Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
1.
Nat Immunol ; 20(5): 581-592, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962591

RESUMO

Succinate is a signaling metabolite sensed extracellularly by succinate receptor 1 (SUNCR1). The accumulation of succinate in macrophages is known to activate a pro-inflammatory program; however, the contribution of SUCNR1 to macrophage phenotype and function has remained unclear. Here we found that activation of SUCNR1 had a critical role in the anti-inflammatory responses in macrophages. Myeloid-specific deficiency in SUCNR1 promoted a local pro-inflammatory phenotype, disrupted glucose homeostasis in mice fed a normal chow diet, exacerbated the metabolic consequences of diet-induced obesity and impaired adipose-tissue browning in response to cold exposure. Activation of SUCNR1 promoted an anti-inflammatory phenotype in macrophages and boosted the response of these cells to type 2 cytokines, including interleukin-4. Succinate decreased the expression of inflammatory markers in adipose tissue from lean human subjects but not that from obese subjects, who had lower expression of SUCNR1 in adipose-tissue-resident macrophages. Our findings highlight the importance of succinate-SUCNR1 signaling in determining macrophage polarization and assign a role to succinate in limiting inflammation.


Assuntos
Inflamação/imunologia , Macrófagos/imunologia , Obesidade/imunologia , Receptores Acoplados a Proteínas G/imunologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Obesidade/genética , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Ácido Succínico/imunologia , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia , Células THP-1
2.
Immunity ; 49(1): 33-41.e7, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021144

RESUMO

In the small intestine, type 2 responses are regulated by a signaling circuit that involves tuft cells and group 2 innate lymphoid cells (ILC2s). Here, we identified the microbial metabolite succinate as an activating ligand for small intestinal (SI) tuft cells. Sequencing analyses of tuft cells isolated from the small intestine, gall bladder, colon, thymus, and trachea revealed that expression of tuft cell chemosensory receptors is tissue specific. SI tuft cells expressed the succinate receptor (SUCNR1), and providing succinate in drinking water was sufficient to induce a multifaceted type 2 immune response via the tuft-ILC2 circuit. The helminth Nippostrongylus brasiliensis and a tritrichomonad protist both secreted succinate as a metabolite. In vivo sensing of the tritrichomonad required SUCNR1, whereas N. brasiliensis was SUCNR1 independent. These findings define a paradigm wherein tuft cells monitor microbial metabolites to initiate type 2 immunity and suggest the existence of other sensing pathways triggering the response to helminths.


Assuntos
Imunidade nas Mucosas/efeitos dos fármacos , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácido Succínico/farmacologia , Animais , Linhagem Celular , Feminino , Mucosa Intestinal/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nippostrongylus/efeitos dos fármacos , Nippostrongylus/imunologia , Nippostrongylus/metabolismo , Especificidade de Órgãos , Infecções por Protozoários/imunologia , Receptores Acoplados a Proteínas G/imunologia , Transdução de Sinais/imunologia , Especificidade da Espécie , Infecções por Strongylida/imunologia , Canais de Cátion TRPM/metabolismo , Células Th2/imunologia , Tritrichomonas/efeitos dos fármacos , Tritrichomonas/imunologia , Tritrichomonas/metabolismo
3.
EMBO J ; 41(12): e108306, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35506364

RESUMO

Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here demonstrate that influenza virus induces a major reprogramming of lung metabolism. We focused on mitochondria-derived succinate that accumulated both in the respiratory fluids of virus-challenged mice and of patients with influenza pneumonia. Notably, succinate displays a potent antiviral activity in vitro as it inhibits the multiplication of influenza A/H1N1 and A/H3N2 strains and strongly decreases virus-triggered metabolic perturbations and inflammatory responses. Moreover, mice receiving succinate intranasally showed reduced viral loads in lungs and increased survival compared to control animals. The antiviral mechanism involves a succinate-dependent posttranslational modification, that is, succinylation, of the viral nucleoprotein at the highly conserved K87 residue. Succinylation of viral nucleoprotein altered its electrostatic interactions with viral RNA and further impaired the trafficking of viral ribonucleoprotein complexes. The finding that succinate efficiently disrupts the influenza replication cycle opens up new avenues for improved treatment of influenza pneumonia.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Infecções por Orthomyxoviridae , Pneumonia , Animais , Antivirais/farmacologia , Humanos , Vírus da Influenza A Subtipo H3N2/metabolismo , Camundongos , Proteínas do Nucleocapsídeo , Nucleoproteínas/metabolismo , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia , Ácido Succínico/uso terapêutico , Replicação Viral
4.
Nature ; 560(7716): 102-106, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30022159

RESUMO

Thermogenesis by brown and beige adipose tissue, which requires activation by external stimuli, can counter metabolic disease1. Thermogenic respiration is initiated by adipocyte lipolysis through cyclic AMP-protein kinase A signalling; this pathway has been subject to longstanding clinical investigation2-4. Here we apply a comparative metabolomics approach and identify an independent metabolic pathway that controls acute activation of adipose tissue thermogenesis in vivo. We show that substantial and selective accumulation of the tricarboxylic acid cycle intermediate succinate is a metabolic signature of adipose tissue thermogenesis upon activation by exposure to cold. Succinate accumulation occurs independently of adrenergic signalling, and is sufficient to elevate thermogenic respiration in brown adipocytes. Selective accumulation of succinate may be driven by a capacity of brown adipocytes to sequester elevated circulating succinate. Furthermore, brown adipose tissue thermogenesis can be initiated by systemic administration of succinate in mice. Succinate from the extracellular milieu is rapidly metabolized by brown adipocytes, and its oxidation by succinate dehydrogenase is required for activation of thermogenesis. We identify a mechanism whereby succinate dehydrogenase-mediated oxidation of succinate initiates production of reactive oxygen species, and drives thermogenic respiration, whereas inhibition of succinate dehydrogenase supresses thermogenesis. Finally, we show that pharmacological elevation of circulating succinate drives UCP1-dependent thermogenesis by brown adipose tissue in vivo, which stimulates robust protection against diet-induced obesity and improves glucose tolerance. These findings reveal an unexpected mechanism for control of thermogenesis, using succinate as a systemically-derived thermogenic molecule.


Assuntos
Tecido Adiposo Marrom/metabolismo , Ácido Succínico/metabolismo , Termogênese/fisiologia , Adipócitos/efeitos dos fármacos , Adipócitos/enzimologia , Adipócitos/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/enzimologia , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/enzimologia , Tecido Adiposo Branco/metabolismo , Animais , Feminino , Masculino , Metabolômica , Camundongos , Obesidade/metabolismo , Obesidade/prevenção & controle , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo , Ácido Succínico/farmacologia , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo
5.
Am J Physiol Endocrinol Metab ; 324(3): E226-E240, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724126

RESUMO

Obesity is one of the leading noncommunicable diseases in the world. Despite intense efforts to develop strategies to prevent and treat obesity, its prevalence continues to rise worldwide. A recent study has shown that the tricarboxylic acid intermediate succinate increases body energy expenditure by promoting brown adipose tissue thermogenesis through the activation of uncoupling protein-1; this has generated interest surrounding its potential usefulness as an approach to treat obesity. It is currently unknown how succinate impacts brown adipose tissue protein expression, and how exogenous succinate impacts body mass reduction promoted by a drug approved to treat human obesity, the glucagon-like-1 receptor agonist, liraglutide. In the first part of this study, we used bottom-up shotgun proteomics to determine the acute impact of exogenous succinate on the brown adipose tissue. We show that succinate rapidly affects the expression of 177 brown adipose tissue proteins, which are mostly associated with mitochondrial structure and function. In the second part of this study, we performed a short-term preclinical pharmacological intervention, treating diet-induced obese mice with a combination of exogenous succinate and liraglutide. We show that the combination was more efficient than liraglutide alone in promoting body mass reduction, food energy efficiency reduction, food intake reduction, and an increase in body temperature. Using serum metabolomics analysis, we showed that succinate, but not liraglutide, promoted a significant increase in the blood levels of several medium and long-chain fatty acids. In conclusion, exogenous succinate promotes rapid changes in brown adipose tissue mitochondrial proteins, and when used in association with liraglutide, increases body mass reduction.NEW & NOTEWORTHY Exogenous succinate induces major changes in brown adipose tissue protein expression affecting particularly mitochondrial respiration and structural proteins. When given exogenously in drinking water, succinate mitigates body mass gain in a rodent model of diet-induced obesity; in addition, when given in association with the glucagon-like peptide-1 receptor agonist, liraglutide, succinate increases body mass reduction promoted by liraglutide alone.


Assuntos
Tecido Adiposo Marrom , Liraglutida , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Obesidade/metabolismo , Proteoma/metabolismo , Ácido Succínico/farmacologia , Ácido Succínico/metabolismo , Ácido Succínico/uso terapêutico , Termogênese , Proteína Desacopladora 1/metabolismo
6.
Kidney Int ; 104(4): 724-739, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37399974

RESUMO

Ischemia-reperfusion (IR) injury, a leading cause of acute kidney injury (AKI), is still without effective therapies. Succinate accumulation during ischemia followed by its oxidation during reperfusion leads to excessive reactive oxygen species (ROS) and severe kidney damage. Consequently, the targeting of succinate accumulation may represent a rational approach to the prevention of IR-induced kidney injury. Since ROS are generated primarily in mitochondria, which are abundant in the proximal tubule of the kidney, we explored the role of pyruvate dehydrogenase kinase 4 (PDK4), a mitochondrial enzyme, in IR-induced kidney injury using proximal tubule cell-specific Pdk4 knockout (Pdk4ptKO) mice. Knockout or pharmacological inhibition of PDK4 ameliorated IR-induced kidney damage. Succinate accumulation during ischemia, which is responsible for mitochondrial ROS production during reperfusion, was reduced by PDK4 inhibition. PDK4 deficiency established conditions prior to ischemia resulting in less succinate accumulation, possibly because of a reduction in electron flow reversal in complex II, which provides electrons for the reduction of fumarate to succinate by succinate dehydrogenase during ischemia. The administration of dimethyl succinate, a cell-permeable form of succinate, attenuated the beneficial effects of PDK4 deficiency, suggesting that the kidney-protective effect is succinate-dependent. Finally, genetic or pharmacological inhibition of PDK4 prevented IR-induced mitochondrial damage in mice and normalized mitochondrial function in an in vitro model of IR injury. Thus, inhibition of PDK4 represents a novel means of preventing IR-induced kidney injury, and involves the inhibition of ROS-induced kidney toxicity through reduction in succinate accumulation and mitochondrial dysfunction.


Assuntos
Traumatismo por Reperfusão , Ácido Succínico , Camundongos , Animais , Ácido Succínico/farmacologia , Espécies Reativas de Oxigênio , Camundongos Knockout , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Isquemia/tratamento farmacológico , Rim , Mitocôndrias , Reperfusão
7.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37903743

RESUMO

AIMS: Microbial biocontrol agents have become an effective option to mitigate the harmfulness of chemical pesticides in recent years. This study demonstrates the control efficacy of Bacillus velezensis CE 100 on the anthracnose causal agent, Colletotrichum gloeosporioides. METHODS AND RESULTS: In vitro antifungal assays revealed that the culture filtrate and volatile organic compounds of B. velezensis CE 100 strongly restricted the mycelial development of C. gloeosporioides. Moreover, a bioactive compound, butyl succinate, was isolated from the n-butanol crude extract of B. velezensis CE 100 (bce), and identified by liquid chromatography-electrospray ionization hybrid ion-trap and time-of-flight mass spectrometry (LC-ESI-QTOF-MS) and one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR). Treatment with purified butyl succinate at a concentration of 300 µg mL-1 strongly controlled conidial germination of C. gloeosporioides with an inhibition rate of 98.66%, whereas butyl succinate at a concentration of 400 µg mL-1 showed weak antifungal action on the mycelial growth of C. gloeosporioides with an inhibition rate of 31.25%. Scanning electron microscopy revealed that the morphologies of butyl succinate-treated hyphae and conidia of C. gloeosporioides were severely deformed with shriveled and wrinkled surfaces. Furthermore, butyl succinate was able to control carbendazim-resistant C. gloeosporioides, demonstrating that it could be a promising agent for the suppression of other carbendazim-resistant fungal pathogens. An in vivo biocontrol assay demonstrated that the strain ce 100 broth culture and butyl succinate showed higher control efficacy on apple anthracnose than bce. CONCLUSIONS: Our findings provide insight into the antifungal potential of B. velezensis  ce 100 and its butyl succinate for efficient control of phytopathogenic fungi, such as C. gloeosporiodes, in plant disease protection. This is the first study to demonstrate the antifungal potential of bacteria-derived butyl succinate for control of C. gloeosporioides.


Assuntos
Colletotrichum , Malus , Antifúngicos/farmacologia , Antifúngicos/química , Ácido Succínico/farmacologia , Succinatos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
8.
BMC Microbiol ; 22(1): 95, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410114

RESUMO

BACKGROUND: Klebsiella pneumoniae is widely distributed in water and plays a major role in both human and poultry infections. Many K. pneumoniae strains form biofilms on various surfaces, enhancing their pathogenicity and resistance to antibiotics. The water supply pipeline of chicken farms has become a hotbed for the growth of K pneumoniae biofilm because of its humid environment, and because the chicken drinking water pipeline is thin, it is easily blocked by the biofilm, and the diffused cells can cause repeated and persistent infections. Iron is vital to the growth of microorganisms and the formation of biofilms. Therefore, the aim of this study was to examine the effects of iron on K. pneumoniae biofilm formation and any associated metabolic changes to provide a rationale for reducing the formation of biofilms. RESULTS: Biofilm formation was enhanced to the greatest extent by the presence of 0.16 mM FeCl2, producing a denser structure under electron microscopy. The number of biofilm-forming and planktonic bacteria did not change, but protein and polysaccharide concentrations in the bacterial extracellular polymeric substances (EPS) were significantly increased by iron supplementation. To clarify this mechanism, intracellular metabolomic analysis was carried out, showing that the differential, down-regulated metabolites included succinic acid. The addition of 1.7 mM succinic acid counteracted the biofilm-forming effect of iron, with no bactericidal side effects. CONCLUSION: This study demonstrates the importance of succinic acid and iron in K. pneumoniae biofilms, and provides insight into the formation of K. pneumoniae biofilms and direction for the development of new antibacterial agents.


Assuntos
Klebsiella pneumoniae , Ácido Succínico , Antibacterianos/farmacologia , Biofilmes , Ferro/farmacologia , Ácido Succínico/farmacologia
9.
Phytopathology ; 112(3): 567-578, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34615378

RESUMO

Thifluzamide, a succinate dehydrogenase (SDH) inhibitor, possesses high activity against Rhizoctonia. In this study, 144 Rhizoctonia solani AG-4 (4HGI, 4HGII, and 4HGIII) isolates, the predominate pathogen associated with sugar beet seedling damping-off, were demonstrated to be sensitive to thifluzamide with a calculated mean median effective concentration of 0.0682 ± 0.0025 µg/ml. Thifluzamide-resistant isolates were generated using fungicide-amended media, resulting in four AG-4HGI isolates and eight AG-4HGII isolates with stable resistance and almost no loss in fitness. Evaluation of cross-resistance of the 12 thifluzamide-resistant isolates and their corresponding parental-sensitive isolates revealed a moderately positive correlation between thifluzamide resistance and the level of resistance to eight other fungicides from three groups, the exception being fludioxonil. An active efflux of fungicide through ATP-binding cassette and major facilitator superfamily transporters was found to be correlated to the resistance of R. solani AG-4HGII isolates to thifluzamide based on RNA-sequencing and quantitative reverse transcription-PCR analyses. Sequence analysis of sdhA, sdhB, sdhC, and sdhD revealed replacement of isoleucine by phenylalanine at position 61 in SDHC in 9 of the 12 generated thifluzamide-resistant isolates. No other mutations were found in any of the other genes. Collectively, the data indicate that the active efflux of fungicide and a point mutation in sdhC may contribute to the resistance of R. solani AG-4HGI and AG-4HGII isolates to thifluzamide in vitro. This is the first characterization of the potential molecular mechanism associated with the resistance of R. solani AG-4 isolates to thifluzamide and provides practical guidance for the use of this fungicide.


Assuntos
Rhizoctonia , Succinato Desidrogenase , Anilidas , Doenças das Plantas , Rhizoctonia/genética , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Ácido Succínico/farmacologia , Tiazóis
10.
Pestic Biochem Physiol ; 183: 105056, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35430060

RESUMO

Pesticides can seriously affect the respiratory chain of the mitochondria of many crops, reducing the intensity of plant growth and its yield. Studying the effect of pesticides on the bioenergetic parameters of intact plant mitochondria is a promising approach for assessing their toxicity. In this study, we investigated the effect of some pesticides on isolated potato mitochondria, which used exogenous NADH as a substrate for respiration. We showed that succinate is the most preferred substrate for phosphorylating respiration of intact potato tubers mitochondria. Potato mitochondria poorly oxidize exogenous NADH, despite of the presence of external NADH dehydrogenases. Permeabilization of the mitochondrial membrane with alamethicin increased the availability of exogenous NADH to complex I. However, the pathway of electrons through complex I to complex IV makes intact potato mitochondria susceptible to a number of pesticides such as difenoconazole, fenazaquin, pyridaben and tolfenpyrad, which strongly inhibit the rate of mitochondrial respiration. However, these pesticides only slightly inhibited the rate of oxygen consumption during succinate-supported respiration. Dithianon, the inhibitor of Complex II, is the only pesticide which significantly increased the respiratory rate of NADH-supported respiration of permeabilized mitochondria of potato. Thus, it can be assumed that the alternative NADH dehydrogenases for electron flow represent a factor responsible for plant resistance to xenobiotics, such as mitochondria-targeted pesticides.


Assuntos
Praguicidas , Solanum tuberosum , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias , NAD/metabolismo , NAD/farmacologia , Praguicidas/metabolismo , Praguicidas/toxicidade , Respiração , Solanum tuberosum/metabolismo , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia
11.
Int J Mol Sci ; 23(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628470

RESUMO

The tricarboxylic acid (TCA) metabolite, succinate, is a competitive inhibitor of dioxygenase enzymes that require alpha ketoglutarate as a cofactor. One family of dioxygenases are the ten-eleven translocation (TET) proteins, which oxidize 5-methylcytosine to promote DNA demethylation. Inhibition of DNA demethylation is expected to lead to DNA hypermethylation, at least at genomic regions at which TET proteins are engaged. We treated human bronchial epithelial cells with succinate for five days and confirmed its effect on TET protein function by observing diminished formation of 5-hydroxymethylcytosine, the first oxidation product of the TET enzymatic reaction. We then analyzed global DNA methylation patterns by performing whole-genome bisulfite sequencing. Unexpectedly, we did not observe differentially methylated regions (DMRs) that reached genome-wide statistical significance. We observed a few regions of clustered DNA hypomethylation, which was also not expected based on the proposed mechanisms. We discuss potential explanations for our observations and the implications of these findings for tumorigenesis.


Assuntos
Metilação de DNA , Dioxigenases , DNA/metabolismo , Dioxigenases/genética , Células Epiteliais/metabolismo , Humanos , Succinatos , Ácido Succínico/farmacologia
12.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233276

RESUMO

Hepatocellular carcinoma (HCC) is the second prominent cause of cancer-associated death worldwide. Usually, HCC is diagnosed in advanced stages, wherein sorafenib, a multiple target tyrosine kinase inhibitor, is used as the first line of treatment. Unfortunately, resistance to sorafenib is usually encountered within six months of treatment. Therefore, there is a critical need to identify the underlying reasons for drug resistance. In the present study, we investigated the proteomic and metabolomics alterations accompanying sorafenib resistance in hepatocellular carcinoma Hep3B cells by employing ultra-high-performance liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS). The Bruker Human Metabolome Database (HMDB) library was used to identify the differentially abundant metabolites through MetaboScape 4.0 software (Bruker). For protein annotation and identification, the Uniprot proteome for Homo sapiens (Human) database was utilized through MaxQuant. The results revealed that 27 metabolites and 18 proteins were significantly dysregulated due to sorafenib resistance in Hep3B cells compared to the parental phenotype. D-alanine, L-proline, o-tyrosine, succinic acid and phosphatidylcholine (PC, 16:0/16:0) were among the significantly altered metabolites. Ubiquitin carboxyl-terminal hydrolase isozyme L1, mitochondrial superoxide dismutase, UDP-glucose-6-dehydrogenase, sorbitol dehydrogenase and calpain small subunit 1 were among the significantly altered proteins. The findings revealed that resistant Hep3B cells demonstrated significant alterations in amino acid and nucleotide metabolic pathways, energy production pathways and other pathways related to cancer aggressiveness, such as migration, proliferation and drug-resistance. Joint pathway enrichment analysis unveiled unique pathways, including the antifolate resistance pathway and other important pathways that maintain cancer cells' survival, growth, and proliferation. Collectively, the results identified potential biomarkers for sorafenib-resistant HCC and gave insights into their role in chemotherapeutic drug resistance, cancer initiation, progression and aggressiveness, which may contribute to better prognosis and chemotherapeutic outcomes.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Antagonistas do Ácido Fólico , Neoplasias Hepáticas , Alanina/farmacologia , Aminoácidos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores/metabolismo , Calpaína/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Antagonistas do Ácido Fólico/farmacologia , Glucose/farmacologia , Humanos , L-Iditol 2-Desidrogenase/metabolismo , Neoplasias Hepáticas/metabolismo , Redes e Vias Metabólicas , Nucleotídeos/metabolismo , Fosfatidilcolinas/farmacologia , Prolina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteoma/metabolismo , Proteômica , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Ácido Succínico/farmacologia , Superóxido Dismutase/metabolismo , Tirosina/metabolismo , Ubiquitina Tiolesterase/metabolismo , Difosfato de Uridina/metabolismo
13.
Am J Physiol Cell Physiol ; 321(2): C269-C275, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34133239

RESUMO

Carbon monoxide (CO) is an odorless and colorless gas with multiple sources that include engine exhaust, faulty furnaces, and other sources of incomplete combustion of carbon compounds such as house fires. The most serious complications for survivors of consequential CO exposure are persistent neurological sequelae occurring in up to 50% of patients. CO inhibits mitochondrial respiration by specifically binding to the heme a3 in the active site of CIV-like hydrogen sulfide, cyanide, and phosphides. Although hyperbaric oxygen remains the cornerstone for treatment, it has variable efficacy requiring new approaches to treatment. There is a paucity of cellular-based therapies in the area of CO poisoning, and there have been recent advancements that include antioxidants and a mitochondrial substrate prodrug. The succinate prodrugs derived from chemical modification of succinate are endeavored to enhance delivery of succinate to cells, increasing uptake of succinate into the mitochondria, and providing metabolic support for cells. The therapeutic intervention of succinate prodrugs is thus potentially applicable to patients with CO poisoning via metabolic support for fuel oxidation and possibly improving efficacy of HBO therapy.


Assuntos
Intoxicação por Monóxido de Carbono/tratamento farmacológico , Monóxido de Carbono/toxicidade , Terapia Baseada em Transplante de Células e Tecidos , Ácido Succínico/farmacologia , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Pró-Fármacos/farmacologia
14.
J Cell Physiol ; 236(4): 2920-2933, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32930405

RESUMO

The previous research has shown that mitochondrial flash (mitoflash) genesis are functionally and mechanistically integrated with mitochondrial electron transport chain (ETC) energy metabolism. However, the response of mitoflash to superoxide is not entirely consistent with the response of MitoSOX Red. The generation mechanism of mitoflash is still unclear. Here, we investigated mitoflash activities, using the different combinations of ETC substrates and inhibitors, in permeabilized cardiomyocytes or hearts. We found that blocking the complete electron flow, from Complex I to IV, with any one of ETC inhibitors including rotenone (Rot), antimycin A (AntA), myxothiazol (Myxo), stigmatellin, and sodium cyanide, will lead to the abolishment of mitoflashes triggered by substrates in adult permeabilized cardiomyocytes. However, Myxo boosted mitoflashes triggered by the reverse electron of N,N,N',N'-tetramethyl-p-phenylenediamine/ascorbate. Moreover, Rot and AntA furtherly enhanced mitoflash activity rather than depressed it, suggesting that mitoflashes generated at the Complex III Qo site. Meanwhile, the inhibition of Complex III protein expression resulted in the activity of Complex III decrease, which decreased mitoflash frequency. The function defect (no change of protein level) of the Qo site of Complex III in aging hearts augmented mitoflash generation confirmed the Qo site function was critical to mitoflash genesis. Thus, our results indicate that mitoflash detected by circularly permuted yellow fluorescent protein is generated at the Qo site of Complex III.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Superóxidos/metabolismo , Trifosfato de Adenosina/biossíntese , Envelhecimento/patologia , Animais , Antioxidantes/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos Sprague-Dawley , Ácido Succínico/farmacologia , Acetato de Tetradecanoilforbol/farmacologia
15.
EMBO Rep ; 20(9): e47892, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31318145

RESUMO

The conversion of skeletal muscle fiber from fast twitch to slow-twitch is important for sustained and tonic contractile events, maintenance of energy homeostasis, and the alleviation of fatigue. Skeletal muscle remodeling is effectively induced by endurance or aerobic exercise, which also generates several tricarboxylic acid (TCA) cycle intermediates, including succinate. However, whether succinate regulates muscle fiber-type transitions remains unclear. Here, we found that dietary succinate supplementation increased endurance exercise ability, myosin heavy chain I expression, aerobic enzyme activity, oxygen consumption, and mitochondrial biogenesis in mouse skeletal muscle. By contrast, succinate decreased lactate dehydrogenase activity, lactate production, and myosin heavy chain IIb expression. Further, by using pharmacological or genetic loss-of-function models generated by phospholipase Cß antagonists, SUNCR1 global knockout, or SUNCR1 gastrocnemius-specific knockdown, we found that the effects of succinate on skeletal muscle fiber-type remodeling are mediated by SUNCR1 and its downstream calcium/NFAT signaling pathway. In summary, our results demonstrate succinate induces transition of skeletal muscle fiber via SUNCR1 signaling pathway. These findings suggest the potential beneficial use of succinate-based compounds in both athletic and sedentary populations.


Assuntos
Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Ácido Succínico/farmacologia , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/efeitos dos fármacos , Fadiga Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Cadeias Pesadas de Miosina/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
16.
Neurourol Urodyn ; 40(1): 120-130, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098175

RESUMO

AIM: Succinate activates the receptor GPR91 identified in the bladder. The present study aims to unravel the mechanisms of bladder relaxation by succinate and how the receptor is involved in structural and functional changes of the bladder. METHODS: Physiological recordings of bladder function were carried out by cystometry and organ bath from C57BL/6 mice, homozygous GPR91-/- mice, and Sprague-Dawley (SD) rats. GPR91 expression was confirmed by polymerase chain reaction and tissue morphology was examined by light (Masson trichrome) and fluorescence microscopy. Nitric oxide (NO) and ATP secretion were measured. RESULTS: Bladders of GPR91 KO mice had a greater mass to body weight ratio with a thicker bladder wall compared to C57BL/6 mice. They also displayed increased basal and maximal bladder pressures, and decreased intercontraction intervals, bladder capacity, micturition volume, and compliance. During cystometry, bladders of SD rats and C57BL/6 mice instilled with succinate (10 mM) showed signs of relaxation while bladders of GPR91 KO mice were unresponsive. Similarly, in organ bath, succinate relaxed bladder strips preincubated with carbachol, except GPR91 KO ones. Relaxation was stronger in the presence of urothelium and independent of NO synthesis. Bladder strips from all mice groups showed similar responses to KCl, carbachol, and electrical stimulation. In vitro, succinate increased NO secretion in urothelial cell culture of both C57BL6 and GPR91 KO mice while ATP secretion was potently decreased by succinate in C57BL6 culture only. CONCLUSION: Succinate through GPR91 is essential to bladder structure and contraction. GPR91 relaxes the detrusor partially by decreasing urothelial ATP secretion.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Ácido Succínico/uso terapêutico , Doenças da Bexiga Urinária/tratamento farmacológico , Micção/efeitos dos fármacos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Ácido Succínico/farmacologia
17.
J Biochem Mol Toxicol ; 35(3): e22660, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33156957

RESUMO

The aim of the study was to investigate the hepatoprotective properties of the conjugate of the xymedon drug substance with succinic acid (1a). The study presents an in vitro comparative evaluation of the cytotoxicity and cytoprotective properties of 1a and succinic acid on a cell line of normal human hepatocytes Chang Liver, and in vivo investigation of the ability of 1a to restore liver from the toxic damage caused by CCl4 in Wistar rats. It was shown that the cytotoxicity of 1a was 19.9 ± 0.8 mmol/L, and that of succinic acid was 14.1 ± 0.2 mmol/L. Against the background of d-galactosamine exposure, the cytoprotective effect of 1a was found to be superior to that of succinic acid. It was shown that 1a caused a significant reduction in necrotic and steatosis changes in the liver and restoration of biochemical markers of cytolysis, as well as bilirubin metabolism and synthetic liver function.


Assuntos
Hepatócitos/patologia , Fígado/metabolismo , Pirimidinas , Ácido Succínico , Animais , Linhagem Celular , Citoproteção/efeitos dos fármacos , Humanos , Masculino , Pirimidinas/química , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Ácido Succínico/química , Ácido Succínico/farmacologia
18.
Biometals ; 34(5): 987-1006, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34236558

RESUMO

The effects of both Tl+ and thiol reagents were studied on the content of the inner membrane free SH-groups, detected with Ellman reagent, and the inner membrane potential as well as swelling and respiration of succinate-energized rat liver mitochondria in medium containing TlNO3 and KNO3. These effects resulted in a rise in swelling and a decrease in the content, the potential, and mitochondrial respiration in 3 and 2,4-dinitrophenol-uncoupled states. A maximal effect was seen when phenylarsine oxide reacting with thiol groups recessed into the hydrophobic regions of the membrane. Compared with phenylarsine oxide, the effective concentrations of other reagents were approximately one order of magnitude higher in experiments with mersalyl and 4,4'-diisothiocyanostilbene-2,2'-disulfonate, and two orders of magnitude higher in experiments with tert-butyl hydroperoxide and diamide. The above effects of Tl+ and the thiol reagents became even more pronounced with calcium overload of mitochondria. However, the effects were suppressed by inhibitors of the mitochondrial permeability transition pore (cyclosporine A, ADP, and n-ethylmaleimide). These findings suggest that opening of the pore induced by Tl+ in the inner membrane can be dependent on the conformation state of the adenine nucleotide translocase, which depends on the activity of its thiol groups.


Assuntos
Mitocôndrias Hepáticas , Proteínas de Transporte da Membrana Mitocondrial , Animais , Cálcio/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/farmacologia , Permeabilidade , Ratos , Ratos Wistar , Respiração , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/farmacologia , Reagentes de Sulfidrila/metabolismo , Reagentes de Sulfidrila/farmacologia , Tálio/metabolismo , Tálio/farmacologia
19.
Nature ; 518(7539): 413-6, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25487152

RESUMO

The role of cellular metabolism in regulating cell proliferation and differentiation remains poorly understood. For example, most mammalian cells cannot proliferate without exogenous glutamine supplementation even though glutamine is a non-essential amino acid. Here we show that mouse embryonic stem (ES) cells grown under conditions that maintain naive pluripotency are capable of proliferation in the absence of exogenous glutamine. Despite this, ES cells consume high levels of exogenous glutamine when the metabolite is available. In comparison to more differentiated cells, naive ES cells utilize both glucose and glutamine catabolism to maintain a high level of intracellular α-ketoglutarate (αKG). Consequently, naive ES cells exhibit an elevated αKG to succinate ratio that promotes histone/DNA demethylation and maintains pluripotency. Direct manipulation of the intracellular αKG/succinate ratio is sufficient to regulate multiple chromatin modifications, including H3K27me3 and ten-eleven translocation (Tet)-dependent DNA demethylation, which contribute to the regulation of pluripotency-associated gene expression. In vitro, supplementation with cell-permeable αKG directly supports ES-cell self-renewal while cell-permeable succinate promotes differentiation. This work reveals that intracellular αKG/succinate levels can contribute to the maintenance of cellular identity and have a mechanistic role in the transcriptional and epigenetic state of stem cells.


Assuntos
Células-Tronco Embrionárias/citologia , Espaço Intracelular/metabolismo , Ácidos Cetoglutáricos/metabolismo , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Permeabilidade da Membrana Celular , Proliferação de Células , Cromatina/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Histonas/metabolismo , Ácidos Cetoglutáricos/farmacologia , Metilação , Camundongos , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia , Transcrição Gênica/efeitos dos fármacos
20.
Int J Mol Sci ; 22(1)2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401621

RESUMO

Statins are the cornerstone of lipid-lowering therapy. Although generally well tolerated, statin-associated muscle symptoms (SAMS) represent the main reason for treatment discontinuation. Mitochondrial dysfunction of complex I has been implicated in the pathophysiology of SAMS. The present study proposed to assess the concentration-dependent ex vivo effects of three statins on mitochondrial respiration in viable human platelets and to investigate whether a cell-permeable prodrug of succinate (complex II substrate) can compensate for statin-induced mitochondrial dysfunction. Mitochondrial respiration was assessed by high-resolution respirometry in human platelets, acutely exposed to statins in the presence/absence of the prodrug NV118. Statins concentration-dependently inhibited mitochondrial respiration in both intact and permeabilized cells. Further, statins caused an increase in non-ATP generating oxygen consumption (uncoupling), severely limiting the OXPHOS coupling efficiency, a measure of the ATP generating capacity. Cerivastatin (commercially withdrawn due to muscle toxicity) displayed a similar inhibitory capacity compared with the widely prescribed and tolerable atorvastatin, but did not elicit direct complex I inhibition. NV118 increased succinate-supported mitochondrial oxygen consumption in atorvastatin/cerivastatin-exposed platelets leading to normalization of coupled (ATP generating) respiration. The results acquired in isolated human platelets were validated in a limited set of experiments using atorvastatin in HepG2 cells, reinforcing the generalizability of the findings.


Assuntos
Plaquetas/fisiologia , Respiração Celular , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Mitocôndrias/fisiologia , Consumo de Oxigênio , Ácido Succínico/farmacologia , Adulto , Idoso , Plaquetas/efeitos dos fármacos , Feminino , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA