RESUMO
BACKGROUND: As the key regulators in BR signaling, BES1 family genes regulate thousands of target genes involved in various development processes. So far, the functions of BES1 family are poorly understood in tomato, and a comprehensive genomic and expressional analysis is worth to conduct for this family. RESULTS: Here, nine SlBES1 family members were identified in tomato and classified into five groups based on the conserved motif, gene structure and phylogenetic analysis. Synteny among tomato, Arabidopsis, pepper and rice were further analyzed to obtain insights into evolutionary characteristics. Several cis-elements related to hormone, stress and plant development were exhibited in the promoter regions of SlBES1 family genes. Subcellular localization showed seven members localized both in the nucleus and cytoplasm, implying the presence of dephosphorylated and phosphorylated form of these seven proteins, furthermore, five of them possessed transcription activation activity whereas the left two functioned as transcriptional repressors. Another two members, however, neither localized in the nucleus nor had transactivation activity. Besides, SlBES1.8 showed flower-specific expression while other members expressed ubiquitously in all organs. Moreover, SlBES1 genes exhibited variational expression in response to nine principal plant hormones. Notably, the expression levels of SlBES1 genes presented a dominant downregulated trend in response to stresses. CONCLUSIONS: In this study, we systematically analyzed the genomic characterization of SlBES1 family, together with the analyses of protein functional features and expression patterns, our results lay a foundation for the functional research of SlBES1 family.
Assuntos
Expressão Gênica , Genes de Plantas , Família Multigênica , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Solanum lycopersicum/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , SinteniaRESUMO
FOXC2 is a member of the human forkhead-box gene family and encodes a regulatory transcription factor. Mutations in FOXC2 have been associated with lymphedema distichiasis (LD), an autosomal dominant disorder that primarily affects the limbs. Most patients also show extra eyelashes, a condition known as distichiasis. We previously reported genetic and clinical findings in six unrelated families with LD. Half the patients showed missense mutations, two carried frameshift mutations and a stop mutation was identified in a last patient. Here we analyzed the subcellular localization and transactivation activity of the mutant proteins, showing that all but one (p.Y109*) localized to the nucleus. A significant reduction of transactivation activity was observed in four mutants (p.L80F, p.H199Pfs*264, p.I213Tfs*18, p.Y109*) compared with wild type FOXC2 protein, while only a partial loss of function was associated with p.V228M. The mutant p.I213V showed a very slight increase of transactivation activity. Finally, immunofluorescence analysis revealed that some mutants were sequestered into nuclear aggregates and caused a reduction of cell viability. This study offers new insights into the effect of FOXC2 mutations on protein function and shows the involvement of aberrant aggregation of FOXC2 proteins in cell death.
Assuntos
Pestanas/anormalidades , Fatores de Transcrição Forkhead/genética , Linfedema/genética , Adulto , Proliferação de Células , Pestanas/patologia , Feminino , Fatores de Transcrição Forkhead/química , Células HeLa , Humanos , Linfedema/patologia , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Mutação Puntual , Agregados Proteicos , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Ativação TranscricionalRESUMO
The peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate glucose and lipid metabolism. The role of PPARs in several chronic diseases such as type 2 diabetes, obesity and atherosclerosis is well known and, for this reason, they are the targets of antidiabetic and hypolipidaemic drugs. In the last decade, some rare mutations in human PPARγ that might be associated with partial lipodystrophy, dyslipidaemia, insulin resistance and colon cancer have emerged. In particular, the F360L mutant of PPARγ (PPARγ2 residue 388), which is associated with familial partial lipodystrophy, significantly decreases basal transcriptional activity and impairs stimulation by synthetic ligands. To date, the structural reason for this defective behaviour is unclear. Therefore, the crystal structure of PPARγ F360L together with the partial agonist LT175 has been solved and the mutant has been characterized by circular-dichroism spectroscopy (CD) in order to compare its thermal stability with that of the wild-type receptor. The X-ray analysis showed that the mutation induces dramatic conformational changes in the C-terminal part of the receptor ligand-binding domain (LBD) owing to the loss of van der Waals interactions made by the Phe360 residue in the wild type and an important salt bridge made by Arg357, with consequent rearrangement of loop 11/12 and the activation function helix 12 (H12). The increased mobility of H12 makes the binding of co-activators in the hydrophobic cleft less efficient, thereby markedly lowering the transactivation activity. The spectroscopic analysis in solution and molecular-dynamics (MD) simulations provided results which were in agreement and consistent with the mutant conformational changes observed by X-ray analysis. Moreover, to evaluate the importance of the salt bridge made by Arg357, the crystal structure of the PPARγ R357A mutant in complex with the agonist rosiglitazone has been solved.
Assuntos
Lipodistrofia Parcial Familiar/genética , Mutação , PPAR gama/química , Ativação Transcricional , Cristalização , Humanos , Mutagênese Sítio-Dirigida , PPAR gama/genéticaRESUMO
P65, a protein subunit of NF-κB, is a widely distributed transcription factor in eukaryotic cells and exerts diverse regulatory functions. Post-translational modifications such as phosphorylation, acetylation, methylation and ubiquitination modulate p65 transcriptional activity and function, impacting various physiological and pathological processes including inflammation, immune response, cell death, proliferation, differentiation and tumorigenesis. The intricate interplay between these modifications can be antagonistic or synergistic. Understanding p65 post-translational modifications not only elucidates NF-κB pathway regulation but also facilitates the identification of therapeutic targets and diagnostic markers for associated clinical conditions.
RESUMO
Tubby-like protein (TLP) plays an important role in plant growth and development. In this investigation, the characteristics of 11 members in the SlTLP family were studied. SlTLP genes were classified into two subgroups, and the members containing the F-box domain were renamed SlTLFPs. Subcellular localization indicated that most of the SlTLPs were localized in the nucleus. Expression pattern analysis revealed that eight genes (SlTLFP1, 3, 5, 7-10, and SlTLP11) showed differential expression across various tissues, while SlTLFP2, 4, and 6 were widely expressed in all the organs tested. Most SlTLP genes were induced by biotic and abiotic stress treatments such as Botrytis cinerea, temperature, MeJA, and ABA. TLP proteins in tomato have no transcriptional activation activity, and most members with an F-box domain could interact with SUPPRESSOR OF KINETOCHORE PROTEIN 1 (SlSkp1) or Cullin1 (Cul1) or both. Experiments on CRISPR edited SlTLFP8 showed that the N-terminal F-box domain was necessary for its function such as DNA ploidy and stomata size regulation. Our findings suggested that the F-box domain interacts with Skp1 and Cul1 to form the SCF complex, suggesting that SlTLFPs, at least SlTLFP8, function mainly through the F-box domain as an E3 ligase.
Assuntos
Proteínas F-Box , Solanum lycopersicum , DNA/metabolismo , Proteínas F-Box/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Marek's disease virus (MDV) causes malignant lymphoma in chickens (Marek's disease, MD). Although MD is currently controlled by vaccination, MDV strains have continuously increased in virulence over the recent decades. Polymorphisms in Meq, an MDV-encoded oncoprotein that serves as a transcription factor, have been associated with the enhanced virulence of the virus. In addition, insertions and deletions in Meq have been observed in MDV strains of higher virulence, but their contribution to said virulence remains elusive. In this study, we investigated the contribution of an insertion (L-Meq) and a deletion in the Meq gene (S-Meq) to its functions and MDV pathogenicity. Reporter assays revealed that both insertion and deletion enhanced the transactivation potential of Meq. Additionally, we generated RB-1B-based recombinant MDVs (rMDVs) encoding each Meq isoform and analyzed their pathogenic potential. rMDV encoding L-Meq indueced the highest mortality and tumor incidence in infected animals, whereas the rMDV encoding S-Meq exhibited the lowest pathogenicity. Thus, insertion enhanced the transactivation activity of Meq and MDV pathogenicity, whereas deletion reduced pathogenicity despite having increased transactivation activity. These data suggest that other functions of Meq affect MDV virulence. These data improve our understanding of the mechanisms underlying the evolution of MDV virulence.
Assuntos
Herpesvirus Galináceo 2/genética , Proteínas Oncogênicas Virais/fisiologia , Ativação Transcricional/fisiologia , Animais , Embrião de Galinha , Herpesvirus Galináceo 2/patogenicidade , VirulênciaRESUMO
High salt environments can induce stress in different plants. The genes containing the ZAT domain constitute a family that belongs to a branch of the C2H2 family, which plays a vital role in responding to abiotic stresses. In this study, we identified 169 ZAT genes from seven plant species, including 44 ZAT genes from G. hirsutum. Phylogenetic tree analysis divided ZAT genes in six groups with conserved gene structure, protein motifs. Two C2H2 domains and an EAR domain and even chromosomal distribution on At and Dt sub-genome chromosomes of G. hirsutum was observed. GhZAT6 was primarily expressed in the root tissue and responded to NaCl and ABA treatments. Subcellular localization found that GhZAT6 was located in the nucleus and demonstrated transactivation activity during a transactivation activity assay. Arabidopsis transgenic lines overexpressing the GhZAT6 gene showed salt tolerance and grew more vigorously than WT on MS medium supplemented with 100 mmol NaCl. Additionally, the silencing of the GhZAT6 gene in cotton plants showed more obvious leaf wilting than the control plants, which were subjected to 400 mmol NaCl treatment. Next, the expressions of GhAPX1, GhFSD1, GhFSD2, and GhSOS3 were significantly lower in the GhZAT6-silenced plants treated with NaCl than the control. Based on these findings, GhZAT6 may be involved in the ABA pathway and mediate salt stress tolerance by regulating ROS-related gene expression.
Assuntos
Estresse Salino/genética , Estresse Salino/fisiologia , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia , Dedos de Zinco/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Cacau/genética , Cacau/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Gossypium/genética , Gossypium/fisiologia , Oryza/genética , Oryza/fisiologia , Filogenia , Plantas Geneticamente Modificadas , Sorghum/genética , Sorghum/fisiologiaRESUMO
Although the rapid development of high-throughput sequencing has led to the identification of a large number of truncated or mutated steroid hormone receptor (SHR) variants, their clinical relevance remains to be defined. A platform for functional analysis of these SHR variants in cells would be instrumental for better assessing their impact on normal physiology and SHR-associated diseases. Here we have developed a new reporter system that allows rapid and accurate assessment of the transcriptional activity of SHR variants in cells. The reporter is a single construct containing a firefly luciferase reporter gene, whose expression is under the control of a promoter with multiple steroid hormone responsive elements, and a Renilla luciferase reporter gene, that is constitutively expressed under the control of an internal ribosome entry site (IRES) and is not regulated by steroid hormones. The corresponding SHR (wildtype or mutant/variant) is also expressed from the same construct. Using this improved reporter system, we revealed a large spectrum of transactivation activities within a set of previously identified mutations and variations of the androgen receptor (AR), the estrogen receptor α (ERα) and the glucocorticoid receptor (GR). This novel reporter system enables functional analysis of SHR mutants and variants in physiological and pathological settings, offering valuable preclinical, or diagnostic information for the understanding and treatment of associated diseases.
Assuntos
Bioensaio/métodos , Genes Reporter , Vetores Genéticos/genética , Regiões Promotoras Genéticas/genética , Receptores Citoplasmáticos e Nucleares/fisiologia , Ativação Transcricional/genética , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Clonagem Molecular/métodos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Hormônios/farmacologia , Humanos , Luciferases de Vaga-Lume/genética , Proteínas Mutantes/fisiologia , Mutação , Regiões Promotoras Genéticas/efeitos dos fármacos , Receptores Androgênicos/genética , Receptores Androgênicos/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/fisiologia , Ativação Transcricional/efeitos dos fármacos , Transfecção/métodosRESUMO
Protein phosphorylation often switches cellular activity from one state to another, and this post-translational modification plays an important role in gene regulation by the nuclear hormone receptor superfamily, including the glucocorticoid receptor (GR). Cell signaling pathways that regulate phosphorylation of the GR are important determinants of GR actions, including lymphoid cell apoptosis, DNA binding, and interaction with coregulatory proteins. All major functionally important phosphorylation sites in the human GR are located in its N-terminal domain (NTD), which possesses a powerful transactivation domain, AF1. The GR NTD exists as an intrinsically disordered protein (IDP) and undergoes disorder-order transition for AF1's efficient interaction with several coregulatory proteins and subsequent AF1-mediated GR activity. It has been reported that GR's NTD/AF1 undergoes such disorder-order transition following site-specific phosphorylation. This review provides currently available information regarding the role of GR phosphorylation in its action and highlights the possible underlying mechanisms of action.
Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Humanos , FosforilaçãoRESUMO
Elevated temperatures affect the growth and reproduction of crop plants and thus have become concern worldwide. Hsp101/ClpB protein is a major molecular chaperone, performing dis-aggregation of protein aggregates formed during heat stress. In rice, OsHsfA6a binds to the promoter of OsHsp101/ClpB-C and regulates its expression. In this study, analysis of C-terminal domains of ClassA OsHsfs revealed the presence of aromatic, hydrophobic, acidic (AHA) and nuclear export signal (NES) motifs in all the members. Using deletion constructs, we show that the activation potential of OsHsfA6a is confined in the C-terminal activation domain comprising of AHA and NES sequences. The results obtained in yeast were complemented with transient expression of reporter in protoplast (TERP) based assay. Detailed analysis of OsHsfA6a splice variants shows the presence of one full version and a DBD truncated smaller version whose existence needs experimental evidences. Phylogeny analysis revealed that OsHsfA6a has diverged from A6a/A6b forms of Arabidopsis and tomato and has no expressologs. OsHsfA6a in-silico network was enriched in MAP kinases along with Hsp70 and Hsp90 proteins. Thus, it appears that regulation of OsClpB-C by HsfA6a is unique in rice and activation potential of OsHsfA6a resides in the single AHA motif located in the C-terminal domain.
Assuntos
Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Oryza/genética , Proteínas de Plantas/genética , Arabidopsis , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas/genética , Fatores de Transcrição de Choque Térmico/fisiologia , Solanum lycopersicum , Oryza/fisiologia , Filogenia , Proteínas de Plantas/fisiologia , Alinhamento de Sequência , Ativação Transcricional/genéticaRESUMO
Androgens are responsible for the development and maintenance of male sex characteristics. Dysfunctions in androgen action due to mutations in the androgen receptor gene (AR) can lead to androgen insensitivity syndrome (AIS) that can be classified as mild (MAIS), partial (PAIS), or complete (CAIS). We have analyzed functional effects of p.Ser760Thr, p.Leu831Phe, p.Ile899Phe, p.Leu769Val, and p.Pro905Arg mutations and the combination p.Gln799Glu + p.Cys807Phe that were identified in patients with PAIS or CAIS. The p.Leu769Val and p.Pro905Arg mutations showed complete disruption of AR action under physiological hormone concentrations; however, they differed in high DHT concentrations especially in the N/C terminal interaction assay. Mutations p.Ser760Thr, p.Leu831Phe, p.Ile899Phe presented transactivation activities higher than 20% of the wild type in physiological hormone concentrations and increased with higher DHT concentrations. However, each one showed a different profile in the N/C interaction assay. When p.Gln799Glu and p.Cys807Phe were analyzed in combination, transactivation activities <10% in physiologic hormone conditions indicated an association with a CAIS phenotype. We conclude that the functional analysis elucidated the role of mutant ARs, giving clues for the molecular mechanisms associated with different clinical AIS manifestations. Differences in hormone-dependent profiles may provide a basis for the response to treatment in each particular case.
Assuntos
Síndrome de Resistência a Andrógenos/genética , Receptores Androgênicos/genética , Adolescente , Adulto , Pré-Escolar , Feminino , Humanos , Masculino , Mutação/genética , Receptores Androgênicos/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Adulto JovemRESUMO
Insulin-like growth factor-binding proteins (IGFBPs) are multifunctional proteins that possess IGF-dependent and -independent actions. Recent studies suggest that its IGF-independent action appeared early and that the IGF-binding function may have been acquired later in evolution. The timing of the emergence of IGF-dependent actions is unclear. Here, we identified and characterized an igfbp gene from sea lamprey, an agnathan, which was separated from the jawed vertebrates 450 million years ago. Phylogenetic and structural analyses suggested that the encoded protein belongs to the IGFBP-3 clade in the IGFBP family. Lamprey IGFBP-3 contains an IGF-binding domain (IBD), nuclear localization signal, and transactivation (TA) domain. Biochemical and functional analyses showed that these domains are all functional. Lamprey IGFBP-3 can bind IGFs and modulate IGF signaling when tested in mammalian cells. Lamprey IGFBP-3 also has the capacity to enter the nucleus and has strong TA activity. Forced expression of lamprey IGFBP-3, but not its IBD mutant, in zebrafish embryos decreased body growth and developmental speed. Lamprey IGFBP-3 inhibited BMP2 signaling in cultured cells and in zebrafish embryos, and this action is independent of its IGF-binding function. These results suggest that lamprey IGFBP-3 has both IGF-dependent and -independent actions and provide new insights into the functional evolution of the IGFBP family.
RESUMO
Tristetraprolin (TTP) is a 34-kDa, zinc finger-containing factor that in mammalian cells acts as a tumor suppressor protein through two different mechanisms. In the cytoplasm TTP promotes the decay of hundreds of mRNAs encoding cell factors involved in inflammation, tissue invasion, and metastasis. In the cell nucleus TTP has been identified as a transcriptional corepressor of the estrogen receptor alpha (ERα), which has been associated to the development and progression of the majority of breast cancer tumors. In this work we report that nuclear TTP modulates the transactivation activity of progesterone receptor (PR), glucocorticoid receptor (GR) and androgen receptor (AR). In recent years these steroid nuclear receptors have been shown to be of clinical and therapeutical relevance in breast cancer. The functional association between TTP and steroid nuclear receptors is supported by the finding that TTP physically interacts with ERα, PR, GR and AR in vivo. We also show that TTP overexpression attenuates the transactivation of all the steroid nuclear receptors tested. In contrast, siRNA-mediated reduction of endogenous TTP expression in MCF-7 cells produced an increase in the transcriptional activities of ERα, PR, GR and AR. Taken together, these results suggest that the function of nuclear TTP in breast cancer cells is to act as a corepressor of ERα, PR, GR and AR. We propose that the reduction of TTP expression observed in different types of breast cancer tumors may contribute to the development of this disease by producing a dysregulation of the transactivation activity of multiple steroid nuclear receptors.
RESUMO
Osterix (Osx) is an essential regulator for osteoblast differentiation and bone formation. Although phosphorylation has been reported to be involved in the regulation of Osx activity, the precise underlying mechanisms remain to be elucidated. Here we identified S422 as a novel phosphorylation site of Osx and demonstrated that GSK-3ß interacted and co-localized with Osx. GSK-3ß increased the stability and transactivation activity of Osx through phosphorylation of the newly identified site. These findings expanded our understanding of the mechanisms of posttranslational regulation of Osx and the role of GSK-3ß in the control of Osx transactivation activity.
Assuntos
Quinase 3 da Glicogênio Sintase/metabolismo , Serina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta , Células HEK293 , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Fosforilação , Estabilidade Proteica , Fator de Transcrição Sp7 , Fatores de Transcrição/genéticaRESUMO
Post-translational modifications such as phosphorylation are known to play an important role in the gene regulation by the transcription factors including the nuclear hormone receptor superfamily of which the glucocorticoid receptor (GR) is a member. Protein phosphorylation often switches cellular activity from one state to another. Like many other transcription factors, the GR is a phosphoprotein, and phosphorylation plays an important role in the regulation of GR activity. Cell signaling pathways that regulate phosphorylation of the GR and its associated proteins are important determinants of GR function under various physiological conditions. While the role of many phosphorylation sites in the GR is still not fully understood, the role of others is clearer. Several aspects of transcription factor function, including DNA binding affinity, interaction of transactivation domains with the transcription initiation complex, and shuttling between the cytoplasmic compartments, have all been linked to site-specific phosphorylation. All major phosphorylation sites in the human GR are located in the N-terminal domain including the major transactivation domain, AF1. Available literature clearly indicates that many of these potential phosphorylation sites are substrates for multiple kinases, suggesting the potential for a very complex regulatory network. Phosphorylated GR interacts favorably with critical coregulatory proteins and subsequently enhances transcriptional activity. In addition, the activities and specificities of coregulators may be subject to similar regulation by phosphorylation. Regulation of the GR activity due to phosphorylation appears to be site-specific and dependent upon specific cell signaling cascade. Taken together, site-specific phosphorylation and related kinase pathways play an important role in the action of the GR, and more precise mechanistic information will lead to fuller understanding of the complex nature of gene regulation by the GR- and related transcription factors. This review provides currently available information regarding the role of GR phosphorylation in its action, and highlights the possible underlying mechanisms of action.