Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
Nanotechnology ; 35(47)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39154654

RESUMO

The exploration of deep space significantly increases the probability of spacecraft failures due to surface electrostatic discharge, which imposes higher vacuum insulation protection requirements on polyimide (PI), the external insulation material of spacecrafts. To address this challenge, this study proposes using silane coupling agent KH550 for organic grafting treatment of Cr2O3nanoparticles, which are then used to dope and modify PI to enhance the vacuum surface insulation of PI films. The KH550 grafting improves the interface strength between the fillers and the matrix, allowing the fillers to be uniformly dispersed in the matrix. Compared to pure PI films, the prepared PI-Cr2O3@KH550 composite films exhibit significantly enhanced vacuum surface flashover voltage, improved surface/volume resistivity, and dielectric properties. The results demonstrate that PI composite films with 0.8% by mass of Cr2O3@KH550 show the most notable performance improvement, with the DC flashover voltage and impulse flashover voltage in vacuum increasing by 20.7% and 27.8%, respectively. The doping of chromium oxide nanoparticles introduces more deep traps into the PI films and reduce the surface resistivity. The higher deep trap density inhibits charge migration, thereby alleviating secondary electron emission and surface electric field distortion. Simultaneously, the lower surface resistivity facilitates dissipating surface charges and improves the surface insulation. These findings are of significant reference value for promoting the enhancement of aerospace insulation performance.

2.
J Electrocardiol ; 82: 27-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38000150

RESUMO

Background Electrical activity underlying the T-wave is less well understood than the QRS-complex. This study investigated the relationship between normal T-wave morphology and the underlying ventricular repolarization gradients using the equivalent dipole layer (EDL). Methods Body-surface-potential-maps (BSPM, 67­leads) were obtained in nine normal cases. Subject specific MRI-based anatomical heart/torso-models with electrode positions were created. The boundary element method was used to account for the volume conductor effects. To simulate the measured T-waves, the EDL was used to apply different ventricular repolarization gradients: a) transmural, b) interventricular c) apico-basal and d) all three gradients (a-c) combined. The combined gradient (d) was optimized using an inverse procedure (Levenberg-Marquardt). Correspondence between simulated and measured T-waves was assessed using correlation coefficient (CC) and relative difference (RD). Results Realistic T-waves were simulated if repolarization times of: (a) the epicardium were smaller than the endocardium; (b) the left ventricle were smaller than the right ventricle and (c) the apex increased towards the base. The apico-basal gradient resulted in the highest correspondence between measured and simulated T-waves (CC = 0.84(0.81-0.91);RD = 0.68(0.60-0.71)) compared to a transmural gradient (CC = 0.77(0.71-0.80);RD = 1.46(0.82-1.75)) and an interventricular gradient (CC = 0.71(0.67-0.80);RD = 0.85(0.75-0.87)). All three gradients combined further improved the correspondence between measured and simulated T-waves (CC = 0.83(0.82-0.89);RD = 0.60(0.51-0.63)), especially after optimization (CC = 0.96(0.94-0.98);RD = 0.27(0.22-0.34)). Conclusion The application of all repolarization gradients combined resulted in the largest agreement between simulated and measured T-waves, followed by the apico-basal repolarization gradient. With these findings, we will optimize our EDL-based inverse procedure to assess repolarization abnormalities.


Assuntos
Eletrocardiografia , Sistema de Condução Cardíaco , Humanos , Eletrocardiografia/métodos , Potenciais de Ação , Pericárdio , Endocárdio , Arritmias Cardíacas
3.
Nano Lett ; 23(19): 8953-8959, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37737103

RESUMO

Kelvin probe force microscopy measures surface potential and delivers insights into nanoscale electronic properties, including work function, doping levels, and localized charges. Recently developed pulsed force Kelvin probe force microscopy (PF-KPFM) provides sub-10 nm spatial resolution under ambient conditions, but its original implementation is hampered by instrument complexity and limited operational speed. Here, we introduce a solution for overcoming these two limitations: a lock-in amplifier-based PF-KPFM. Our method involves phase-synchronized switching of a field effect transistor to mediate the Coulombic force between the probe and the sample. We validate its efficacy on two-dimensional material MXene and aged perovskite photovoltaic films. Lock-in-based PF-KPFM successfully identifies the contact potential difference (CPD) of stacked flakes and finds that the CPDs of monoflake MXene are different from those of their multiflake counterparts, which are otherwise similar in value. In perovskite films, we uncover electrical degradation that remains elusive with surface topography.

4.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39201269

RESUMO

The synapse is a piece of information transfer machinery replacing the electrical conduction of nerve impulses at the end of the neuron. Like many biological mechanisms, its functioning is heavily affected by time constraints. The solution selected by evolution is based on chemical communication that, in theory, cannot compete with the speed of nerve conduction. Nevertheless, biochemical and biophysical compensation mechanisms mitigate this intrinsic weakness: (i) through the high concentrations of neurotransmitters inside the synaptic vesicles; (ii) through the concentration of neurotransmitter receptors in lipid rafts, which are signaling platforms; indeed, the presence of raft lipids, such as gangliosides and cholesterol, allows a fine tuning of synaptic receptors by these lipids; (iii) through the negative electrical charges of the gangliosides, which generate an attractive (for cationic neurotransmitters, such as serotonin) or repulsive (for anionic neurotransmitters, such as glutamate) electric field. This electric field controls the flow of glutamate in the tripartite synapse involving pre- and post-synaptic neurons and the astrocyte. Changes in the expression of brain gangliosides can disrupt the functioning of the glutamatergic synapse, causing fatal diseases, such as Rett syndrome. In this review, we propose an in-depth analysis of the role of gangliosides in the glutamatergic synapse, highlighting the primordial and generally overlooked role played by the electric field of synaptic gangliosides.


Assuntos
Encéfalo , Gangliosídeos , Ácido Glutâmico , Eletricidade Estática , Sinapses , Gangliosídeos/metabolismo , Gangliosídeos/química , Humanos , Sinapses/metabolismo , Animais , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Neurotransmissores/metabolismo , Neurônios/metabolismo , Transmissão Sináptica
5.
Small ; 19(43): e2301798, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37357158

RESUMO

Electric double layer (EDL) devices based on 2D materials have made great achievements for versatile electronic and opto-electronic applications; however, the ion dynamics and electric field distribution of the EDL at the electrolyte/2D material interface and their influence on the physical properties of 2D materials have not been clearly clarified. In this work, by using Kelvin probe force microscope and steady/transient optical techniques, the character of the EDL and its influence on the optical properties of monolayer transition metal dichalcogenides (TMDs) are probed. The potential drop, unscreened EDL potential distribution, and accumulated carriers at the electrolyte/TMD interface are revealed, which can be explained by nonlinear Thomas-Fermi theory. By monitoring the potential distribution along the channel, the evolution of the electric field-induced lateral junction in the TMD EDL transistor is accessed, giving rise to the better exploration of EDL device physics. More importantly, EDL gate-dependent carrier recombination and exciton-exciton annihilation in monolayer TMDs on lithium-ion solid state electrolyte (Li2 Al2 SiP2 TiO13 ) are evaluated for the first time, benefiting from the understanding of the interaction between ions, carriers, and excitons. The work will deepen the understanding of the EDL for the exploitation of functional device applications.

6.
Europace ; 25(7)2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37433034

RESUMO

AIMS: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a progressive inherited cardiac disease. Early detection of disease and risk stratification remain challenging due to heterogeneous phenotypic expression. The standard configuration of the 12 lead electrocardiogram (ECG) might be insensitive to identify subtle ECG abnormalities. We hypothesized that body surface potential mapping (BSPM) may be more sensitive to detect subtle ECG abnormalities. METHODS AND RESULTS: We obtained 67 electrode BSPM in plakophilin-2 (PKP2)-pathogenic variant carriers and control subjects. Subject-specific computed tomography/magnetic resonance imaging based models of the heart/torso and electrode positions were created. Cardiac activation and recovery patterns were visualized with QRS- and STT-isopotential map series on subject-specific geometries to relate QRS-/STT-patterns to cardiac anatomy and electrode positions. To detect early signs of functional/structural heart disease, we also obtained right ventricular (RV) echocardiographic deformation imaging. Body surface potential mapping was obtained in 25 controls and 42 PKP2-pathogenic variant carriers. We identified five distinct abnormal QRS-patterns and four distinct abnormal STT-patterns in the isopotential map series of 31/42 variant carriers. Of these 31 variant carriers, 17 showed no depolarization or repolarization abnormalities in the 12 lead ECG. Of the 19 pre-clinical variant carriers, 12 had normal RV-deformation patterns, while 7/12 showed abnormal QRS- and/or STT-patterns. CONCLUSION: Assessing depolarization and repolarization by BSPM may help in the quest for early detection of disease in variant carriers since abnormal QRS- and/or STT-patterns were found in variant carriers with a normal 12 lead ECG. Because electrical abnormalities were observed in subjects with normal RV-deformation patterns, we hypothesize that electrical abnormalities develop prior to functional/structural abnormalities in ARVC.


Assuntos
Displasia Arritmogênica Ventricular Direita , Placofilinas , Humanos , Placofilinas/genética , Mapeamento Potencial de Superfície Corporal , Eletrocardiografia/métodos , Ecocardiografia , Ventrículos do Coração , Displasia Arritmogênica Ventricular Direita/diagnóstico , Displasia Arritmogênica Ventricular Direita/genética
7.
Europace ; 25(2): 554-560, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36107025

RESUMO

AIMS: The standard deviation of activation time (SDAT) derived from body surface maps (BSMs) has been proposed as an optimal measure of electrical dyssynchrony in patients with cardiac resynchronization therapy (CRT). The goal of this study was two-fold: (i) to compare the values of SDAT in individual CRT patients with reconstructed myocardial metrics of depolarization heterogeneity using an inverse solution algorithm and (ii) to compare SDAT calculated from 96-lead BSM with a clinically easily applicable 12-lead electrocardiogram (ECG). METHODS AND RESULTS: Cardiac resynchronization therapy patients with sinus rhythm and left bundle branch block at baseline (n = 19, 58% males, age 60 ± 11 years, New York Heart Association Classes II and III, QRS 167 ± 16) were studied using a 96-lead BSM. The activation time (AT) was automatically detected for each ECG lead, and SDAT was calculated using either 96 leads or standard 12 leads. Standard deviation of activation time was assessed in sinus rhythm and during six different pacing modes, including atrial pacing, sequential left or right ventricular, and biventricular pacing. Changes in SDAT calculated both from BSM and from 12-lead ECG corresponded to changes in reconstructed myocardial ATs. A high degree of reliability was found between SDAT values obtained from 12-lead ECG and BSM for different pacing modes, and the intraclass correlation coefficient varied between 0.78 and 0.96 (P < 0.001). CONCLUSION: Standard deviation of activation time measurement from BSM correlated with reconstructed myocardial ATs, supporting its utility in the assessment of electrical dyssynchrony in CRT. Importantly, 12-lead ECG provided similar information as BSM. Further prospective studies are necessary to verify the clinical utility of SDAT from 12-lead ECG in larger patient cohorts, including those with ischaemic cardiomyopathy.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Feminino , Terapia de Ressincronização Cardíaca/métodos , Estudos Prospectivos , Reprodutibilidade dos Testes , Dispositivos de Terapia de Ressincronização Cardíaca , Eletrocardiografia , Arritmias Cardíacas/terapia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Resultado do Tratamento
8.
Proc Natl Acad Sci U S A ; 117(48): 30151-30158, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33203676

RESUMO

With a goal of determining an absolute free energy scale for ion hydration, quasi-chemical theory and ab initio quantum mechanical simulations are employed to obtain an accurate value for the bulk hydration free energy of the Na+ ion. The free energy is partitioned into three parts: 1) the inner-shell or chemical contribution that includes direct interactions of the ion with nearby waters, 2) the packing free energy that is the work to produce a cavity of size λ in water, and 3) the long-range contribution that involves all interactions outside the inner shell. The interfacial potential contribution to the free energy resides in the long-range term. By averaging cation and anion data for that contribution, cumulant terms of all odd orders in the electrostatic potential are removed. The computed total is then the bulk hydration free energy. Comparison with the experimentally derived real hydration free energy produces an effective surface potential of water in the range -0.4 to -0.5 V. The result is consistent with a variety of experiments concerning acid-base chemistry, ion distributions near hydrophobic interfaces, and electric fields near the surface of water droplets.

9.
Acta Biotheor ; 71(3): 15, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148457

RESUMO

It is common to say that the origin of the membrane potential is attributed to transmembrane ion transport, but it is theoretically possible to explain its generation by the mechanism of ion adsorption. It has been previously suggested that the ion adsorption mechanism even leads to potential formulae identical to the famous Nernst equation or the Goldman-Hodgkin-Katz equation. Our further analysis, presented in this paper, indicates that the potential formula based on the ion adsorption mechanism leads to an equation that is a function of the surface charge density of the material and the surface potential of the material. Furthermore, we have confirmed that the equation holds in all the different experimental systems that we have studied. This equation appears to be a key equation that governs the characteristics of the membrane potential in all systems.


Assuntos
Potenciais da Membrana , Animais , Transporte de Íons , Adsorção
10.
Nano Lett ; 22(18): 7515-7521, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36067488

RESUMO

Activation losses at solid oxide fuel cell (SOFC) electrodes have been widely attributed to charge transfer at the electrode surface. The electrostatic nature of electrode-gas interactions allows us to study these phenomena by simulating an electric field across the electrode-gas interface, where we are able to describe the activation overpotential using density functional theory (DFT). The electrostatic responses to the electric field are used to approximate the behavior of an electrode under electrical bias and have found a correlation with experimental data for three different reduction reactions at mixed ionic-electronic conducting (MIEC) electrode surfaces (H2O and CO2 on CeO2; O2 on LaFeO3). In this work, we demonstrate the importance of decoupled ion-electron transfer and charged adsorbates on the performance of electrodes under nonequilibrium conditions. Finally, our findings on MIEC-gas interactions have potential implications in the fields of energy storage and catalysis.

11.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768244

RESUMO

Although very different, in terms of their genomic organization, their enzymatic proteins, and their structural proteins, HIV and SARS-CoV-2 have an extraordinary evolutionary potential in common. Faced with various selection pressures that may be generated by treatments or immune responses, these RNA viruses demonstrate very high adaptive capacities, which result in the continuous emergence of variants and quasi-species. In this retrospective analysis of viral proteins, ensuring the adhesion of these viruses to the plasma membrane of host cells, we highlight many common points that suggest the convergent mechanisms of evolution. HIV and SARS-CoV-2 first recognize a lipid raft microdomain that acts as a landing strip for viral particles on the host cell surface. In the case of mucosal cells, which are the primary targets of both viruses, these microdomains are enriched in anionic glycolipids (gangliosides) forming a global electronegative field. Both viruses use lipid rafts to surf on the cell surface in search of a protein receptor able to trigger the fusion process. This implies that viral envelope proteins are both geometrically and electrically compatible to the biomolecules they select to invade host cells. In the present study, we identify the surface electrostatic potential as a critical parameter controlling the convergent evolution dynamics of HIV-1 and SARS-CoV-2 surface envelope proteins, and we discuss the impact of this parameter on the phenotypic properties of both viruses. The virological data accumulated since the emergence of HIV in the early 1980s should help us to face present and future virus pandemics.


Assuntos
COVID-19 , Infecções por HIV , Humanos , SARS-CoV-2 , COVID-19/metabolismo , Estudos Retrospectivos , Proteínas Virais/metabolismo , Receptores de Superfície Celular/metabolismo , Antígenos Virais/metabolismo , Infecções por HIV/metabolismo , Microdomínios da Membrana/metabolismo , Glicoproteínas/metabolismo
12.
Bull Environ Contam Toxicol ; 111(1): 10, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365371

RESUMO

The joint toxicological effects of Cd2+ and As(V) mixture on wheat root as affected by environmental factors, such as pH, coexisting cations, and humic acids etc., were investigated using hydroponic experiments. The interaction and toxicological mechanisms of co-existing Cd2+ and As(V) at the interface of solution and roots in presence of humic acid were further explored by incorporating root cell membrane surface potential ψ0 into a mechanistic model of combined biotic ligand model (BLM)-based Gouy-Chapman-Stern (GCS) model and NICA-DONNAN model. Besides, molecular dynamics (MD) simulations of lipid bilayer equilibrated with solution containing Cd2+ and H2AsO4- further revealed the molecular distribution of heavy metal(loid) ions under different membrane surface potentials. H2AsO4- and Cd2+ can be adsorbed on the surface of the membrane alone or as complexes, which consolidate the limitation of the macroscopic physical models.


Assuntos
Substâncias Húmicas , Triticum , Substâncias Húmicas/análise , Cádmio/metabolismo , Cátions/metabolismo , Cátions/farmacologia , Membrana Celular/química , Membrana Celular/metabolismo , Raízes de Plantas/química
13.
Small ; 18(22): e2201331, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35499190

RESUMO

To fabricate a high-performance and ultrasensitive triboelectric nanogenerator (TENG), choice of a combination of different materials of triboelectric series is one of the prime challenging tasks. An effective way to fabricate a TENG with a single material (abbreviated as S-TENG) is proposed, comprising electrospun nylon nanofibers. The surface potential of the nanofibers are tuned by changing the voltage polarity in the electrospinning setup, employed between the needle and collector. The difference in surface potential leads to a different work function that is the key to design S-TENG with a single material only. Further, S-TENG is demonstrated as an ultrahigh sensitive acoustic sensor with mechanoacoustic sensitivity of ≈27 500 mV Pa-1 . Due to high sensitivity in the low-to-middle decibel (60-70 dB) sounds, S-TENG is highly capable in recognizing different voice signals depending on the condition of the vocal cord. This effective voice recognition ability indicates that it has high potential to open an alternative pathway for medical professionals to detect several diseases such as neurological voice disorder, muscle tension dysphonia, vocal cord paralysis, and speech delay/disorder related to laryngeal complications.


Assuntos
Nanofibras , Nanotecnologia , Fontes de Energia Elétrica , Nylons , Reconhecimento de Voz
14.
Sensors (Basel) ; 22(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365916

RESUMO

Biopotential imaging (e.g., ECGi, EEGi, EMGi) processes multiple potential signals, each requiring an electrode applied to the body's skin. Conventional approaches based on individual wiring of each electrode are not suitable for wearable systems. Cooperative sensors solve the wiring problem since they consist of active (dry) electrodes connected by a two-wire parallel bus that can be implemented, for example, as a textile spacer with both sides made conductive. As a result, the cumbersome wiring of the classical star arrangement is replaced by a seamless solution. Previous work has shown that potential reference, current return, synchronization, and data transfer functions can all be implemented on a two-wire parallel bus while keeping the noise of the measured biopotentials within the limits specified by medical standards. We present the addition of the power supply function to the two-wire bus. Two approaches are discussed. One of them has been implemented with commercially available components and the other with an ASIC. Initial experimental results show that both approaches are feasible, but the ASIC approach better addresses medical safety concerns and offers other advantages, such as lower power consumption, more sensors on the two-wire bus, and smaller size.


Assuntos
Têxteis , Dispositivos Eletrônicos Vestíveis , Desenho de Equipamento , Eletrodos , Condutividade Elétrica
15.
Nano Lett ; 21(7): 3280-3286, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33749279

RESUMO

Moiré superlattices in van der Waals heterostructures are gaining increasing attention because they offer new opportunities to tailor and explore unique electronic phenomena. Using a combination of lateral piezoresponse force microscopy (LPFM) and scanning Kelvin probe microscopy (SKPM), we directly correlate ABAB and ABCA stacked graphene with local surface potential. We find that the surface potential of the ABCA domains is ∼15 mV higher (smaller work function) than that of the ABAB domains. First-principles calculations show that the different work functions between ABCA and ABAB domains arise from the stacking-dependent electronic structure. Moreover, while the moiré superlattice visualized by LPFM can change with time, imaging the surface potential distribution via SKPM appears more stable, enabling the mapping of ABAB and ABCA domains without tip-sample contact-induced effects. Our results provide a new means to visualize and probe local domain stacking in moiré superlattices along with its impact on electronic properties.

16.
Clin Otolaryngol ; 47(6): 641-649, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35833359

RESUMO

OBJECTIVE: To investigate the value of scalp surface potentials to identify and manage partial short circuits to ground in cochlear implant electrodes. DESIGN: A retrospective review of patients with suspected partial short circuits. MAIN OUTCOME MEASURE: Electrical output of individual electrodes was measured using scalp surface potentials for patients reporting a change in hearing function. Electrical output was compared to functional performance and impedance measurements to determine if devices with suspected partial short circuits were experiencing a decrease in performance as a result of reduced electrical output. Electrical output was checked in an artificial cochlea for two implants following explant surgery to confirm scalp surface potential results. RESULTS: All patients with suspected partial short circuits (n = 49) had reduced electrical output, a drop in impedances to approximately ½ of previously stable measurements or to below 2 kΩ, an atypical electrical field measurement (EFI) and a decline in hearing function. Only devices with an atypical EFI showed reduced electrical output. Results of scalp based surface potentials could be replicated in an artificial cochlea following explantation of the device. All explant reports received to date (n = 42) have confirmed partial short circuits, with an additional four devices failing integrity tests. CONCLUSION: Surface potential measurements can detect partial shorts and had 100% correlation with atypical EFI measurements, which are characteristic of a partial short to ground in this device. Surface potentials can help determine the degree to which the electrode array is affected, particularly when behavioural testing is limited or not possible.


Assuntos
Implante Coclear , Implantes Cocleares , Cóclea , Implante Coclear/métodos , Impedância Elétrica , Testes Auditivos , Humanos , Couro Cabeludo/cirurgia
17.
Angew Chem Int Ed Engl ; 61(42): e202211601, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36065079

RESUMO

Designing materials with high triboelectric is an efficient way of improving output performance of triboelectric nanogenerators (TENGs). Herein, we synthesized a series of covalent organic frameworks (COFs) with similar skeletons but various functional groups ranging between electron-donating and electron-withdrawing. These COFs form an ideal platform for clarifying the contribution of each group to TENG performance because the pore wall is perturbed in a predesigned manner. Kelvin probe force microscopy and computational data suggest that surface potentials and electron affinities of COFs can be improved by introducing electron-donating or withdrawing groups, with the highest values observed for fluorinated COF. The TENG with fluorinated COF delivered an output voltage and current of 420 V and 64 µA, respectively, which are comparable to other reported materials. This strategy can be used to efficiently screen suitable frameworks as TENG materials with excellent output performance.

18.
Small ; 17(23): e2100974, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33909346

RESUMO

Inorganic Na3 Zr2 Si2 PO12 is prospective with a high ionic conductivity but suffers large interfacial resistance and stability issues against sodium metal, hindering its practical application in all-solid-state sodium batteries. A surface potential regulation strategy is adopted to address these issues. Na3 Zr2 Si2 PO12 (NZSP) ceramic with homogeneously-sintered surface is synthesized by a simple two-step sintering method to promote its uniform surface potential, which is favorable for mitigating the potential fluctuations at the interface against Na metal and enhancing interfacial compatibility. The Na/NZSP interface can be stabilized for over 4 months with a low interfacial resistance of 129 Ω cm2 at 25 °C. The symmetrical Na/NZSP/Na cell exhibits ultra-stable sodium platting/stripping cycling for over 1000 cycles under 0.1 mA cm-2 . Superior interfacial performance is well retained even under 0.2 mA cm-2 at room temperature. The robust interface is further signified by its excellence under higher current densities of up to 0.85 mA cm-2 at 60 °C. A 4 V all-solid-state Na3 V1.5 Cr0.5 (PO4 )3 /NZSP/Na metal battery is demonstrated at ambient conditions, which exhibits superior rate capability and delivers a high reversible capacity of 103 mA h g-1 under 100 mA g-1 for over 400 cycles with a Coulombic efficiency of over 99%.

19.
J Microsc ; 282(2): 175-188, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33616941

RESUMO

The charging of the polymer thin film irradiated by penetrating electron beam (e-beam) is investigated, in parallel with the numerical simulation and experiment. The simulation is performed by combining scattering, drift, diffusion, trapping and recombination. Results show that, due to the electron emission the net charge near the surface is distribution positively, but negatively inside the film because of low electron mobility. The surface potential is positive near surface and accordingly forces some of secondary electrons to return surface. As irradiation proceeds, currents flowing into and out of the film can tend to equilibrium. In the equilibrium state, with increasing beam energy, the surface potential and the efficient emission current decrease, and the electron beam-induced current and the transmission current tend to zero and the beam current valuable, respectively. E-beams of 10-30 keV cause positive charging on PMMA film of 2 µm, which means the high-energy e-beam can effectively discharge a thin film that has been charged negatively by irradiation with low-energy e-beam. With the increase of the film thickness from 1 to 3 µm, the positive surface potential and the emission current decreases and increases, respectively, and the transmission current tends to zero.

20.
Proc Natl Acad Sci U S A ; 115(16): 4081-4086, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610320

RESUMO

Biological membranes are highly dynamic and complex lipid bilayers, responsible for the fate of living cells. To achieve this function, the hydrating environment is crucial. However, membrane imaging typically neglects water, focusing on the insertion of probes, resonant responses of lipids, or the hydrophobic core. Owing to a recent improvement of second-harmonic (SH) imaging throughput by three orders of magnitude, we show here that we can use SH microscopy to follow membrane hydration of freestanding lipid bilayers on millisecond time scales. Instead of using the UV/VIS resonant response of specific membrane-inserted fluorophores to record static SH images over time scales of >1,000 s, we SH imaged symmetric and asymmetric lipid membranes, while varying the ionic strength and pH of the adjacent solutions. We show that the nonresonant SH response of water molecules aligned by charge-dipole interactions with charged lipids can be used as a label-free probe of membrane structure and dynamics. Lipid domain diffusion is imaged label-free by means of the hydration of charged domains. The orientational ordering of water is used to construct electrostatic membrane potential maps. The average membrane potential depends quadratically on an applied external bias, which is modeled by nonlinear optical theory. Spatiotemporal fluctuations on the order of 100-mV changes in the membrane potential are seen. These changes imply that membranes are very dynamic, not only in their structure but also in their membrane potential landscape. This may have important consequences for membrane function, mechanical stability, and protein/pore distributions.


Assuntos
Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Microscopia Confocal/métodos , Difusão , Interações Hidrofóbicas e Hidrofílicas , Potenciais da Membrana , Fatores de Tempo , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA