Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(3): 327, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421498

RESUMO

Despite advancements in using multi-temporal satellite data to assess long-term changes in Northeast India's tea plantations, a research gap exists in understanding the intricate interplay between biophysical and biochemical characteristics. Further exploration is crucial for precise, sustainable monitoring and management. In this study, satellite-derived vegetation indices and near-proximal sensor data were deployed to deduce various physico-chemical characteristics and to evaluate the health conditions of tea plantations in northeast India. The districts, such as Sonitpur, Jorhat, Sibsagar, Dibrugarh, and Tinsukia in Assam were selected, which are the major contributors to the tea industry in India. The Sentinel-2A (2022) data was processed in the Google Earth Engine (GEE) cloud platform and utilized for analyzing tea plantations biochemical and biophysical properties. Leaf chlorophyll (Cab) and nitrogen contents are determined using the Normalized Area Over Reflectance Curve (NAOC) index and flavanol contents, respectively. Biophysical and biochemical parameters of the tea assessed during the spring season (March-April) 2022 revealed that tea plantations located in Tinsukia and Dibrugarh were much healthier than the other districts in Assam which are evident from satellite-derived Enhanced Vegetation Index (EVI), Modified Soil Adjusted Vegetation Index (MSAVI), Leaf Area Index (LAI), and Fraction of Absorbed Photosynthetically Active Radiation (fPAR), including the Cab and nitrogen contents. The Cab of healthy tea plants varied from 25 to 35 µg/cm2. Pearson correlation among satellite-derived Cab and nitrogen with field measurements showed R2 of 0.61-0.62 (p-value < 0.001). This study offered vital information about land alternations and tea health conditions, which can be crucial for conservation, monitoring, and management practices.


Assuntos
Camellia sinensis , Monitoramento Ambiental , Índia , Nitrogênio , Chá
2.
Stress Biol ; 4(1): 15, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363398

RESUMO

Tea plant [Camellia sinensis (L.) O. Kuntze] is one of the important foliar cash crops in China, and its root system absorbs heavy metal (HM) elements enriched in the soil and transports them to the over ground part. In order to ensure the safety of the soil ecological environment and tea raw materials in the tea production area, the HM contents of soil and tea plant leaves in Suzhou tea plantations were detected, the relationship between HMs and soil physicochemical properties was analyzed, and the ecological risk of HMs in tea plantation soils was evaluated by using relevant detection techniques and evaluation models. The results showed that the average pH of tea plantation soils around Tai Lake in Suzhou was within the range suitable for the growth of tea plants. The pH, soil organic matter, total nitrogen, available phosphorus and available potassium of tea plantation soil satisfying the requirements of high quality, high efficiency and high yield ('3H') tea plantation accounted for 47.06%, 26.47%, 8.82%, 79.41% and 67.65%, respectively. Site 2 fully met the requirements of '3H' tea plantation. In addition, the contents of cadmium (Cd) and mercury (Hg) were extremely variable, and the average contents exceeded the background value of soil in Jiangsu Province, but the HM contents of tea leaves all met the pollution-free standard, and the HM contents of tea leaves around Tai Lake in Suzhou were generally at a safe level. The composite ecological risk index ranged from 0.05 to 0.60, and 32 of the 34 sample sites (except site 21 and site 23) are the most suitable agricultural land for tea plantations.

3.
PeerJ ; 12: e17653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39071124

RESUMO

Soil acidification has emerged as a critical limiting factor for the sustainable development of the tea industry. In this article, a comprehensive review of 63 original research articles focusing on the impact of amendments on the pH in tea plantations soil was conducted. Through meta-analysis, the effect of applying soil amendments to increase the pH of tea plantation soil and its influencing factors were investigated. The results revealed that lime had a significant impact, increasing the pH by 18% in tea plantation soil, while rapeseed cake had a minimal (2%) effect. It was observed that as the quantity of amendments and pH levels increased, so did their impact on the pH of tea plantation soil. Subgroup analysis within biochar showed varying effects, depending on soil pH, with an 11% increase in acidic soil. Among these amendments, biochar produced at pyrolysis temperature ranging from 501-600 °C and derived from animal waste demonstrated significant effect on increasing soil pH in tea plantations by 9% and 12%, respectively. This study offers valuable insights into improving and ensuring the health and sustainability of tea plantations.


Assuntos
Solo , Chá , Solo/química , Concentração de Íons de Hidrogênio , Chá/química , Carvão Vegetal/química , Camellia sinensis/química , Compostos de Cálcio/química , Óxidos/química , Agricultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA