Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
FASEB J ; 38(13): e23748, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38940767

RESUMO

12,13-dihydroxy-9z-octadecenoic acid (12,13-DiHOME) is a linoleic acid diol derived from cytochrome P-450 (CYP) epoxygenase and epoxide hydrolase (EH) metabolism. 12,13-DiHOME is associated with inflammation and mitochondrial damage in the innate immune response, but how 12,13-DiHOME contributes to these effects is unclear. We hypothesized that 12,13-DiHOME enhances macrophage inflammation through effects on NOD-like receptor protein 3 (NLRP3) inflammasome activation. To test this hypothesis, we utilized human monocytic THP1 cells differentiated into macrophage-like cells with phorbol myristate acetate (PMA). 12,13-DiHOME present during lipopolysaccharide (LPS)-priming of THP1 macrophages exacerbated nigericin-induced NLRP3 inflammasome activation. Using high-resolution respirometry, we observed that priming with LPS+12,13-DiHOME altered mitochondrial respiratory function. Mitophagy, measured using mito-Keima, was also modulated by 12,13-DiHOME present during priming. These mitochondrial effects were associated with increased sensitivity to nigericin-induced mitochondrial depolarization and reactive oxygen species production in LPS+12,13-DiHOME-primed macrophages. Nigericin-induced mitochondrial damage and NLRP3 inflammasome activation in LPS+12,13-DiHOME-primed macrophages were ablated by the mitochondrial calcium uniporter (MCU) inhibitor, Ru265. 12,13-DiHOME present during LPS-priming also enhanced nigericin-induced NLRP3 inflammasome activation in primary murine bone marrow-derived macrophages. In summary, these data demonstrate a pro-inflammatory role for 12,13-DiHOME by enhancing NLRP3 inflammasome activation in macrophages.


Assuntos
Inflamassomos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Inflamassomos/metabolismo , Animais , Humanos , Camundongos , Células THP-1 , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Ácido Linoleico/farmacologia , Espécies Reativas de Oxigênio/metabolismo
2.
Immunology ; 172(1): 144-162, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38361249

RESUMO

Macrophages expressing group V phospholipase A2 (Pla2g5) release the free fatty acid (FFA) linoleic acid (LA), potentiating lung type 2 inflammation. Although Pla2g5 and LA increase in viral infections, their role remains obscure. We generated Pla2g5flox/flox mice, deleted Pla2g5 by using the Cx3cr1cre transgene, and activated bone marrow-derived macrophages (BM-Macs) with poly:IC, a synthetic double-stranded RNA that triggers a viral-like immune response, known Pla2g5-dependent stimuli (IL-4, LPS + IFNγ, IL-33 + IL-4 + GM-CSF) and poly:IC + LA followed by lipidomic and transcriptomic analysis. Poly:IC-activated Pla2g5flox/flox;Cx3cr1cre/+ BM-Macs had downregulation of major bioactive lipids and critical enzymes producing those bioactive lipids. In addition, AKT phosphorylation was lower in poly:IC-stimulated Pla2g5flox/flox;Cx3cr1cre/+ BM-Macs, which was not restored by adding LA to poly:IC-stimulated BM-Macs. Consistently, Pla2g5flox/flox;Cx3cr1cre/+ mice had diminished poly:IC-induced lung inflammation, including inflammatory macrophage proliferation, while challenging Pla2g5flox/flox;Cx3cr1cre/+ mice with poly:IC + LA partially restored lung inflammation and inflammatory macrophage proliferation. Finally, mice lacking FFA receptor-1 (Ffar1)-null mice had reduced poly:IC-induced lung cell recruitment and tissue macrophage proliferation, not corrected by LA. Thus, Pla2g5 contributes to poly:IC-induced lung inflammation by regulating inflammatory macrophage proliferation and LA/Ffar1-mediated lung cell recruitment and tissue macrophage proliferation.


Assuntos
Ácido Linoleico , Pneumonia , Animais , Camundongos , Proliferação de Células , Interleucina-4/metabolismo , Ácido Linoleico/metabolismo , Pulmão , Macrófagos
3.
Biochem Biophys Res Commun ; 725: 150257, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38901226

RESUMO

Leukemia is a complex disease shaped by the intricate interplay of genetic and environmental factors. Given our preliminary data showing different leukemia incidence in genetically homogenous AKR mice harboring the spontaneous leukemia-inducing mutation Rmcfs, we sought to unravel the role of metabolites and gut microbiota in the leukemia penetrance. Our metabolomic analysis revealed distinct serum metabolite profiles between mice that developed leukemia and those that did not. We discovered that linoleic acid (LA), an essential ω-6 polyunsaturated fatty acid, was significantly decreased in the leukemia group, with the lower levels observed starting from 25 weeks before the onset. A predictive model based on LA levels demonstrated high accuracy in predicting leukemia development (area under curve 0.82). In vitro experiment confirmed LA's cytotoxic effects against leukemia cells, and in vivo study showed that a diet enriched with LA prolonged survival in AKR mice. Furthermore, gut microbiome analysis identified specific Lachnospiraceae species, that affect host lipid metabolism, are exclusively present in the leukemia group, suggesting their potential influence on LA metabolism and leukemia development. These findings shed light on the complex relationship between metabolites, gut microbiota, and leukemia development, providing valuable insights into the role of non-genetic factors in leukemia penetrance and potential strategies for leukemia prevention.


Assuntos
Microbioma Gastrointestinal , Leucemia , Ácido Linoleico , Camundongos Endogâmicos AKR , Animais , Microbioma Gastrointestinal/genética , Leucemia/genética , Leucemia/metabolismo , Camundongos , Ácido Linoleico/metabolismo , Metabolômica/métodos , Masculino
4.
Biochem Biophys Res Commun ; 702: 149618, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38340658

RESUMO

Patatin-like phospholipase domain-containing 1 (PNPLA1) is crucial in the esterification of linoleic acid (LA; 18:2n-6) to ω-hydroxy fatty acids (FA) of ceramide 1 (Cer1), the major barrier lipid of the differentiated epidermis. We previously reported that γ-linolenic acid (GLA; 18:3n-6) as well as LA is esterified to Cer1 subspecies with sphingosine (d18:1) or eicosasphingosine (d20:1) amide-linked to two different ω-hydroxy FA (30wh:0; 32wh:1). Here, we further investigated whether PNPLA1 is also responsible for esterification of GLA to these Cer1 subspecies in normal human keratinocytes (NHK). As late/terminal differentiation was induced in NHK, PNPLA1 and differentiation markers were expressed, and LA-esterified Cer1 subspecies (18:2n-6/C30wh:0 or C32wh:0/d18:1; 18:2n-6/C32wh:0/d20:1) were detected, which were further increased with LA treatment. GLA-esterified Cer1 subspecies (18:3n-6/C30wh:0 or C32wh:0/d18:1; 18:3n-6/C32wh:0/d20:1) were detected only with GLA treatment. Specific small interfering RNA-mediated knockdown of PNPLA1 (KDP) in differentiated NHK decreased levels of these LA-esterified Cer1 subspecies overall and of involucrin (IVL), a terminal differentiation marker. Moreover, KDP resulted in lesser LA/GLA responses as characterized by more significant decreases in IVL and LA/GLA-esterified Cer1 subspecies overall and an accumulation of non-esterified ω-hydroxy ceramides, their putative precursors; the decrease of 18:3n-6/C32wh:0/d18:1, the predominant GLA-esterified Cer1 subspecies, specifically paralleled the increase of C32wh:0/d18:1, its corresponding precursor. PNPLA1 is responsible for NHK terminal differentiation and also for esterification of GLA to the ω-hydroxy FA of Cer1.


Assuntos
Queratinócitos , Ácido gama-Linolênico , Humanos , Ácido gama-Linolênico/metabolismo , Esterificação , Epiderme/metabolismo , Ceramidas/metabolismo , Ácidos Graxos/metabolismo , Ácido Linoleico/metabolismo , Aciltransferases/metabolismo , Fosfolipases/metabolismo
5.
Appl Environ Microbiol ; 90(3): e0207423, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38319094

RESUMO

Bifidobacterium breve, one of the main bifidobacterial species colonizing the human gastrointestinal tract in early life, has received extensive attention for its purported beneficial effects on human health. However, exploration of the mode of action of such beneficial effects exerted by B. breve is cumbersome due to the lack of effective genetic tools, which limits its synthetic biology application. The widespread presence of CRISPR-Cas systems in the B. breve genome makes endogenous CRISPR-based gene editing toolkits a promising tool. This study revealed that Type I-C CRISPR-Cas systems in B. breve can be divided into two groups based on the amino acid sequences encoded by cas gene clusters. Deletion of the gene coding uracil phosphoribosyl-transferase (upp) was achieved in five B. breve strains from both groups using this system. In addition, translational termination of uracil phosphoribosyl-transferase was successfully achieved in B. breve FJSWX38M7 by single-base substitution of the upp gene and insertion of three stop codons. The gene encoding linoleic acid isomerase (bbi) in B. breve, being a characteristic trait, was deleted after plasmid curing, which rendered it unable to convert linoleic acid into conjugated linoleic acid, demonstrating the feasibility of successive editing. This study expands the toolkit for gene manipulation in B. breve and provides a new approach toward functional genome editing and analysis of B. breve strains.IMPORTANCEThe lack of effective genetic tools for Bifidobacterium breve is an obstacle to studying the molecular mechanisms of its health-promoting effects, hindering the development of next-generation probiotics. Here, we introduce a gene editing method based on the endogenous CRISPR-Cas system, which can achieve gene deletion, single-base substitution, gene insertion, and successive gene editing in B. breve. This study will facilitate discovery of functional genes and elucidation of molecular mechanisms of B. breve pertaining to health-associated benefits.


Assuntos
Bifidobacterium breve , Sistemas CRISPR-Cas , Humanos , Edição de Genes/métodos , Bifidobacterium breve/genética , Ácido Linoleico , Transferases/genética , Uracila
6.
J Nutr ; 154(3): 856-865, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38160803

RESUMO

BACKGROUND: Hepatic mitochondrial dysfunction is a major cause of fat accumulation in the liver. Individuals with fatty liver conditions have hepatic mitochondrial structural abnormalities and a switch in the side chain composition of the mitochondrial phospholipid, cardiolipin, from poly- to monounsaturated fatty acids. Linoleic acid (LA), an essential dietary fatty acid, is required to remodel nascent cardiolipin (CL) to its tetralinoleoyl cardiolipin (L4CL, CL with 4 LA side chains) form, which is integral for mitochondrial membrane structure and function to promote fatty acid oxidation. It is unknown, however, whether increasing LA in the diet can increase hepatic L4CL concentrations and improve mitochondrial respiration in the liver compared with a diet rich in monounsaturated and saturated fatty acids. OBJECTIVES: The main aim of this study was to test the ability of a diet fortified with LA-rich safflower oil (SO), compared with the one fortified with lard (LD), to increase concentrations of L4CL and improve mitochondrial respiration in the livers of mice. METHODS: Twenty-four (9-wk-old) C57 BL/J6 male mice were fed either the SO or LD diets for ∼100 d, whereas food intake and body weight, fasting glucose, and glucose tolerance tests were performed to determine any changes in glycemic control. RESULTS: Livers from mice fed SO diet had higher relative concentrations of hepatic L4CL species compared with LD diet-fed mice (P value = 0.004). Uncoupled mitochondria of mice fed the SO diet, compared with LD diet, had an increased baseline oxygen consumption rate (OCR) and succinate-driven respiration (P values = 0.03 and 0.01). SO diet-fed mice had increased LA content in all phospholipid classes compared with LD-fed mice (P < 0.05). CONCLUSIONS: Our findings reveal that maintaining or increasing hepatic L4CL may result in increased OCR in uncoupled hepatic mitochondria in healthy mice whereas higher oleate content of CL reduced mitochondrial function shown by lower OCR in uncoupled mitochondria.


Assuntos
Cardiolipinas , Ácido Linoleico , Masculino , Camundongos , Animais , Cardiolipinas/metabolismo , Mitocôndrias , Gorduras na Dieta/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Dieta , Fosfolipídeos/metabolismo , Ácidos Linoleicos/metabolismo , Respiração
7.
J Nutr ; 154(4): 1109-1118, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38354952

RESUMO

BACKGROUND: Glycerol-3-phosphate acyltransferase (GPAT) activity is correlated with obesity and insulin resistance in mice and humans. However, insulin resistance exists in people with normal body weight, and individuals with obesity may be metabolically healthy, implying the presence of complex pathophysiologic mechanisms underpinning insulin resistance. OBJECTIVE: We asked what conditions related to GPAT1 must be met concurrently for hepatic insulin resistance to occur. METHODS: Mouse hepatocytes were overexpressed with GPATs via adenoviral infection or exposed to high or low concentrations of glucose. Glucose production by the cells and phosphatidic acid (PA) content in the cells were assayed, GPAT activity was measured, relative messenger RNA expressions of sterol-regulatory element-binding protein 1c (SREBP1c), carbohydrate response element-binding protein (ChREBP), and GPAT1 were analyzed, and insulin signaling transduction was examined. RESULTS: Overexpressing GPAT1 in mouse hepatocytes impaired insulin's suppression of glucose production, together with an increase in both N-ethylmaleimide-resistant GPAT activity and the content of di-16:0 PA. Akt-mediated insulin signaling was inhibited in hepatocytes that overexpressed GPAT1. When the cells were exposed to high-glucose concentrations, insulin suppression of glucose production was impaired, and adding palmitic acid exacerbated this impairment. High-glucose exposure increased the expression of SREBP1c, ChREBP, and GPAT1 by ∼2-, 5-, and 5.7-fold, respectively. The addition of 200 mM palmitic acid or linoleic acid to the culture media did not change the upregulation of expression of these genes by high glucose. High-glucose exposure increased di-16:0 PA content in the cells, and adding palmitic acid further increased di-16:0 PA content. The effect was specific to palmitic acid because linoleic acid did not show these effects. CONCLUSION: These data demonstrate that high-GPAT1 activity, whether induced by glucose exposure or acquired by transfection, and abundant palmitic acid can impair insulin's ability to suppress hepatic glucose production in primary mouse hepatocytes.


Assuntos
Resistência à Insulina , Insulina , Animais , Camundongos , Glucose/metabolismo , Glicerol-3-Fosfato O-Aciltransferase , Hepatócitos/metabolismo , Insulina/metabolismo , Insulina Regular Humana , Ácido Linoleico , Fígado/metabolismo , Obesidade/metabolismo , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia
8.
Biopolymers ; 115(4): e23582, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38680100

RESUMO

This study focused on synthesizing and characterizing PEGylated amphiphilic block copolymers with pendant linoleic acid (Lin) moieties as an alternative to enhance their potential in drug delivery applications. The synthesis involved a two-step process, starting with ring-opening polymerization of ε-caprolactone (CL) and propargylated cyclic carbonate (MCP) to obtain PEG-b-P(CL-co-MCP) copolymers, which were subsequently modified via click chemistry. Various reaction conditions were explored to improve the yield and efficiency of the click chemistry step. The use of anisole as a solvent, N-(3-azidopropyl)linoleamide as a substrate, and a reaction temperature of 60°C proved to be highly efficient, achieving nearly 100% conversion at a low catalyst concentration. The resulting copolymers exhibited controlled molecular weights and low polydispersity, confirming the successful synthesis. Furthermore, click chemistry allows for the attachment of Lin moieties to the copolymer, enhancing its hydrophobic character, as deduced from their significantly lower critical micelle concentration than that of traditional PEG-b-PCL systems, which is indicative of enhanced stability against dilution. The modified copolymers exhibited improved thermal stability, making them suitable for applications that require high processing temperatures. Dynamic light scattering and transmission electron microscopy confirmed the formation of micellar structures with sizes below 100 nm and minimal aggregate formation. Additionally, 1H NMR spectroscopy in deuterated water revealed the presence of core-shell micelles, which provided higher kinetic stability against dilution.


Assuntos
Química Click , Polietilenoglicóis , Polimerização , Química Click/métodos , Polietilenoglicóis/química , Ácido Linoleico/química , Micelas , Interações Hidrofóbicas e Hidrofílicas , Tensoativos/química , Tensoativos/síntese química , Peso Molecular
9.
Appl Microbiol Biotechnol ; 108(1): 223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376614

RESUMO

Pork backfat (PB) contains excessive saturated fatty acids (SFAs), but lacks polyunsaturated fatty acids (PUFAs). Excessive SFAs can be used as a substrate for the growth of certain microorganisms that convert them into PUFAs and monounsaturated fatty acids (MUFAs), and the added value of PB can be enhanced. In this study, Mucor circinelloides CBS 277.49 and Lactiplantacillus plantarum CGMCC 24189 were co-cultured for conversion of PB into fermented pork backfat (FPB) with high level of PUFAs. Our results showed that the content of γ-linolenic acid (GLA) and linoleic acid (LA) in the surface of FPB reached 9.04 ± 0.14 mg/g and 107.31 ± 5.16 mg/g for 7-day fermentation, respectively. To convert the internal SFAs of PB, ultrasound combined with papain was used to promote the penetrative growth of M. circinelloides into the internal PB, and the GLA level in the third layer of fat reached 2.58 ± 0.31 mg/g FPB. The internal growth of M. circinelloides in PB was promoted by adjusting the oxygen rate and ventilation rate through the wind velocity sensor. When the oxygen rate is 2 m/s and the ventilation rate is 18 m3/h, the GLA level in the third layer of fat reached 4.13 ± 1.01 mg/g FPB. To further improve the level of PUFAs in PB, FPB was produced by M. circinelloides at 18 °C. The GLA content on the surface of FPB reached 15.73 ± 1.13 mg/g FPB, and the GLA yield in the second and third layers of fat reached 8.68 ± 1.77 mg/g FPB and 6.13 ± 1.28 mg/g FPB, the LA yield in the second and third layers of fat reached 105.45 ± 5.01 mg/g FPB and 98.46 ± 4.14 mg/g FPB, respectively. These results suggested that excessive SFAs in PB can be converted into PUFAs and provided a new technique for improving PUFAs in FPB. KEY POINTS: • This article achieved the conversion of PUFAs in pork backfat by Mucor circinelloides CBS 277.49 and Lactiplantacillus plantarum CGMCC 24189. • This article solved the internal growth of M. circinelloides CBS277.49 in pork backfat by ultrasound combined with papain. • This article proposed an innovative of promoting the internal growth of M. circinelloides and increasing the PUFAs production by oxygen ventilation in pork backfat.


Assuntos
Mucor , Carne de Porco , Carne Vermelha , Suínos , Animais , Papaína , Ácidos Graxos Insaturados , Ácido Linoleico , Oxigênio
10.
Plant Cell Rep ; 43(4): 109, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564014

RESUMO

KEY MESSAGE: The regulatory action of BXs secreted by wheat on the pathogenicity of FOF causing Fusarium wilt in faba bean were analyzed. DIMBOA and MBOA weakened the pathogenicity of FOF. A large number of pathogenic bacteria in continuous cropping soil infect faba bean plants, leading to the occurrence of wilt disease, which restricts their production. Faba bean-wheat intercropping is often used to alleviate this disease. This study investigates the effect of benzoxazinoids (BXs) secreted by wheat root on the pathogenicity of Fusarium oxysporum f. sp. Fabae (FOF) and underlying molecular mechanisms. The effects of DIMBOA(2,4-dihydroxy-7-methoxy-1,4-benzoxazine-4-one) and MBOA(6-methoxybenzoxazolin-2-one) on the activity of cell-wall-degrading enzymes in FOF(cellulase, pectinase, amylase, and protease), FOF Toxin (fusaric acid, FA) content were investigated through indoor culture experiments. The effect of BXs on the metabolic level of FOF was analyzed by metabonomics to explore the ecological function of benzoxazines intercropping control of Fusarium wilt in faba bean. The results show that the Exogenous addition of DIMBOA and MBOA decreased the activity of plant-cell-wall-degrading enzymes and fusaric acid content and significantly weakened the pathogenicity of FOF. DIMBOA and MBOA significantly inhibited the pathogenicity of FOF, and metabolome analysis showed that DIMBOA and MBOA reduced the pathogenicity of FOF by down-regulating related pathways such as nucleotide metabolism and linoleic acid metabolism, thus effectively controlling the occurrence of Fusarium wilt in faba bean.


Assuntos
Benzoxazinas , Fusarium , Triticum , Benzoxazinas/farmacologia , Ácido Linoleico , Virulência , Ácido Fusárico , Nucleotídeos
11.
Biosci Biotechnol Biochem ; 88(4): 437-444, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38171531

RESUMO

Pleurotus citrinopileatus is a low-cholesterol, protein-rich, and high-nutrient food. The molecular mechanisms of the compounds and coloration have not been reported. Metabolome and transcriptome were used to clarify the molecular mechanisms of key compounds biosynthesis. K-means analysis identified 19 compounds in P. citrinopileatus, mainly lipids and alkaloids in class 8. In addition, 84 lipids were higher and that the different compounds were mainly enriched in linoleic acid metabolism. A total of 14 compounds detected in the linoleic acid metabolism pathway were significantly up-regulated, while 3 sterol regulatory element binding protein (SREBP) transcription factors were screened. Tryptophan metabolism and riboflavin biosynthesis pathway analysis indicated that 3 Unigenes had tryptophan decarboxylase similar elements, which belonged to tyrosine decarboxylase 1. Moreover, CL15618.Contig5_All had high homology with MFS. In conclusion, the expression of 3 SREBP, the synthesis of isobavachalcone D, and the regulation of riboflavin transport by MCH5 were the reasons for fatty acid accumulation and yellow cap formation in the P. citrinopileatus.


Assuntos
Agaricales , Pleurotus , Ácidos Graxos , Proteína de Ligação a Elemento Regulador de Esterol 1 , Ácido Linoleico , Proteínas de Ligação a Elemento Regulador de Esterol , Riboflavina
12.
Ecotoxicol Environ Saf ; 270: 115943, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194811

RESUMO

Nickel oxide nanoparticles (NiONPs) are toxic heavy metal compounds that induce liver fibrosis and metabolic disorders. Current research shows that the intestinal microbiota regulates liver metabolism through the gut-liver axis. However, it is unclear whether NiONPs affect the intestinal microbiota and the relationship between microbiota and liver metabolic disorders. Therefore, in this study, we established liver fibrosis model by administering 0.015, 0.06 and 0.24 mg/mL NiONPs through tracheal instillation twice a week for 9 weeks in rats, then we collected serum and fecal sample for whole metabolomics and metagenomic sequencing. As the result of sequencing, we screened out seven metabolites (beta-D-glucuronide, methylmalonic acid, linoleic acid, phosphotidylcholine, lysophosphatidylinositol, docosapentaenoic acid and progesterone) that related to functional alterations (p < 0.05), and obtained a decrease of probiotics abundances (p < 0.05) as well as a variation of the microbiota enzyme activity (p < 0.05), indicating that NiONPs inhibited the proliferation of probiotics. As the result of correlation analysis, we found a positive correlation between differential metabolites and probiotics, such as lysophosphatidylinositol was positively correlated with Desulfuribacillus, Jeotgallibacillus and Rummeliibacillus (p < 0.05). We also found that differential metabolites had correlations with differential proteins and enzymes of intestinal microbiota, such as glucarate dehydratase, dihydroorotate dehydrogenase and acetyl-CoA carboxylase (p < 0.05). Finally, we screened six metabolic pathways with both differential intestinal microbiota enzymes and metabolites were involved, such as pentose and glucuronate interconversions, and linoleic acid metabolism. In vitro experiments showed that NiONPs increased the transcriptional expression of Col1A1 in LX-2 cells, while reducing the mRNA expression of serine/threonine activators, acetyl coenzyme carboxylase, and lysophosphatidylinositol synthase, and short chain fatty acid sodium butyrate can alleviate these variation trends. The results proved that the intestinal microbiota enzyme systems were associated with serum metabolites, suggesting that the disturbance of intestinal microbiota and reduction of probiotics promoted the occurrence and development of NiONPs-induced liver fibrosis by affecting metabolic pathways.


Assuntos
Microbioma Gastrointestinal , Doenças Metabólicas , Ratos , Animais , Microbioma Gastrointestinal/genética , Ácido Linoleico , Cirrose Hepática/induzido quimicamente , Acetil-CoA Carboxilase
13.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256199

RESUMO

Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is essential for fetal growth and development. A maternal high LA (HLA) diet alters cardiovascular development in adolescent rats and hepatic function in adult rats in a sex-specific manner. We investigated the effects of an HLA diet on adolescent offspring hepatic lipids and hepatic lipid metabolism gene expression, and the ability of the postnatal diet to alter these effects. Female Wistar Kyoto rats were fed low LA (LLA; 1.44% energy from LA) or high LA (HLA; 6.21% energy from LA) diets during pregnancy and gestation/lactation. Offspring, weaned at postnatal day (PN) 25, were fed LLA or HLA and euthanised at PN40 (n = 6-8). Maternal HLA increased circulating uric acid, decreased hepatic cholesterol and increased hepatic Pparg in males, whereas only hepatic Srebf1 and Hmgcr increased in females. Postnatal (post-weaning) HLA decreased liver weight (% body weight) and increased hepatic Hmgcr in males, and decreased hepatic triglycerides in females. Maternal and postnatal HLA had an interaction effect on Lpl, Cpt1a and Pparg in females. These findings suggest that an HLA diet both during and after pregnancy should be avoided to improve offspring disease risk.


Assuntos
Ácido Linoleico , Metabolismo dos Lipídeos , Feminino , Masculino , Gravidez , Ratos , Animais , PPAR gama , Dieta , Fígado , Ratos Endogâmicos WKY , Ácidos Graxos Ômega-6
14.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39063152

RESUMO

Linoleic acid (LA) is required for neuronal development. We have previously demonstrated sex-specific changes in cardiovascular and hepatic function in rat offspring from mothers consuming a high-LA diet, with some effects associated with reduced LA concentration in the postnatal diet. At this time, the impact of a high-maternal-LA diet on offspring brain development and the potential for the postnatal diet to alter any adverse changes are unknown. Rat offspring from mothers fed low- (LLA) or high-LA (HLA) diets during pregnancy and lactation were weaned at postnatal day 25 (PN25) and fed LLA or HLA diets until sacrifice in adulthood (PN180). In the offspring's brains, the postnatal HLA diet increased docosapentaenoate in males. The maternal HLA diet increased LA, arachidonate, docosapentaenoate, C18:0 dimethylacetal (DMA), C16:0 DMA, C16:0 DMA/C16:0, and C18:0 DMA/C18:0, but decreased eoicosenoate, nervoniate, lignocerate, and oleate in males. Maternal and postnatal HLA diets reduced oleate and vaccenate and had an interaction effect on myristate, palmitoleate, and eicosapentaenoate in males. In females, maternal HLA diet increased eicosadienoate. Postnatal HLA diet increased stearate and docosapentaenoate. Maternal and postnatal HLA diets had an interaction effect on oleate, arachidate, and docosahexaenoic acid (DHA)/omega (n)-6 docosapentaenoic acid (DPA) in females. Postnatal HLA diet decreased DHA/n-6 DPA in males and females. Postnatal HLA diet increased plasma endocannabinoids (arachidonoyl ethanolamide and 2-arachidonoyl glycerol), as well as other N-acyl ethanolamides and testosterone. HLA diet alters brain fatty acids, plasma endocannabinoids, and plasmalogen concentrations in a development-specific and sex-specific manner.


Assuntos
Encéfalo , Endocanabinoides , Ácidos Graxos , Ácido Linoleico , Plasmalogênios , Feminino , Animais , Masculino , Gravidez , Ratos , Encéfalo/metabolismo , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Endocanabinoides/sangue , Endocanabinoides/metabolismo , Ácido Linoleico/sangue , Plasmalogênios/sangue , Plasmalogênios/metabolismo , Efeitos Tardios da Exposição Pré-Natal/sangue , Caracteres Sexuais , Fatores Sexuais
15.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339170

RESUMO

This review aims to analyze the emerging number of studies on biological media that describe the unexpected effects of different natural bioactive antioxidants. Hormetic effects, with a biphasic response depending on the dose, or activities that are apparently non-dose-dependent, have been described for compounds such as resveratrol, curcumin, ferulic acid or linoleic acid, among others. The analysis of the reported studies confirms the incidence of these types of effects, which should be taken into account by researchers, discarding initial interpretations of imprecise methodologies or measurements. The incidence of these types of effects should enhance research into the different mechanisms of action, particularly those studied in the field of basic research, that will help us understand the causes of these unusual behaviors, depending on the dose, such as the inactivation of the signaling pathways of the immune defense system. Antioxidative and anti-inflammatory activities in biological media should be addressed in ways that go beyond a mere statistical approach. In this work, some of the research pathways that may explain the understanding of these activities are revised, paying special attention to the ability of the selected bioactive compounds (curcumin, resveratrol, ferulic acid and linoleic acid) to form metal complexes and the activity of these complexes in biological media.


Assuntos
Antioxidantes , Ácidos Cumáricos , Curcumina , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico , Ácido Linoleico , Inflamação/tratamento farmacológico
16.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731907

RESUMO

Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is obtained from the maternal diet during pregnancy, and is essential for normal fetal growth and development. A maternal high-LA (HLA) diet alters maternal and offspring fatty acids, maternal leptin and male/female ratio at embryonic (E) day 20 (E20). We investigated the effects of an HLA diet on embryonic offspring renal branching morphogenesis, leptin signalling, megalin signalling and angiogenesis gene expression. Female Wistar Kyoto rats were fed low-LA (LLA; 1.44% energy from LA) or high-LA (HLA; 6.21% energy from LA) diets during pregnancy and gestation/lactation. Offspring were sacrificed and mRNA from kidneys was analysed by real-time PCR. Maternal HLA decreased the targets involved in branching morphogenesis Ret and Gdnf in offspring, independent of sex. Furthermore, downstream targets of megalin, namely mTOR, Akt3 and Prkab2, were reduced in offspring from mothers consuming an HLA diet, independent of sex. There was a trend of an increase in the branching morphogenesis target Gfra1 in females (p = 0.0517). These findings suggest that an HLA diet during pregnancy may lead to altered renal function in offspring. Future research should investigate the effects an HLA diet has on offspring kidney function in adolescence and adulthood.


Assuntos
Rim , Ácido Linoleico , Morfogênese , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Feminino , Gravidez , Serina-Treonina Quinases TOR/metabolismo , Rim/metabolismo , Rim/efeitos dos fármacos , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Ácido Linoleico/metabolismo , Masculino , Ratos Endogâmicos WKY , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Feto/metabolismo , Feto/efeitos dos fármacos
17.
Molecules ; 29(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611912

RESUMO

This report demonstrates the first asymmetric synthesis of enantiopure structured triacylglycerols (TAGs) of the ABC type presenting three non-identical fatty acids, two of which are unsaturated. The unsaturated fatty acids included monounsaturated oleic acid (C18:1 n-9) and polyunsaturated linoleic acid (C18:2 n-6). This was accomplished by a six-step chemoenzymatic approach starting from (R)- and (S)-solketals. The highly regioselective immobilized Candida antarctica lipase (CAL-B) played a crucial role in the regiocontrol of the synthesis. The synthesis also benefited from the use of the p-methoxybenzyl (PMB) ether protective group, which enabled the incorporation of two different unsaturated fatty acids into the glycerol skeleton. The total of six such TAGs were prepared, four constituting the unsaturated fatty acids in the sn-1 and sn-2 positions, with a saturated fatty acid in the remaining sn-3 position of the glycerol backbone. In the two remaining TAGs, the different unsaturated fatty acids accommodated the sn-1 and sn-3 end positions, with the saturated fatty acid present in the sn-2 position. Enantiopure TAGs are urgently demanded as standards for the enantiospecific analysis of intact TAGs in fats and oils.


Assuntos
Ácidos Graxos , Glicerol , Éteres , Ácido Linoleico , Triglicerídeos
18.
Molecules ; 29(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257205

RESUMO

Presently, there is an increasing shift towards the utilization of natural antioxidants and compounds with protective attributes for fatty acids in order to replace synthetic counterparts that may pose health risks. This transition aligns with the growing emphasis on promoting healthy and organic food choices. Essential oils stand out in this context due to scientific validations of their antioxidant properties. There are few published research results concerning changes in the fatty acid composition in model systems with the addition of essential oils. This study aims to investigate the impact of incorporating peppermint and thyme oils on inhibiting changes in the fatty acid profile of sunflower oil stored at both room temperature with exposure to daylight and in a thermostat set at 40 °C. The experimental procedure involved the addition of peppermint and thyme oils, along with butylated hydroxyanisole (BHA), to batches of sunflower oil. The samples were then stored for 11 months. The study observed a detrimental influence of storage conditions on the quantitative changes in the fatty acid profile of the sunflower oil. The addition of BHA stabilized the content of linoleic acid in the sunflower oil (approximately 53 g/100 g of linoleic acid compared to approximately 58 g/100 g in the control sample). Meanwhile, the model system of sunflower oil with the addition of peppermint and thyme oils (40 °C) exhibited a statistically significant decrease in the concentration of linoleic acid to approximately 8 g/100 g after eleven months of thermostating. Similar trends to those observed for linoleic acid were noted for the total fatty acid content in the sunflower oil. Notably, the efficacy of the selected substances in inhibiting adverse transformations in fats was contingent upon their concentration and the storage temperature.


Assuntos
Óleos Voláteis , Óleos de Plantas , Timol , Thymus (Planta) , Óleo de Girassol , Mentha piperita , Ácidos Graxos , Ácido Linoleico , Antioxidantes
19.
Molecules ; 29(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39064861

RESUMO

Centaurea thracica (Janka) Hayek is a plant common in southern Bulgaria. The inflorescences were collected during June and September 2021, while their seeds were obtained in September 2021. The chemical and lipid composition of the inflorescences during the vegetation process of the plant were established. A significant decrease in total proteins (from 8.7 to 7.4%), glyceride oils (2.0-1.7%), and ash (4.5-4.2%) content was observed, while the amount of carbohydrates (72.3-77.2%) and fibers (28.7-35.8%) increased. During the vegetation of the plant, the content of oleic and linoleic acids increased up to 2-3 times, while the level of palmitic acid decreased. The lipids from the seeds were rich in oleic (53.0%) and palmitic (36.2%) acids. The tocopherol content in the oils of the inflorescences during vegetation increased from 58 to 110 mg/kg, and the content in the oil from the seeds was 260 mg/kg. The phospholipid content decreased during vegetation, and differences were observed in the composition between the inflorescences and the seeds. The high content of oleic acid, linoleic acid, tocopherols, and phospholipids determine the nutritional and biological value of the oils isolated from Centaurea thracica, and contribute to their potential use in various directions.


Assuntos
Centaurea , Sementes , Bulgária , Sementes/química , Centaurea/química , Tocoferóis/análise , Tocoferóis/química , Lipídeos/análise , Lipídeos/química , Óleos de Plantas/química , Fosfolipídeos/análise , Fosfolipídeos/química , Ácido Linoleico/análise , Ácido Linoleico/química
20.
Molecules ; 29(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39064946

RESUMO

Chlorella sorokiniana, isolated from a pond adjacent to a cement plant, was cultured using flue gas collected directly from kiln emissions using 20 L and 25000 L photobioreactors. Lipids, proteins, and polysaccharides were analyzed to understand their overall composition for potential applications. The lipid content ranged from 17.97% to 21.54% of the dry biomass, with carotenoid concentrations between 8.4 and 9.2 mg/g. Lutein accounted for 55% of the total carotenoids. LC/MS analysis led to the identification of 71 intact triacylglycerols, 8 lysophosphatidylcholines, 10 phosphatidylcholines, 9 monogalactosyldiacylglycerols, 12 digalactosyldiacylglycerols, and 1 sulfoquinovosyl diacylglycerol. Palmitic acid, oleic acid, linoleic acid, and α-linolenic acid were the main fatty acids. Polyunsaturated fatty acid covers ≥ 56% of total fatty acids. Protein isolates and polysaccharides were also extracted. Protein purity was determined to be ≥75% by amino acid analysis, with all essential amino acids present. Monomer analysis of polysaccharides suggested that they are composed of mainly D-(+)-mannose, D-(+)-galactose, and D-(+)-glucose. The results demonstrate that there is no adverse effect on the metabolite profile of C. sorokiniana biomass cultured using flue gas as the primary carbon source, revealing the possibility of utilizing such algal biomass in industrial applications such as animal feed, sources of cosmeceuticals, and as biofuel.


Assuntos
Biomassa , Carbono , Chlorella , Ácidos Graxos , Chlorella/metabolismo , Chlorella/crescimento & desenvolvimento , Chlorella/química , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Carbono/química , Polissacarídeos/química , Polissacarídeos/análise , Ácido alfa-Linolênico/análise , Ácido alfa-Linolênico/metabolismo , Gases/química , Ácido Linoleico/análise , Ácido Linoleico/metabolismo , Lipídeos/análise , Lipídeos/química , Galactolipídeos/análise , Galactolipídeos/metabolismo , Carotenoides/análise , Carotenoides/metabolismo , Ácido Oleico/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA