Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosurg Spine ; 41(1): 88-96, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552236

RESUMO

OBJECTIVE: Achieving appropriate spinopelvic alignment has been shown to be associated with improved clinical symptoms. However, measurement of spinopelvic radiographic parameters is time-intensive and interobserver reliability is a concern. Automated measurement tools have the promise of rapid and consistent measurements, but existing tools are still limited to some degree by manual user-entry requirements. This study presents a novel artificial intelligence (AI) tool called SpinePose that automatically predicts spinopelvic parameters with high accuracy without the need for manual entry. METHODS: SpinePose was trained and validated on 761 sagittal whole-spine radiographs to predict the sagittal vertical axis (SVA), pelvic tilt (PT), pelvic incidence (PI), sacral slope (SS), lumbar lordosis (LL), T1 pelvic angle (T1PA), and L1 pelvic angle (L1PA). A separate test set of 40 radiographs was labeled by four reviewers, including fellowship-trained spine surgeons and a fellowship-trained radiologist with neuroradiology subspecialty certification. Median errors relative to the most senior reviewer were calculated to determine model accuracy on test images. Intraclass correlation coefficients (ICCs) were used to assess interrater reliability. RESULTS: SpinePose exhibited the following median (interquartile range) parameter errors: SVA 2.2 mm (2.3 mm) (p = 0.93), PT 1.3° (1.2°) (p = 0.48), SS 1.7° (2.2°) (p = 0.64), PI 2.2° (2.1°) (p = 0.24), LL 2.6° (4.0°) (p = 0.89), T1PA 1.1° (0.9°) (p = 0.42), and L1PA 1.4° (1.6°) (p = 0.49). Model predictions also exhibited excellent reliability at all parameters (ICC 0.91-1.0). CONCLUSIONS: SpinePose accurately predicted spinopelvic parameters with excellent reliability comparable to that of fellowship-trained spine surgeons and neuroradiologists. Utilization of predictive AI tools in spinal imaging can substantially aid in patient selection and surgical planning.


Assuntos
Inteligência Artificial , Humanos , Reprodutibilidade dos Testes , Pelve/diagnóstico por imagem , Feminino , Masculino , Adulto , Coluna Vertebral/diagnóstico por imagem , Pessoa de Meia-Idade , Radiografia/métodos , Lordose/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem
2.
Eur J Radiol ; 171: 111313, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237518

RESUMO

PURPOSE: In recent years, the field of medical imaging has witnessed remarkable advancements, with innovative technologies which revolutionized the visualization and analysis of the human spine. Among the groundbreaking developments in medical imaging, Generative Adversarial Networks (GANs) have emerged as a transformative tool, offering unprecedented possibilities in enhancing spinal imaging techniques and diagnostic outcomes. This review paper aims to provide a comprehensive overview of the use of GANs in spinal imaging, and to emphasize their potential to improve the diagnosis and treatment of spine-related disorders. A specific review focusing on Generative Adversarial Networks (GANs) in the context of medical spine imaging is needed to provide a comprehensive and specialized analysis of the unique challenges, applications, and advancements within this specific domain, which might not be fully addressed in broader reviews covering GANs in general medical imaging. Such a review can offer insights into the tailored solutions and innovations that GANs bring to the field of spinal medical imaging. METHODS: An extensive literature search from 2017 until July 2023, was conducted using the most important search engines and identified studies that used GANs in spinal imaging. RESULTS: The implementations include generating fat suppressed T2-weighted (fsT2W) images from T1 and T2-weighted sequences, to reduce scan time. The generated images had a significantly better image quality than true fsT2W images and could improve diagnostic accuracy for certain pathologies. GANs were also utilized in generating virtual thin-slice images of intervertebral spaces, creating digital twins of human vertebrae, and predicting fracture response. Lastly, they could be applied to convert CT to MRI images, with the potential to generate near-MR images from CT without MRI. CONCLUSIONS: GANs have promising applications in personalized medicine, image augmentation, and improved diagnostic accuracy. However, limitations such as small databases and misalignment in CT-MRI pairs, must be considered.


Assuntos
Fraturas Ósseas , Doenças da Coluna Vertebral , Humanos , Coluna Vertebral/diagnóstico por imagem , Doenças da Coluna Vertebral/diagnóstico por imagem , Tecido Adiposo , Bases de Dados Factuais , Processamento de Imagem Assistida por Computador
3.
J Pers Med ; 13(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38138869

RESUMO

Computed tomography (CT) offers detailed insights into the internal anatomy of patients, particularly for spinal vertebrae examination. However, CT scans are associated with higher radiation exposure and cost compared to conventional X-ray imaging. In this study, we applied a Generative Adversarial Network (GAN) framework to reconstruct 3D spinal vertebrae structures from synthetic biplanar X-ray images, specifically focusing on anterior and lateral views. The synthetic X-ray images were generated using the DRRGenerator module in 3D Slicer by incorporating segmentations of spinal vertebrae in CT scans for the region of interest. This approach leverages a novel feature fusion technique based on X2CT-GAN to combine information from both views and employs a combination of mean squared error (MSE) loss and adversarial loss to train the generator, resulting in high-quality synthetic 3D spinal vertebrae CTs. A total of n = 440 CT data were processed. We evaluated the performance of our model using multiple metrics, including mean absolute error (MAE) (for each slice of the 3D volume (MAE0) and for the entire 3D volume (MAE)), cosine similarity, peak signal-to-noise ratio (PSNR), 3D peak signal-to-noise ratio (PSNR-3D), and structural similarity index (SSIM). The average PSNR was 28.394 dB, PSNR-3D was 27.432, SSIM was 0.468, cosine similarity was 0.484, MAE0 was 0.034, and MAE was 85.359. The results demonstrated the effectiveness of this approach in reconstructing 3D spinal vertebrae structures from biplanar X-rays, although some limitations in accurately capturing the fine bone structures and maintaining the precise morphology of the vertebrae were present. This technique has the potential to enhance the diagnostic capabilities of low-cost X-ray machines while reducing radiation exposure and cost associated with CT scans, paving the way for future applications in spinal imaging and diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA