Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686227

RESUMO

Xylo-oligosaccharides (XOS) enriched with high fractions of X2-X3 are regarded as an effective prebiotic for regulating the intestinal microflora. In this study, the original XOS solution was obtained from bamboo shoots through hydrothermal pretreatment under optimized conditions. Subsequently, enzymatic hydrolysis with endo-xylanase was performed on the original XOS solution to enhance the abundance of the X2-X3 fractions. The results demonstrated that hydrothermal pretreatment yielded 21.24% of XOS in the hydrolysate solution, and subsequent enzymatic hydrolysis significantly increased the proportion of the X2-X3 fractions from 38.87% to 68.21%. Moreover, the XOS solutions with higher amounts of X2-X3 fractions exhibited superior performance in promoting the growth of probiotics such as Bifidobacterium adolescentis and Lactobacillus acidophilus in vitro, leading to increased production of short-chain fatty acids. In the in vivo colitis mouse model, XOS solutions with higher contents of X2-X3 fractions demonstrated enhanced efficacy against intestinal inflammation. Compared with the colitis mice (model group), the XOS solution with higher X2-X3 fractions (S1 group) could significantly increase the number of Streptomyces in the intestinal microflora, while the original XOS solution (S2 group) could significantly increase the number of Bacteroides in the intestinal microflora of colitis mice. In addition, the abundances of Alcaligenes and Pasteurella in the intestinal microflora of the S1 and S2 groups were much lower than in the model group. This effect was attributed to the ability of these XOS solutions to enhance species diversity, reversing the imbalance and disorder within the intestinal microflora. Overall, this work highlights the outstanding potential of XOS enriched with high contents of X2-X3 fractions as a regulator of the intestinal microbiota and as an anti-colitis agent.


Assuntos
Colite , Endometriose , Probióticos , Animais , Camundongos , Feminino , Humanos , Prebióticos , Hidrólise , Bacteroides , Colite/tratamento farmacológico , Oligossacarídeos/farmacologia , Verduras
2.
Molecules ; 28(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175170

RESUMO

Agronomic practices and the winemaking process lead to the production of considerable quantities of waste and by-products. These are often considered waste with negative effects on environmental sustainability. However, vine shoots and grape stalks can be reused, representing a potential source of xylo-oligosaccharides and polyphenols. In this context, the purpose of this work was to obtain enriched extracts using three different autohydrolysis treatments with (i) H2O, (ii) H2O:EtOH, and (iii) H2O:Amberlyst. The obtained extracts were characterized by their xylo-oligosaccharide and polyphenol profiles using LC-MS techniques. The use of ethanol during autohydrolysis allowed for greater extraction of xylan-class compounds, especially in vine shoot samples, while an increase in antioxidant activity (128.04 and 425.66 µmol TE/g for ABTS and DPPH, respectively) and in total phenol content (90.92 mg GAE/g) was obtained for grape stalks.


Assuntos
Vitis , Vitis/química , Fenóis , Oligossacarídeos/química , Polifenóis , Extratos Vegetais/química , Antioxidantes/farmacologia , Etanol
3.
Molecules ; 27(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458713

RESUMO

A xylanase-producing strain, identified as Streptomyces sp. T7, was isolated from soil by our lab. The endo-ß-1,4-xylanase (xynST7) gene was found in the genome sequence of strain T7, which was cloned and expressed in Escherichia coli. XynST7 belonged to the glycoside hydrolase family 10, with a molecular mass of approximately 47 kDa. The optimum pH and temperature of XynST7 were pH 6.0 and 60 °C, respectively, and it showed wide pH and temperature adaptability and stability, retaining more than half of its enzyme activity between pH 5.0 and 11.0 below 80 °C. XynST7 showed only endo-ß-1,4-xylanase activity without cellulase- or ß-xylosidase activity, and it showed maximal hydrolysis for corncob xylan in all the test substrates. Then, XynST7 was used for the production of xylo-oligosaccharides (XOSs) by hydrolyzing xylan extracted from raw corncobs. The maximum yield of the XOS was 8.61 ± 0.13 mg/mL using 15 U/mL of XynST7 and 1.5% corncob xylan after 10 h of incubation at 60 °C. The resulting hydrolysate products mainly consisted of xylobiose and xylotriose. These data indicated that XynST7 might by a promising tool for various industrial applications.


Assuntos
Streptomyces , Xilanos , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Oligossacarídeos , Streptomyces/metabolismo
4.
Br Poult Sci ; 58(4): 418-424, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28481190

RESUMO

1. This study investigated the prebiotic properties of arabinoxylo-oligosaccharides (AXOS) produced both in situ and in vitro for their activity against the onset of necrotic enteritis in broiler chickens. 2. A 2 × 3 factorial arrangement was applied, including necrotic enteritis challenge (challenged/unchallenged) and three dietary treatments from d 10 to 21. A wheat-soy commercial-type basal-grower diet was fed with 2% of the wheat proportion replaced by the same amount of either arabinoxylan (AX), AXOS produced from hydrolysing AX with 16 000 BXU (birch xylanase unit) xylanase in vitro or AX fed with 16 000 BXU xylanase (AX + E). Necrotic enteritis (NE) challenge was induced by orally infecting birds with a vaccine strain of Eimeria oocysts at d 9 of age followed by oral gavage of a freshly prepared Clostridium perfringens broth at d 14. 3. The challenge depressed growth performance, induced gross lesions and reduced ileal viscosity at d 10-21. Birds fed on the AXOS diet had numerically less severe gross lesions, improved feed conversion at d 0-16 and lower ileal viscosity at d 16 compared to birds fed on AX. Weight gain of the unchallenged birds ranked as follows in terms of the diets: AXOS > AX + E > AX. AX + E produced a lower ileal viscosity compared to the AX treatment but only led to marginal improvements in performance and intestinal lesion scores. 4. Caecal short-chain fatty acid (SCFA) concentration was higher in birds fed on AXOS and AX + E compared to those fed on AX and was higher in the challenged birds compared to the unchallenged birds. Gizzard pH was lower in birds fed on AX + E compared to those fed on AXOS at d 16. Challenged birds had lower ileum pH compared to the unchallenged birds at d 16 and 21. 5. Results of this study suggest that AXOS appeared to be efficacious prebiotics, as highlighted by improvements in feed conversion ratio and increased SCFA production. Future studies are warranted to elucidate the types of AXOS that are most active against NE and the mechanisms by which different levels of AXOS enhance bird performance.


Assuntos
Galinhas , Infecções por Clostridium/veterinária , Coccidiose/veterinária , Enterite/veterinária , Oligossacarídeos/metabolismo , Doenças das Aves Domésticas/prevenção & controle , Xilanos/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Infecções por Clostridium/microbiologia , Infecções por Clostridium/prevenção & controle , Clostridium perfringens/fisiologia , Coccidiose/parasitologia , Coccidiose/prevenção & controle , Dieta/veterinária , Suplementos Nutricionais/análise , Eimeria/fisiologia , Enterite/microbiologia , Enterite/parasitologia , Enterite/prevenção & controle , Masculino , Oligossacarídeos/administração & dosagem , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/parasitologia , Xilanos/administração & dosagem
5.
Extremophiles ; 20(6): 831-842, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27558695

RESUMO

The thermostable bifunctional CMCase and xylanase encoding gene (rBhcell-xyl) from Bacillus halodurans TSLV1 has been expressed in Escherichia coli. The recombinant E. coli produced rBhcell-xyl (CMCase 2272 and 910 U L-1 xylanase). The rBhcell-xyl is a ~62-kDa monomeric protein with temperature and pH optima of 60 °C and 6.0 with T1/2 of 7.0 and 3.5 h at 80 °C for CMCase and xylanase, respectively. The apparent K m values (CMC and Birchwood xylan) are 3.8 and 3.2 mg mL-1. The catalytic efficiency (k cat/K m ) values of xylanase and CMCase are 657 and 171 mL mg-1 min-1, respectively. End-product analysis confirmed that rBhcell-xyl is a unique endo-acting enzyme with exoglucanase activity. The rBhcell-xyl is a GH5 family enzyme possessing single catalytic module and carbohydrate binding module. The action of rBhcell-xyl on corn cobs and wheat bran liberated reducing sugars, which can be fermented to bioethanol and fine biochemicals.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/genética , Celulases/genética , Microbiologia Industrial , Xilosidases/genética , Bacillus/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Celulases/química , Celulases/metabolismo , Produtos Agrícolas , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xilosidases/química , Xilosidases/metabolismo
6.
Microb Cell Fact ; 15: 72, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27142164

RESUMO

BACKGROUND: Among the oligosaccharides that may positively affect the gut microbiota, xylo-oligosaccharides (XOS) and arabinoxylan oligosaccharides (AXOS) possess promising functional properties. Ingestion of XOS has been reported to contribute to anti-oxidant, anti-bacterial, immune-modulatory and anti-diabetic activities. Because of the structural complexity and chemical heterogeneity, complete degradation of xylan-containing plant polymers requires the synergistic activity of several enzymes. Endo-xylanases and ß-D-xylosidases, collectively termed xylanases, represent the two key enzymes responsible for the sequential hydrolysis of xylan. Xylanase cocktails are used on an industrial scale for biotechnological purposes. Lactobacillus rossiae DSM 15814(T) can utilize an extensive set of carbon sources, an ability that is likely to contribute to its adaptive ability. In this study, the capacity of this strain to utilize XOS, xylan, D-xylose and L-arabinose was investigated. RESULTS: Genomic and transcriptomic analyses revealed the presence of two gene clusters, designated xyl and ara, encoding proteins predicted to be responsible for XOS uptake and hydrolysis and D-xylose utilization, and L-arabinose metabolism, respectively. The deduced amino acid sequence of one of the genes of the xyl gene cluster, LROS_1108 (designated here as xylA), shows high similarity to (predicted) ß-D-xylosidases encoded by various lactic acid bacteria, and belongs to glycosyl hydrolase family 43. Heterologously expressed XylA was shown to completely hydrolyse XOS to xylose and showed optimal activity at pH 6.0 and 40 °C. Furthermore, ß-D-xylosidase activity of L. rossiae DSM 15814(T) was also measured under sourdough conditions. CONCLUSIONS: This study highlights the ability of L. rossiae DSM 15814(T) to utilize XOS, which is a very useful trait when selecting starters with specific metabolic performances for sourdough fermentation or as probiotics.


Assuntos
Regulação Bacteriana da Expressão Gênica , Lactobacillus/enzimologia , Lactobacillus/genética , Xilosidases/genética , Xilosidases/metabolismo , Arabinose/metabolismo , Clonagem Molecular , Concentração de Íons de Hidrogênio , Hidrólise , Lactobacillus/classificação , Família Multigênica , Oligossacarídeos/metabolismo , Filogenia , Plasmídeos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Temperatura , Xilose/metabolismo , Xilosidases/química
7.
Br J Nutr ; 114(12): 1975-84, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26435350

RESUMO

The effects of short-chain fructo-oligosaccharides (scFOS) and xylo-oligosaccharides (XOS) on gut morphology and hepatic oxidative status were studied in European sea bass juveniles weighing 60 g. Fish were fed diets including fishmeal (FM diets) or plant feedstuffs (PF diets; 30 FM:70 PF) as main protein sources (control diets). Four other diets were formulated similar to the control diets but including 1 % scFOS or 1 % XOS. At the end of the trial, fish fed PF-based diets presented histomorphological alterations in the distal intestine, whereas only transient alterations were observed in the pyloric caeca. Comparatively to fish fed FM-based diets, fish fed PF diets had higher liver lipid peroxidation (LPO), superoxide dismutase (SOD) and catalase (CAT) activities, and lower glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase activities. In fish fed the PF diets, prebiotic supplementation decreased SOD activity and XOS supplementation further decreased CAT activity. In fish fed the FM diets, XOS supplementation promoted a reduction of all antioxidant enzyme activities. Overall, dietary XOS and scFOS supplementation had only minor effects on gut morphology or LPO levels. However, dietary XOS reduced antioxidant enzymatic activity in both PF and FM diets, which indicate a positive effect on reduction of hepatic reactive oxygen species production.


Assuntos
Ração Animal , Glucuronatos/administração & dosagem , Fígado/metabolismo , Oligossacarídeos/administração & dosagem , Estresse Oxidativo , Antro Pilórico/metabolismo , Animais , Bass , Enzimas/metabolismo , Peroxidação de Lipídeos , Fígado/enzimologia , Prebióticos , Antro Pilórico/anatomia & histologia
8.
J Food Sci Technol ; 52(7): 4551-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26139924

RESUMO

Wheat bran water unextractable portion (WB-WUP) was subjected to xylanase treatment to obtain a mixture of xylo-oligosaccharides (XOS). XOS mixture was purified on charcoal-celite column and the individual oligosaccharides were separated on a Bio-Gel P-2 column. The sugar composition of the purified oligosaccharides was determined by GLC and their structure was deduced by ESI-MS and (1)H and (13)C NMR. The major oligosaccharides identified were xylobiose and xylotriose (consisting of arabinose). Five strains of lactobacilli (probiotics), XOS (prebiotics) and a combination of both (synbiotics) in milk (as medium) were monitored for antioxidant activity. DPPH radical scavenging activity (~70 %) as well as ferric reducing power (~80 mg/100 ml FeSO4eq) were significantly higher (p < 0.05) in all the synbiotic preparations compared to that of control. The present study indicated that the synbiotic preparations consisting of XOS and lactobacilli can be effectively used as dietary supplement.

9.
J Nutr Biochem ; 129: 109640, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583497

RESUMO

Midlife overweight and obesity are risk factors of cognitive decline and Alzheimer' s disease (AD) in late life. In addition to increasing risk of obesity and cognitive dysfunction, diets rich in fats also contributes to an imbalance of gut microbiota. Xylo-oligosaccharides (XOS) are a kind of prebiotic with several biological advantages, and can selectively promote the growth of beneficial microorganisms in the gut. To explore whether XOS can alleviate cognitive decline induced by high-fat diet (HFD) through improving gut microbiota composition, mice were fed with normal control or 60% HFD for 9 weeks to induce obesity. After that, mice were supplemented with XOS (30 g or 60 g/kg-diet) or without, respectively, for 12 weeks. The results showed that XOS inhibited weight gain, decreased epidydimal fat weight, and improved fasting blood sugar and blood lipids in mice. Additionally, XOS elevated spatial learning and memory function, decreased amyloid plaques accumulation, increased brain-derived neurotrophic factor levels, and improved neuroinflammation status in hippocampus. Changes in glycerolipids metabolism-associated lipid compounds caused by HFD in hippocampus were reversed after XOS intervention. On the other hand, after XOS intervention, increase in immune-mediated bacteria, Faecalibacterium was observed. In conclusion, XOS improved gut dysbiosis and ameliorated spatial learning and memory dysfunction caused by HFD by decreasing cognitive decline-associated biomarkers and changing lipid composition in hippocampus.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Oligossacarídeos , Prebióticos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Oligossacarídeos/farmacologia , Oligossacarídeos/administração & dosagem , Masculino , Camundongos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/microbiologia , Glucuronatos/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Lipídeos/sangue , Disfunção Cognitiva/prevenção & controle , Disbiose , Metabolismo dos Lipídeos/efeitos dos fármacos
10.
J Anim Sci Biotechnol ; 15(1): 35, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433214

RESUMO

BACKGROUND: One of the main roles of the intestinal mucosa is to protect against environmental hazards. Supplementation of xylo-oligosaccharides (XOS) is known to selectively stimulate the growth of beneficial intestinal bacteria and improve gut health and function in chickens. XOS may have an impact on the integrity of the intestinal epithelia where cell turnover is critical to maintain the compatibility between the digestive and barrier functions. The aim of the study was to evaluate the effect of XOS and an arabinoxylan-rich fraction (AXRF) supplementation on gut function and epithelial integrity in broiler chickens. METHODS: A total of 128 broiler chickens (Ross 308) were assigned into one of two different dietary treatments for a period of 42 d: 1) control diet consisting of a corn/soybean meal-based diet; or 2) a control diet supplemented with 0.5% XOS and 1% AXRF. Each treatment was randomly distributed across 8 pens (n = 8) with 8 chickens each. Feed intake and body weight were recorded weekly. On d 42, one male chicken per pen was selected based on average weight and euthanized, jejunum samples were collected for proteomics analysis. RESULTS: Dietary XOS/AXRF supplementation improved feed efficiency (P < 0.05) from d 1 to 42 compared to the control group. Proteomic analysis was used to understand the mechanism of improved efficiency uncovering 346 differentially abundant proteins (DAP) (Padj < 0.00001) in supplemented chickens compared to the non-supplemented group. In the jejunum, the DAP translated into decreased ATP production indicating lower energy expenditure by the tissue (e.g., inhibition of glycolysis and tricarboxylic acid cycle pathways). In addition, DAP were associated with decreased epithelial cell differentiation, and migration by reducing the actin polymerization pathway. Putting the two main pathways together, XOS/AXRF supplementation may decrease around 19% the energy required for the maintenance of the gastrointestinal tract. CONCLUSIONS: Dietary XOS/AXRF supplementation improved growth efficiency by reducing epithelial cell migration and differentiation (hence, turnover), actin polymerization, and consequently energy requirement for maintenance of the jejunum of broiler chickens.

11.
Int J Biol Macromol ; 259(Pt 2): 129235, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211916

RESUMO

Three green non-enzymatic catalysis pretreatments (NECPs) including autohydrolysis, subcritical CO2-assisted seawater autohydrolysis, and inorganic salt catalysis were utilized to simultaneously produce xylo-oligosaccharides (XOS), glucose, and cellulolytic enzyme lignin (CEL) from sugarcane bagasse (SCB). The yield of XOS in all three NECPs was over 50 % with a competitive glucose yield of enzymatic hydrolysis. And the effects of different pretreatments on the chemical structure and composition of CEL samples were also investigated. The pretreatments significantly increased the thermal stability, yield, and purity of the CEL samples. Moreover, the net yield of lignin was 58.3 % with lignin purity was 98.9 % in the autohydrolysis system. Furthermore, there was a decrease in the molecular weight of CEL samples as the pretreatment intensity increased. And the original lignin structural units sustained less damage during the NECPs, due to the cleavage of the ß-O-4 bonds dominating lignin degradation. Meanwhile, these pretreatments increased the phenolic-OH in CEL samples, making the lignin more reactive, and enhancing its subsequent modification and utilization. Collectively, the described techniques have demonstrated practical significance for the coproduction of XOS and glucose, and lignin, providing a promising strategy for full utilization of biomass.


Assuntos
Lignina , Saccharum , Lignina/química , Celulose/química , Glucose/metabolismo , Biomassa , Saccharum/química , Oligossacarídeos/química , Hidrólise
12.
Food Res Int ; 195: 114976, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277213

RESUMO

Changes in dietary patterns and living habits have led to an increasing number of individuals with elevated cholesterol levels. Excessive consumption of high-cholesterol foods can disrupt the body's lipid metabolism. Numerous studies have firmly established the cholesterol-lowering effects of probiotics and prebiotics, with evidence showing that the synergistic use of synbiotics is functionally more potent than using probiotics or prebiotics alone. Currently, the screening strategy involves screening prebiotics for synbiotic development with probiotics as the core. However, in comparison to probiotics, there are fewer types of prebiotics available, leading to limited resources. Consequently, the combinations of synbiotics obtained are restricted, and probiotics and prebiotics are only relatively suitable. Therefore, in this study, a novel synbiotic screening strategy with prebiotics as the core was developed. The synbiotic combination of Lactobacillus rhamnosus S_82 and xylo-oligosaccharides was screened from the intestinal tract of young people through five generations of xylo-oligosaccharides. Subsequently, the cholesterol-lowering ability of the medium was simulated, and the two carbon sources of glucose and xylo-oligosaccharides were screened out. The results showed that synbiotics may participate in cholesterol-lowering regulation by down-regulating the expression of NPC1L1 gene, down-regulating ACAT2 and increasing the expression of ABCG8 gene in vitro through cell adsorption and cell absorption in vitro, and regulating the intestinal microbiota. Synbiotics hold promise as potential candidates for the prevention of hypercholesterolemia in humans and animals, and this study providing a theoretical foundation for the development of new synbiotic products.


Assuntos
Lacticaseibacillus rhamnosus , Oligossacarídeos , Prebióticos , Simbióticos , Lacticaseibacillus rhamnosus/metabolismo , Oligossacarídeos/farmacologia , Humanos , Hipolipemiantes/farmacologia , Colesterol/metabolismo , Colesterol/sangue , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos , Glucuronatos
13.
Foods ; 13(16)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39200433

RESUMO

Recently, there has been a burgeoning interest in harnessing the potential of biomass and industry byproducts for the development of novel products and materials. In particular, this study explored the efficient valorization of sunflower meal (SFM), an underutilized byproduct of the oil extraction industry, usually discarded or used as low-value animal feed through enzyme-aided fractionation, specifically targeting the extraction and conversion of its abundant carbohydrate component, xylan, into emerging prebiotic compounds-xylo-oligosaccharides (XOSs)-which are recognized as promotors of a healthy gut microbiome and overall human wellbeing. An enzymatic treatment using Alcalase® 2.4 L was implemented for facilitating the recovery of a highly pure hemicellulosic fraction (92.2% carbohydrates) rich in ß-(1→4)-linked xylose residues with arabinose and glucuronic acid substitutions (DP-xylan). A further enzymatic treatment of this substrate, using ROHALASE® SEP-VISCO under optimized conditions (70 °C, pH 6, 0.005% v/v enzyme concentration), produced 52.3% of XOSs with a polymerization degree (DP) less than 20 after two hours. Further analyses demonstrated that the majority of the obtained product had a DP less than 6, predominantly consisting of di- and trisaccharides (XOS2 and XOS3) without the significant generation of xylose. These findings highlight the significant potential of SFM for the generation of valuable prebiotic compounds in a sustainable manner.

14.
Sci Rep ; 14(1): 17481, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080323

RESUMO

Carbimazole has disadvantages on different body organs, especially the thyroid gland and, rarely, the adrenal glands. Most studies have not suggested any solution or medication for ameliorating the noxious effects of drugs on the glands. Our study focused on the production of xylooligosaccharide (XOS), which, when coadministered with carbimazole, relieves the toxic effects of the drug on the adrenal glands. In addition to accelerating the regeneration of adrenal gland cells, XOS significantly decreases the oxidative stress caused by obesity. This XOS produced by Aspergillus terreus xylanase was covalently immobilized using microbial Scleroglucan gel beads, which improved the immobilization yield, efficiency, and operational stability. Over a wide pH range (6-7.5), the covalent immobilization of xylanase on scleroglucan increased xylanase activity compared to that of its free form. Additionally, the reaction temperature was increased to 65 °C. However, the immobilized enzyme demonstrated superior thermal stability, sustaining 80.22% of its original activity at 60 °C for 120 min. Additionally, the full activity of the immobilized enzyme was sustained after 12 consecutive cycles, and the activity reached 78.33% after 18 cycles. After 41 days of storage at 4 °C, the immobilized enzyme was still active at approximately 98%. The immobilized enzyme has the capability to produce xylo-oligosaccharides (XOSs). Subsequently, these XOSs can be coadministered alongside carbimazole to mitigate the adverse effects of the drug on the adrenal glands. In addition to accelerating the regeneration of adrenal gland cells, XOS significantly decreases the oxidative stress caused by obesity.


Assuntos
Glândulas Suprarrenais , Aspergillus , Carbimazol , Enzimas Imobilizadas , Oligossacarídeos , Aspergillus/efeitos dos fármacos , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/química , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/metabolismo , Animais , Glucuronatos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Endo-1,4-beta-Xilanases/metabolismo , Masculino , Ratos , Obesidade/tratamento farmacológico
15.
Food Sci Nutr ; 12(2): 1119-1132, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370040

RESUMO

Functional constipation (FC) has a negative impact on patients' quality of life. We hypothesized that dietary supplementation with xylo-oligosaccharides (XOS) or fructo-oligosaccharides (FOS) would improve constipation symptoms by influencing the gut microbiota. A randomized double-blind controlled trial was conducted in FC patients. Patients were randomly divided into 6 groups and given a dietary supplement containing XOS at doses of 3, 5, or 10 g/day, FOS at doses of 10 and 20 g/day, or placebo at 5 g/day for one month. We compared improvements in gastrointestinal function after the intervention using the Bristol Stool Form Scale (BSFS), Cleveland Clinic Constipation Score (CCCS), and Quality of Life Scale for Patients with Constipation (PAC-QoL). 16S rRNA sequencing was used to assess changes in the structure of the gut microbiota. Changes in individual bacteria had significant effects in reducing gastrointestinal symptoms during the intervention, even though the flora structure remained unchanged from baseline. Compared to FOS, XOS enriched Bifidobacterium at a lower dose, and patients receiving XOS supplementation showed significant improvements in constipation symptoms without side effects such as diarrhea and flatulence.

16.
Int J Biol Macromol ; 260(Pt 1): 129277, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211918

RESUMO

GH 11 endo-ß-1,4-xylanase (Xy) was a crucial enzyme for xylooligosaccharides (XOS) production. The lower reusability and higher cost of purification has limited the industrial application of Xy. Addressing these challenges, our study utilized various immobilization techniques, different supports and forces for Xy immobilization. This study presents a new method in the development of Fe3O4@PDA@MOF-Xy which is immobilized via multi-point interaction forces, demonstrating a significant advancement in protein loading capacity (80.67 mg/g), and exhibiting remarkable tolerance to acidic and alkaline conditions. This method significantly improved Xy reusability and efficiency for industrial applications, maintaining 60 % activity over 10 cycles. Approximately 23 % XOS production was achieved by Fe3O4@PDA@MOF-Xy. Moreover, the yield of XOS from cobcorn xylan using this system was 1.15 times higher than that of the free enzyme system. These results provide a theoretical and applicative basis for enzyme immobilization and XOS industrial production.


Assuntos
Endo-1,4-beta-Xilanases , Oligossacarídeos , Endo-1,4-beta-Xilanases/metabolismo , Oligossacarídeos/metabolismo , Xilanos/metabolismo , Glucuronatos/metabolismo , Fenômenos Magnéticos , Hidrólise
17.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-39155504

RESUMO

The beneficial effects of xylo-oligosaccharides (XOS) on the intestine have been widely reported, including anti-inflammation, antioxidant, maintenance of intestinal epithelial barrier, and treatment of intestinal injury. However, the specific mechanism of XOS in mitigating intestinal injury in weaned piglets remains unclear. Therefore, this study aimed to explore the specific mechanism of XOS in mitigating intestinal injury. The study is a complete randomized design with 24 weaned piglets in a 2 × 2 factorial arrangement that includes diet treatments (basal diet vs. 0.02% XOS) and immunological challenge [saline vs. lipopolysaccharide (LPS)]. All piglets were fed a basal diet or a XOS diet for 21 d. On day 22, all piglets received an injection of LPS or saline. In this study, dietary XOS increased jejunal villus height, reduced crypt depth and oxidative stress, and enhanced the gene and protein expression of Claudin-1, Occludin, and zonula occludens 1 (P < 0.05). The piglets fed the XOS diet had lower serum Diamine oxidase activity and d-lactic acid content (P < 0.05). In addition, dietary XOS regulates endoplasmic reticulum (ER)-mitochondria system function and the expression of key molecules, including mitochondrial dynamics dysfunction [mitofusin (Mfn)-1, optic atrophy 1, fission 1, and dynamin-related protein 1], ER stress [activating transcription factor 4 (ATF4), ATF6, C/EBP-homologous protein, eukaryotic initiation factor 2α, glucose-regulated protein (GRP) 78, GRP94, and protein kinase R-like ER kinase] and the mitochondria-associated ER membranes (MAM) disorders (Mfn2, GRP75, and voltage-dependent anion channel 1) (P < 0.05). Therefore, the findings to indicate that dietary XOS is effective against LPS-induced jejunal injury may be attributed to its ability to alleviate mitochondrial dynamics dysfunction, ER stress, and MAM disorders.


Intestinal injury can have a range of negative impacts on weaned piglets. Xylo-oligosaccharides are known for their beneficial effects on the gut, including anti-inflammatory and antioxidant properties, and also help maintain the intestinal epithelial barrier and reduce intestinal injury. However, the exact mechanism by which xylo-oligosaccharides reduce intestinal injury in piglets remains unclear. The endoplasmic reticulum­mitochondrial system, endoplasmic reticulum and mitochondria, along with the mitochondria-associated endoplasmic reticulum membranes that connect them, plays a crucial role in mediating intestinal injury in piglets. Therefore, this study aimed to investigate whether xylo-oligosaccharides affect intestinal injury in piglets through the endoplasmic reticulum, mitochondria, and the mitochondria-associated endoplasmic reticulum membranes. The results of this study indicate that xylo-oligosaccharides mitigate intestinal injury in piglets by alleviating endoplasmic reticulum stress, mitochondrial dynamics dysfunction, and mitochondria-related endoplasmic reticulum membrane disorders, providing a theoretical basis for the treatment of intestinal injury with xylo-oligosaccharides.


Assuntos
Ração Animal , Dieta , Retículo Endoplasmático , Lipopolissacarídeos , Oligossacarídeos , Animais , Oligossacarídeos/farmacologia , Oligossacarídeos/administração & dosagem , Suínos , Dieta/veterinária , Ração Animal/análise , Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Intestinos/efeitos dos fármacos , Suplementos Nutricionais , Mucosa Intestinal/efeitos dos fármacos , Glucuronatos/farmacologia , Glucuronatos/administração & dosagem , Masculino , Doenças dos Suínos/induzido quimicamente , Doenças dos Suínos/prevenção & controle , Distribuição Aleatória , Estresse Oxidativo/efeitos dos fármacos
18.
Int J Biol Macromol ; 276(Pt 1): 133776, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992548

RESUMO

In this study, ß-1,3-xylanase (Xyl3088) was designed and prepared by constructing the expression vector plasmid and expressing and purifying the fusion protein. ß-1,3-xylo-oligosaccharides were obtained through the specific enzymatic degradation of ß-1, 3-xylan from Caulerpa lentillifera. The enzymolysis conditions were established and optimized as follows: Tris-HCl solution 0.05 mol/L, temperature of 37 °C, enzyme amount of 250 µL, and enzymolysis time of 24 h. The oligosaccharides' compositions and structural characterization were identified by thin-layer chromatography (TLC), ion chromatography (IC) and liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS). The IC50 values for scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azino-bis-3-ethyl-benzothiazoline-p-sulfonic acid (ABTS+), and superoxide anion radical (•O2-) were 13.108, 1.258, and 65.926 mg/mL for ß-1,3-xylo-oligosaccharides, respectively, and 27.588, 373.048, and 269.12 mg/mL for ß-1,4-xylo-oligosaccharides, respectively. Compared with ß-1,4-xylo-oligosaccharides, ß-1,3-xylo-oligosaccharides had substantial antioxidant activity and their antioxidant effects were concentration dependent. ß-1,3-xylo-oligosaccharides also possessed a stronger anti-inflammatory effect on RAW 264.7 cells stimulated by lipopolysaccharide (LPS) than ß-1,4-xylo-oligosaccharides. At a working concentration of 100 µg/mL, ß-1,3-xylo-oligosaccharides inhibited the release of NO and affected the expression of IL-1ß, TNF-α, and other proteins secreted by cells, effectively promoting the release of pro-inflammatory mediators by immune cells in response to external stimuli and achieving anti-inflammatory effects. Therefore, ß-1,3-xylo-oligosaccharides are valuable products in food and pharmaceutical industries.


Assuntos
Oligossacarídeos , Camundongos , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Animais , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antioxidantes/farmacologia , Antioxidantes/química , Xilosidases/metabolismo , Xilosidases/genética , Xilosidases/química , Algas Comestíveis , Caulerpa
19.
Poult Sci ; 102(8): 102789, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354614

RESUMO

A total of 392 Cobb 500 off-sex male broiler chicks were used in a 21-day experiment to study the effect of protease, xylanase, and xylo-oligosaccharides (XOS) on improving growth performance, nutrient utilization (ileal digestibility and total tract retention), gene expression of nutrient transporters, cecal short-chain fatty acids (SCFAs), and microbiota profile of broilers challenged with Eimeria spp. Chicks at 0-day old were allocated to 8 treatments in a 4 × 2 factorial arrangement: 1) corn-soybean meal diet with no enzyme (Con); 2) Con plus 0.2 g/kg protease alone (PRO); 3) Con plus 0.2 g/kg protease combined with 0.1 g/kg xylanase (PRO + XYL); or 4) Con plus 0.5 g/kg xylo-oligosaccharides (XOS); with or without Eimeria challenge. The 4 diets were formulated to be marginally low in crude protein (183 g/kg). Challenged groups were inoculated with a solution containing E. maxima, E. acervulina, and E. tenella oocysts on d 15. Eimeria depressed (P < 0.01) growth performance and nutrient utilization. Supplemental protease improved (P < 0.05) body weight gain and feed intake in the prechallenge phase (d 0-15) but had no effect during the infection period (d 15-21). There was no interaction between infection and feed supplementation for nutrient utilization. The supplementations of either PRO or XOS alone increased (P < 0.01) total tract retention of Ca and tended (P < 0.1) to improve total tract retention of N, P, AME, and AMEn. Eimeria decreased (P < 0.05) expressions of GLUT2, GLUT5, PepT1, ATP2B1, CaSR, Calbidin D28K, NPT2, and ZnT1 but increased (P < 0.01) expression of GLUT1. XOS supplementation increased (P < 0.05) ATP2B1 expression. Protease decreased (P < 0.05) isobutyrate concentration in unchallenged treatments but not in challenged treatments. Eimeria decreased (P < 0.01) cecal saccharolytic SCFAs acetate and propionate but increased (P < 0.01) branched-chain fatty acid isovalerate. The supplementation of PRO + XYL or XOS increased (P < 0.05) cecal butyrate or decreased cecal isobutyrate concentrations, respectively. PRO + XYL and XOS decreased cecal protein levels in unchallenged birds but not challenged ones. Eimeria challenge significantly (P < 0.05) decreased the microbial richness (Observed features) and diversity (Shannon index and phylogenetic diversity) and changed the microbial composition by reducing the abundance of certain bacteria, such as Ruminococcus torques, and increasing the abundance of others, such as Anaerostipes. In contrast, none of the additives had any significant effect on the cecal microbial composition. In conclusion, PRO or XOS supplementation individually improved nutrient utilization. All the additives decreased the cecal content of branched-chain fatty acids, consistent with decreased cecal N concentration, although the effects were more pronounced in unchallenged birds. In addition, none of the feed additives impacted the Eimeria-induced microbial perturbation.


Assuntos
Coccidiose , Eimeria , Microbiota , Animais , Masculino , Suplementos Nutricionais/análise , Galinhas , Dieta com Restrição de Proteínas/veterinária , Peptídeo Hidrolases/metabolismo , Isobutiratos/metabolismo , Filogenia , Dieta/veterinária , Endopeptidases/metabolismo , Ácidos Graxos Voláteis/metabolismo , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo , Nutrientes , Ração Animal/análise , Coccidiose/veterinária , Coccidiose/metabolismo
20.
Int J Biol Macromol ; 253(Pt 3): 126775, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37699460

RESUMO

With the banning of antibiotic chemical feed additives, multi-functional bioactive feed additives have been extensively sought after by the feed industry. In this study, low-cost and renewable corn cobs were treated with liquid hot water and converted into bioactive xylo-oligosaccharides and L-lactic acid after enzymatic hydrolysis, strain activation, and fermentation under mild conditions, which achieved a full utilization of cellulose and hemicellulose in corn cobs. Simultaneous saccharification fermentation after strain activation with enzymatic hydrolysate delivered the highest conversion rate of glucose to L-lactic acid (93.00 %) and yielded 17.38 g/L L-lactic acid and 2.68 g/L xylo-oligosaccharides. On this basis, batch-feeding fermentation resulted in a 78.03 % conversion rate of glucose to L-lactic acid, 18.99 g/L L-lactic acid, and 2.84 g/L xylo-oligosaccharides. This work not only provided a green and clean bioconversion strategy to produce multi-functional feed additives but can also boost the full utilization of renewable and cheap biomass resources.


Assuntos
Celulose , Zea mays , Celulose/metabolismo , Zea mays/metabolismo , Oligossacarídeos , Fermentação , Ácido Láctico , Glucose , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA