expression in the PM muscle. Functional enrichment analysis revealed a tissue-specific response, as PM muscle showed increased lipid metabolism allied pathways, including the PPAR signaling pathway and regulation of lipolysis in adipocytes, while LD was characterized by growth and proliferative processes. Our findings validate the presence of a muscle-dependent transcription and co-expression pattern that elucidates the transcriptional landscape of bovine skeletal muscle.

2.
Anim Genet ; 47(3): 273-87, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26857751

RESUMO

Our objectives for this study were to understand the biological basis of meat tenderness and to provide an overview of the gene expression profiles related to meat quality as a tool for selection. Through deep mRNA sequencing, we analyzed gene expression in muscle tissues of two Italian cattle breeds: Maremmana and Chianina. We uncovered several differentially expressed genes that encode for proteins belonging to a family of tripartite motif proteins, which are involved in growth, cell differentiation and apoptosis, such as TRIM45, or play an essential role in regulating skeletal muscle differentiation and the regeneration of adult skeletal muscle, such as TRIM32. Other differentially expressed genes (SCN2B, SLC9A7 and KCNK3) emphasize the involvement of potassium-sodium pumps in tender meat. By mapping splice junctions in RNA-Seq reads, we found significant differences in gene isoform expression levels. The PRKAG3 gene, which is involved in the regulation of energy metabolism, showed four isoforms that were differentially expressed. This distinct pattern of PRKAG3 gene expression could indicate impaired glycogen storage in skeletal muscle, and consequently, this gene very likely has a role in the tenderization process. Furthermore, with this deep RNA-sequencing, we captured a high number of expressed SNPs, for example, we found 1462 homozygous SNPs showing the alternative allele with a 100% frequency when comparing tender and tough meat. SNPs were then classified into categories by their position and also by their effect on gene coding (174 non-synonymous polymorphisms) based on the available UMD_3.1 annotations.


Assuntos
Cruzamento , Bovinos/genética , Carne/análise , Proteínas Musculares/genética , Transcriptoma , Proteínas Quinases Ativadas por AMP/genética , Alelos , Processamento Alternativo , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Itália , Músculo Esquelético/fisiologia , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Análise de Sequência de RNA
3.
Mar Genomics ; 18 Pt B: 105-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25139027

RESUMO

The red cusk-eel (Genypterus chilensis) is an endemic fish species distributed along the coasts of the Eastern South Pacific. Biological studies on this fish are scarce, and genomic information for G. chilensis is practically non-existent. Thus, transcriptome information for this species is an essential resource that will greatly enrich molecular information and benefit future studies of red cusk-eel biology. In this work, we obtained transcriptome information of G. chilensis using the Illumina platform. The RNA sequencing generated 66,307,362 and 59,925,554 paired-end reads from skeletal muscle and liver tissues, respectively. De novo assembly using the CLC Genomic Workbench version 7.0.3 produced 48,480 contigs and created a reference transcriptome with a N50 of 846bp and average read coverage of 28.3×. By sequence similarity search for known proteins, a total of 21,272 (43.9%) contigs were annotated for their function. Out of these annotated contigs, 33.5% GO annotation results for biological processes, 32.6% GO annotation results for cellular components and 34.5% GO annotation results for molecular functions. This dataset represents the first transcriptomic resource for the red cusk-eel and for a member of the Ophidiimorpharia taxon.


Assuntos
Peixes/genética , Transcriptoma/genética , Animais , Sequência de Bases , Biologia Computacional , Primers do DNA/genética , DNA Complementar/genética , Perfilação da Expressão Gênica , Fígado/metabolismo , Anotação de Sequência Molecular , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Oceano Pacífico , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA