Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.214
Filtrar
1.
Annu Rev Biochem ; 90: 817-846, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33823652

RESUMO

Sulfonates include diverse natural products and anthropogenic chemicals and are widespread in the environment. Many bacteria can degrade sulfonates and obtain sulfur, carbon, and energy for growth, playing important roles in the biogeochemical sulfur cycle. Cleavage of the inert sulfonate C-S bond involves a variety of enzymes, cofactors, and oxygen-dependent and oxygen-independent catalytic mechanisms. Sulfonate degradation by strictly anaerobic bacteria was recently found to involve C-S bond cleavage through O2-sensitive free radical chemistry, catalyzed by glycyl radical enzymes (GREs). The associated discoveries of new enzymes and metabolic pathways for sulfonate metabolism in diverse anaerobic bacteria have enriched our understanding of sulfonate chemistry in the anaerobic biosphere. An anaerobic environment of particular interest is the human gut microbiome, where sulfonate degradation by sulfate- and sulfite-reducing bacteria (SSRB) produces H2S, a process linked to certain chronic diseases and conditions.


Assuntos
Carbono-Carbono Liases/metabolismo , Microbioma Gastrointestinal/fisiologia , Ácidos Sulfônicos/metabolismo , Acetiltransferases/química , Acetiltransferases/metabolismo , Alcanossulfonatos/metabolismo , Anaerobiose , Bactérias/metabolismo , Carbono-Carbono Liases/química , Glicina/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Ácido Isetiônico/metabolismo , Microbiota/fisiologia , Taurina/metabolismo
2.
J Virol ; 98(2): e0121623, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38236006

RESUMO

Feline infectious peritonitis (FIP) is a fatal feline disease, caused by a feline coronavirus (FCoV), namely feline infectious peritonitis virus (FIPV). We produced a baby hamster kidney 21 (BHK) cell line expressing a serotype I FCoV replicon RNA with a green fluorescent protein (GFP) reporter gene (BHK-F-Rep) and used it as an in vitro screening system to test different antiviral compounds. Two inhibitors of the FCoV main protease (Mpro), namely GC376 and Nirmatrelvir, as well as the nucleoside analog Remdesivir proved to be effective in inhibiting the replicon system. Different combinations of these compounds also proved to be potent inhibitors, having an additive effect when combined. Remdesivir, GC376, and Nirmatrelvir all have a 50% cytotoxic concentration (CC50) more than 200 times higher than their half-maximal inhibitory concentrations (IC50), making them important candidates for future in vivo studies as well as clinically implemented drug candidates. In addition, results were acquired with a virus infection system, where Felis catus whole fetus 4 (Fcwf-4) cells were infected with a previously described recombinant GFP-expressing FIPV (based on the laboratory-adapted serotype I FIPV strain Black) and treated with the most promising compounds. Results acquired with the replicon system were comparable to the results acquired with the virus infection system, demonstrating that we successfully implemented the FCoV replicon system for antiviral screening. We expect that this system will greatly facilitate future screens for anti-FIPV compounds and provide a non-infectious system to study and evaluate drug-resistant mutations that may emerge in the FIPV genome.IMPORTANCEFIPV is of great significance in the cat population around the world, causing 0.3%-1.4% of feline deaths in veterinary practices (2). As there are neither effective preventive measures nor approved treatment options available, there is an urgent need to identify antiviral drugs against FIPV. Our FCoV replicon system provides a valuable tool for drug discovery in vitro. Due to the lack of cell culture systems for serotype I FCoVs (the serotype most prevalent in the feline population) (2), a different system is needed to study these viruses. A viral replicon system is a valuable tool for studying FCoVs. Overall, our results demonstrate the utility of the serotype I feline coronavirus replicon system for antiviral screening as well as to study this virus in general. We propose several compounds representing promising candidates for future clinical trials and ultimately with the potential to save cats suffering from FIP.


Assuntos
Antivirais , Coronavirus Felino , Peritonite Infecciosa Felina , Lactamas , Leucina , Ácidos Sulfônicos , Animais , Gatos , Antivirais/farmacologia , Coronavirus Felino/efeitos dos fármacos , Peritonite Infecciosa Felina/tratamento farmacológico , Lactamas/farmacologia , Leucina/análogos & derivados , RNA , Ácidos Sulfônicos/farmacologia
3.
J Am Chem Soc ; 146(40): 27903-27914, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39326869

RESUMO

Liquid-liquid phase separation (LLPS) of intrinsically disordered proteins has been associated with neurodegenerative diseases, although direct mechanisms are poorly defined. Here, we report on a maturation process for the cellular prion protein (PrPC) that involves a conformational change after LLPS and is regulated by mutations and poly(4-styrenesulfonic acid-co-maleic acid) (PSCMA), a molecule that has been reported to rescue Alzheimer's disease-related cognitive deficits by antagonizing the interaction between PrPC and amyloid-ß oligomers (Aßo). We show that PSCMA can induce reentrant LLPS of PrPC and lower the saturation concentration (Csat) of PrPC by 100-fold. Regardless of the induction method, PrPC molecules subsequently undergo a maturation process to restrict molecular motion in a more solid-like state. The PSCMA-induced LLPS of PrPC stabilizes the intermediate LLPS conformational state detected by NMR, though the final matured ß-sheet-rich state of PrPC is indistinguishable between induction conditions. The disease-associated E200 K mutation of PrPC also accelerates maturation. This post-LLPS shift in protein conformation and dynamics is a possible mechanism of LLPS-induced neurodegeneration.


Assuntos
Mutação , Humanos , Maleatos/química , Maleatos/farmacologia , Conformação Proteica , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Proteínas PrPC/genética , Proteínas PrPC/antagonistas & inibidores , Proteínas Priônicas/química , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Ácidos Sulfônicos/química , Separação de Fases
4.
Int J Cancer ; 154(6): 979-991, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37902275

RESUMO

Human exposure to per- and polyfluoroalkyl substances (PFAS) occurs globally through contaminated food, dust, and drinking water. Studies of PFAS and thyroid cancer have been limited. We conducted a nested case-control study of prediagnostic serum levels of 19 PFAS and papillary thyroid cancer (400 cases, 400 controls) in the Finnish Maternity Cohort (pregnancies 1986-2010; follow-up through 2016), individually matched on sample year and age. We used conditional logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) for log2 transformed and categorical exposures, overall and stratified by calendar period, birth cohort, and median age at diagnosis. We adjusted for other PFAS with Spearman correlation rho = 0.3-0.6. Seven PFAS, including perfluoroctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), N-ethyl-perfluorooctane sulfonamidoacetic acid (EtFOSAA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluorohexane sulfonic acid (PFHxS) were detected in >50% of women. These PFAS were not associated with risk of thyroid cancer, except for PFHxS, which was inversely associated (OR log2 = 0.82, 95% CI: 0.70-0.97). We observed suggestive but imprecise increased risks associated with PFOA, PFOS, and EtFOSAA for those diagnosed at ages <40 years, whereas associations were null or inverse among those diagnosed at 40+ years (P-interaction: .02, .08, .13, respectively). There was little evidence of other interactions. These results show no clear association between PFAS and papillary thyroid cancer risk. Future work would benefit from evaluation of these relationships among those with higher exposure levels and during periods of early development when the thyroid gland may be more susceptible to environmental harms.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Ácidos Sulfônicos , Neoplasias da Glândula Tireoide , Humanos , Feminino , Gravidez , Câncer Papilífero da Tireoide/epidemiologia , Estudos de Casos e Controles , Finlândia/epidemiologia , Fluorocarbonos/efeitos adversos , Neoplasias da Glândula Tireoide/epidemiologia , Neoplasias da Glândula Tireoide/etiologia
5.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G216-G227, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193197

RESUMO

Ulcerative colitis (UC) is an inflammatory disease with abdominal pain, diarrhea, and bloody stool as the main symptoms. Several studies have confirmed that polysaccharides are effective against UC. It is commonly accepted that the traditional benefits of Radix Codonopsis can be attributed to its polysaccharide contents, and inulin-type fructan CP-A is the main active monomer in the polysaccharide components. Herein, we established a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced UC rat model and lipopolysaccharide (LPS)-induced colonic epithelial cell model (NCM460) to investigate the effect of CP-A on UC. Untargeted metabolomics studies were conducted to identify differential metabolites using ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF/MS) and enrich metabolic pathways in rat serum. The in vivo assays demonstrated that CP-A reduces colonic macroscopic injury, disease activity index (DAI), histopathological score, interleukin (IL)-8, and tumor necrosis factor-α (TNF-α) levels, as well as the expression of intercellular adhesion molecules. On the other hand, CP-A increases IL-10 and transforming growth factor-ß (TGF-ß) levels. The in vitro experiments indicated that CP-A treatment could reduce nitric oxide (NO) and IL-1ß after LPS stimulation. The metabolomics results suggested that CP-A therapy for UC may be related to the mammalian target of rapamycin (mTOR) signaling pathway. The in vitro and in vivo validation of the pathway showed similar results, indicating that CP-A alleviates UC by preventing the activation of mTOR/p70S6K signaling pathway. These findings offer a fresh approach to treating UC and a theoretical foundation for the future advancement of CP-A.NEW & NOTEWORTHY We report that an inulin-type fructan from Codonopsis pilosula CP-A exhibits a therapeutic effect on experimental colitis. Its mechanism may be to alleviate intestinal inflammation by preventing the activation of mammalian target of rapamycin (mTOR)/p70S6K signaling pathway. These findings offer a fresh approach to treating ulcerative colitis (UC) and a theoretical foundation for the future advancement of CP-A.


Assuntos
Codonopsis , Colite Ulcerativa , Colite , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Inulina/farmacologia , Frutanos/efeitos adversos , Frutanos/química , Codonopsis/química , Proteínas Quinases S6 Ribossômicas 70-kDa/uso terapêutico , Ácidos Sulfônicos/efeitos adversos , Lipopolissacarídeos , Polissacarídeos , Serina-Treonina Quinases TOR , Colite/induzido quimicamente , Colite/tratamento farmacológico , Modelos Animais de Doenças , Mamíferos
6.
Gastroenterology ; 164(4): 630-641.e34, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36623778

RESUMO

BACKGROUND & AIMS: The etiology of abdominal pain in postinfectious, diarrhea-predominant irritable bowel syndrome (PI-IBS-D) is unknown, and few treatment options exist. Catechol-O-methyltransferase (COMT), an enzyme that inactivates and degrades biologically active catecholamines, plays an important role in numerous physiologic processes, including modulation of pain perception. Our objective was to determine the mechanism(s) of how decreased colonic COMT in PI-IBS-D patients contributes to the chronic abdominal pain phenotype after enteric infections. METHODS: Colon neurons, epithelial cells, and macrophages were procured with laser capture microdissection from PI-IBS-D patients to evaluate cell-specific colonic COMT, microRNA-155 (miR-155), and tumor necrosis factor (TNF) α expression levels compared to recovered patients (infection cleared: did not develop PI-IBS-D) and control individuals. COMT-/-, colon-specific COMT-/-, and miR-155-/- mice and human colonoids were used to model phenotypic expression of COMT in PI-IBS-D patients and to investigate signaling pathways linking abdominal pain. Citrobacter rodentium and trinitrobenzene sulfonic acid animal models were used to model postinflammatory changes seen in PI-IBS-D patients. RESULTS: Colonic COMT levels were significantly decreased and correlated with increased visual analog scale abdominal pain ratings in PI-IBS-D patients compared to recovered patients and control individuals. Colonic miR-155 and TNF-α were increased in PI-IBS-D patients with diminished colonic COMT. COMT-/- mice had significantly increased expression of miR-155 and TNF-α in both colon tissues and dorsal root ganglia. Introduction of cV1q antibody (anti-TNF-α) into mice reversed visceral hypersensitivity after C rodentium and trinitrobenzene sulfonic acid. CONCLUSIONS: Decreased colonic COMT in PI-IBS-D patients drives abdominal pain phenotypes via the COMT/miR-155/TNF-α axis. These important findings will allow new treatment paradigms and more targeted and personalized medicine approaches for gastrointestinal disorders after enteric infections.


Assuntos
Síndrome do Intestino Irritável , MicroRNAs , Humanos , Camundongos , Animais , Síndrome do Intestino Irritável/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Nociceptividade , Inibidores do Fator de Necrose Tumoral , Colo/metabolismo , Dor Abdominal/genética , Dor Abdominal/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Trinitrobenzenos/metabolismo , Ácidos Sulfônicos/metabolismo
7.
Anal Chem ; 96(26): 10791-10799, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38914924

RESUMO

The analysis and detection of snake venom toxins are a matter of great importance in clinical diagnosis for fast treatment and the discovery of new pharmaceutical products. Current detection methods have high associated costs and require the use of sophisticated bioreceptors, which in some cases are difficult to obtain. Herein, we report the synthesis of template-based molecularly imprinted micromotors for dynamic detection of α-bungarotoxin as a model toxin present in the venom of many-banded krait (Bungarus multicinctus). The specific recognition sites are built-in in the micromotors by incubation of the membrane template with the target toxin, followed by a controlled electrodeposition of a poly(3,4-ethylenedioxythiophene)/poly(sodium 4-styrenesulfonate) polymeric layer, a magnetic Ni layer to promote magnetic guidance and facilitate washing steps, and a Pt layer for autonomous propulsion in the presence of hydrogen peroxide. The enhanced fluid mixing and autonomous propulsion increase the likelihood of interactions with the target analyte as compared with static counterparts, retaining the tetramethylrhodamine-labeled α-bungarotoxin on the micromotor surface with extremely fast dynamic sensor response (after just 20 s navigation) in only 3 µL of water, urine, or serum samples. The sensitivity achieved meets the clinically relevant concentration postsnakebite (from 0.1 to 100 µg/mL), illustrating the feasibility of the approach for practical applications. The selectivity of the protocol is very high, as illustrated by the absence of fluorescence in the micromotor surface in the presence of α-cobratoxin as a representative toxin with a size and structure similar to those of α-bungarotoxin. Recoveries higher than 95% are obtained in the analysis of urine- and serum-fortified samples. The new strategy holds considerable promise for fast, inexpensive, and even onsite detection of several toxins using multiple molecularly imprinted micromotors with tailored recognition abilities.


Assuntos
Bungarotoxinas , Bungarotoxinas/química , Bungarotoxinas/urina , Animais , Polímeros/química , Venenos de Serpentes/química , Bungarus , Compostos Bicíclicos Heterocíclicos com Pontes/química , Impressão Molecular , Ácidos Sulfônicos
8.
BMC Biotechnol ; 24(1): 18, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600497

RESUMO

BACKGROUND: Nanotechnology-based drug delivery systems have received much attention over the past decade. In the present study, we synthesized Methyl Urolithin A-loaded solid lipid nanoparticles decorated with the folic acid-linked chitosan layer called MuSCF-NPs and investigated their effects on cancer cells. METHODS: MuSCF-NPs were prepared using a high-pressure homogenization method and characterized using FTIR, FESEM, DLS, and zeta potential methods. Drug encapsulation was assessed by spectrophotometry and its cytotoxic effect on various cancer cells (MDA-MB231, MCF-7, PANC, AGS, and HepG2) by the MTT method. Antioxidant activity was assessed by the ABTS and DPPH methods, followed by expression of genes involved in oxidative stress and apoptosis by qPCR and flow cytometry. RESULTS: The results showed the formation of monodisperse and stable round nanoparticles with a size of 84.8 nm. The drug loading efficiency in MuSCF-NPs was reported to be 88.6%. MuSCF-NPs exhibited selective cytotoxicity against MDA-MB231 cells (IC50 = 40 µg/mL). Molecular analysis showed a significant increase in the expression of Caspases 3, 8, and 9, indicating that apoptosis was occurring in the treated cells. Moreover, flow cytometry results showed that the treated cells were arrested in his SubG1 phase, confirming the pro-apoptotic effect of the nanoparticles. The results indicate a high antioxidant effect of the nanoparticles with IC50 values ​​of 45 µg/mL and 1500 µg/mL against ABTS and DPPH, respectively. The reduction of catalase gene expression confirmed the pro-oxidant effect of nanoparticles in cancer cells treated at concentrations of 20 and 40 µg/mL. CONCLUSIONS: Therefore, our findings suggest that the MuSCF-NPs are suitable candidates, especially for breast cancer preclinical studies.


Assuntos
Benzotiazóis , Quitosana , Cumarínicos , Nanopartículas , Ácidos Sulfônicos , Ácido Fólico/química , Nanopartículas/química , Antioxidantes/farmacologia , Lipídeos , Portadores de Fármacos/química
9.
Toxicol Appl Pharmacol ; 491: 117047, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111555

RESUMO

Per- and polyfluoroalkyl substances (PFAS) bioaccumulate in different organ systems, including bone. While existing research highlights the adverse impact of PFAS on bone density, a critical gap remains in understanding the specific effects on the bone marrow microenvironment, especially the bone marrow adipose tissue (BMAT). Changes in BMAT have been linked to various health consequences, such as the development of osteoporosis and the progression of metastatic tumors in bone. Studies presented herein demonstrate that exposure to a mixture of five environmentally relevant PFAS compounds promotes marrow adipogenesis in vitro and in vivo. We show that among the components of the mixture, PFHxS, an alternative to PFOS, has the highest propensity to accumulate in bone and effectively promote marrow adipogenesis. Utilizing RNAseq approaches, we identified the peroxisome proliferator-activated receptor (PPAR) signaling as a top pathway modulated by PFHxS exposure. Furthermore, we provide results suggesting the activation and involvement of PPAR-gamma (PPARγ) in PFHxS-mediated bone marrow adipogenesis, especially in combination with high-fat diet. In conclusion, our findings demonstrate the potential impact of elevated PFHxS levels, particularly in occupational settings, on bone health, and specifically bone marrow adiposity. This study contributes new insights into the health risks of PFHxS exposure, urging further research on the relationship between environmental factors, diet, and adipose tissue dynamics.


Assuntos
Adipogenia , Medula Óssea , Fluorocarbonos , Camundongos Endogâmicos C57BL , PPAR gama , Ácidos Sulfônicos , Adipogenia/efeitos dos fármacos , Animais , Fluorocarbonos/toxicidade , Camundongos , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , PPAR gama/metabolismo , Ácidos Sulfônicos/toxicidade , Masculino , Transdução de Sinais/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/patologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo
10.
Arch Biochem Biophys ; 754: 109931, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38382807

RESUMO

Dye-decolorizing peroxidases (DyPs) have been intensively investigated for the purpose of industrial dye decolourization and lignin degradation. Unfortunately, the characterization of these peroxidases is hampered by their non-Michaelis-Menten kinetics, exemplified by substrate inhibition and/or positive cooperativity. Although often observed, the underlying mechanisms behind the unusual kinetics of DyPs are poorly understood. Here we studied the kinetics of the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroquinones, and anthraquinone dyes by DyP from the bacterium Thermobifida halotolerans (ThDyP) and solved its crystal structure. We also provide rate equations for different kinetic mechanisms explaining the complex kinetics of heme peroxidases. Kinetic studies along with the analysis of the structure of ThDyP suggest that the substrate inhibition is caused by the non-productive binding of ABTS to the enzyme resting state. Strong irreversible inactivation of ThDyP by H2O2 in the absence of ABTS suggests that the substrate inhibition by H2O2 may be caused by the non-productive binding of H2O2 to compound I. Positive cooperativity was observed only with the oxidation of ABTS but not with the two electron-donating substrates. Although the conventional mechanism of cooperativity cannot be excluded, we propose that the oxidation of ABTS assumes the simultaneous binding of two ABTS molecules to reduce compound I to the enzyme resting state, and this causes the apparent positive cooperativity.


Assuntos
Benzotiazóis , Peroxidase , Ácidos Sulfônicos , Thermobifida , Peroxidase/metabolismo , Thermobifida/metabolismo , Cinética , Peróxido de Hidrogênio , Peroxidases/metabolismo , Corantes/metabolismo
11.
Biomacromolecules ; 25(7): 3909-3919, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38507559

RESUMO

Cellulose nanocrystals (CNCs) are biobased colloidal nanorods that have unlocked new opportunities in the area of sustainable functional nanomaterials including structural films and coatings, biomedical devices, energy, sensing, and composite materials. While selective light reflection and sensing develop from the typical chiral nematic (cholesteric, Nem*) liquid crystallinity exhibited by CNCs, a wealth of technologies would benefit from a nematic liquid crystal (LC) with CNC uniaxial alignment. Therefore, this study answers the central question of whether surfactant complexation suppresses CNC chirality in favor of nematic lyotropic and thermotropic liquid crystallinity. Therein, we use a common surfactant having both nonionic and anionic blocks, namely, oligo(ethylene glycol) alkyl-3-sulfopropyl diether potassium salt (an alcohol ethoxy sulfonate (AES)). AES forms complexes with CNCs in toluene (a representative for nonpolar organic solvent) via hydrogen bonding with an AES' oligo(ethylene glycol) block. A sufficiently high AES weight fraction endows the dispersibility of CNC in toluene. Lyotropic liquid crystallinity with Schlieren textures containing two- and four-point brush defects is observed in polarized optical microscopy (POM), along with the suppression of the cholesteric fingerprint textures. The results suggest a nematic (Nem) phase in toluene. Moreover, thermotropic liquid crystallinity is observed by incorporating an excess of AES, in the absence of an additional solvent and upon mild heating. The Schlieren textures suggest a nematic system that undergoes uniaxial alignment under mild shear. Importantly, replacing AES with a corresponding nonionic surfactant does not lead to liquid crystalline properties, suggesting electrostatic structural control of the charged end group of AES. Overall, we introduce a new avenue to suppress CNC chirality to achieve nematic structures, which resolves the long-sought uniaxial alignment of CNCs in filaments, composite materials, and optical devices.


Assuntos
Celulose , Cristais Líquidos , Nanopartículas , Tensoativos , Tensoativos/química , Celulose/química , Nanopartículas/química , Cristais Líquidos/química , Cristalização , Ácidos Sulfônicos/química , Ligação de Hidrogênio
12.
Bioorg Med Chem Lett ; 105: 129760, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38641151

RESUMO

The naturally occurring bile acid lithocholic acid (LCA) has been a crucial core structure for many non-sugar-containing sialyltranferase (ST) inhibitors documented in literature. With the aim of elucidating the impact of the terminal carboxyl acid substituent of LCA on its ST inhibition, in this present study, we report the (bio)isosteric replacement-based design and synthesis of sulfonate and sulfate analogues of LCA. Among these compounds, the sulfate analogue SPP-002 was found to selectively inhibit N-glycan sialylation by at least an order of magnitude, indicating a substantial improvement in both potency and selectivity when compared to the unmodified parent bile acid. Molecular docking analysis supported the stronger binding of the synthetic analogue in the enzyme active site. Treatment with SPP-002 also hampered the migration, adhesion, and invasion of MDA-MB-231 cells in vitro by suppressing the expression of signaling proteins involved in the cancer metastasis-associated integrin/FAK/paxillin pathway. In totality, these findings offer not only a novel structural scaffold but also valuable insights for the future development of more potent and selective ST inhibitors with potential therapeutic effects against tumor cancer metastasis.


Assuntos
Ácido Litocólico , Simulação de Acoplamento Molecular , Sialiltransferases , Ácido Litocólico/farmacologia , Ácido Litocólico/química , Ácido Litocólico/síntese química , Ácido Litocólico/análogos & derivados , Humanos , Sialiltransferases/antagonistas & inibidores , Sialiltransferases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Relação Estrutura-Atividade , Sulfatos/química , Sulfatos/farmacologia , Sulfatos/síntese química , Metástase Neoplásica , Ácidos Sulfônicos/farmacologia , Ácidos Sulfônicos/química , Ácidos Sulfônicos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Adesão Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Paxilina/metabolismo , Paxilina/antagonistas & inibidores , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/metabolismo , Descoberta de Drogas
13.
Fish Shellfish Immunol ; 146: 109369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38220122

RESUMO

Damiana (Turnera diffusa Willd) was evaluated in vitro for antioxidant and antibacterial activities against Staphylococcus aureus and Streptococcus pyogenes (as a preliminary screening assessment) by high-performance thin-layer chromatography (HPTLC)-Direct bioautography. A study was performed in vivo to evaluate the effects of Damiana enriched diets at 0.5 % on immune parameters in mucus and serum and gene expression in Almaco Jack (Seriola rivoliana) intestine after two and four weeks; an infection with Aeromonas hydrophila at 1x107 colony forming units (CFU) followed and an ex vivo study was carried out using head-kidney leukocytes. Ferric reducing ability of plasma (FRAP) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays showed high antioxidant activities in Damiana leaves; even in the ABTS assay, Damiana at 300 µg/mL showed similar activity to ascorbic acid - the standard control. Damiana exhibited strong in vitro antimicrobial activity against S. aureus and S. pyogenes. In vivo studies showed a strong enhancement of myeloperoxidase, nitric oxide, superoxide dismutase, and catalase activities in mucus and serum of S. rivoliana supplemented with Damiana; their immunological response enhanced after infection with A. hydrophila. IL-1ß, TNF-α, and IL-10 gene expressions upregulated in the fish intestine challenged with the bacterium. Piscidin and macrophage (MARCO) receptor gene expression up-regulated at week 4 and down-regulated after infection. Intestinal histology results confirm that Damiana not cause inflammation or damage. Finally, the ex vivo study confirmed the immunostimulant and protective effects of Damiana through increased phagocytic, respiratory burst, myeloperoxidase activities and nitric oxide generation before and upon the bacterial encounter. These results support the idea that Damiana has the potential as an immunostimulant additive for diets in aquaculture by enhancing immune parameters and protecting Almaco Jack against A. hydrophila infections upon four weeks of supplementation.


Assuntos
Benzotiazóis , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Ácidos Sulfônicos , Turnera , Animais , Turnera/química , Antioxidantes/metabolismo , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/metabolismo , Óxido Nítrico/metabolismo , Staphylococcus aureus/metabolismo , Suplementos Nutricionais/análise , Dieta , Peroxidase/metabolismo , Aeromonas hydrophila , Infecções por Bactérias Gram-Negativas/veterinária , Ração Animal/análise
14.
J Chem Inf Model ; 64(18): 7122-7134, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39250601

RESUMO

Glycosaminoglycans (GAGs) are negatively charged polysaccharides found on cell surfaces, where they regulate transport pathways of foreign molecules toward the cell. The structural and functional diversity of GAGs is largely attributed to varied sulfation patterns along the polymer chains, which makes understanding their molecular recognition mechanisms crucial. Molecular dynamics (MD) simulations, thanks to their unmatched microscopic resolution, have the potential to be a reference tool for exploring the patterns responsible for biologically relevant interactions. However, the capability of molecular dynamics force fields used in biosimulations to accurately capture sulfation-specific interactions is not well established, partly due to the intrinsic properties of GAGs that pose challenges for most experimental techniques. In this work, we evaluate the performance of molecular dynamics force fields for sulfated GAGs by studying ion pairing of Ca2+ to sulfated moieties─N-methylsulfamate and methylsulfate─that resemble N- and O-sulfation found in GAGs, respectively. We tested available nonpolarizable (CHARMM36 and GLYCAM06) and explicitly polarizable (Drude and AMOEBA) force fields, and derived new implicitly polarizable models through charge scaling (prosECCo75 and GLYCAM-ECC75) that are consistent with our developed "charge-scaling" framework. The calcium-sulfamate/sulfate interaction free energy profiles obtained with the tested force fields were compared against reference ab initio molecular dynamics (AIMD) simulations, which serve as a robust alternative to experiments. AIMD simulations indicate that the preferential Ca2+ binding mode to sulfated GAG groups is solvent-shared pairing. Only our scaled-charge models agree satisfactorily with the AIMD data, while all other force fields exhibit poorer agreement, sometimes even qualitatively. Surprisingly, even explicitly polarizable force fields display a notable disagreement with the AIMD data, likely attributed to difficulties in their optimization and possible inherent limitations in depicting high-charge-density ion interactions accurately. Finally, the underperforming force fields lead to unrealistic aggregation of sulfated saccharides, which qualitatively disagrees with our understanding of the soft glycocalyx environment. Our results highlight the importance of accurately treating electronic polarization in MD simulations of sulfated GAGs and caution against over-reliance on currently available models without thorough validation and optimization.


Assuntos
Glicosaminoglicanos , Simulação de Dinâmica Molecular , Eletricidade Estática , Sulfatos , Glicosaminoglicanos/química , Sulfatos/química , Ácidos Sulfônicos/química , Benchmarking , Cálcio/química
15.
Environ Sci Technol ; 58(32): 14575-14584, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39094193

RESUMO

The chromogenic reaction between 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and ferrate [Fe(VI)] has long been utilized for Fe(VI) content measurement. However, the presence of electron-rich organic compounds has been found to significantly impact Fe(VI) detection using the ABTS method, leading to relative errors ranging from ∼88 to 100%. Reducing substances consumed ABTS•+ and resulted in underestimated Fe(VI) levels. Moreover, the oxidation of electron-rich organics containing hydroxyl groups by Fe(VI) could generate a phenoxyl radical (Ph•), promoting the transformation of Fe(VI) → Fe(V) → Fe(IV). The in situ formation of Fe(IV) can then contribute to ABTS oxidation, altering the ABTS•+:Fe(VI) stoichiometry from 1:1 to 2:1. To overcome these challenges, we introduced Mn(II) as an activator and 3,3',5,5'-tetramethylbenzidine (TMB) as a chromogenic agent for Fe(VI) detection. This Mn(II)/TMB method enables rapid completion of the chromogenic reaction within 2 s, with a low detection limit of approximately 4 nM and a wide detection range (0.01-10 µM). Importantly, the Mn(II)/TMB method exhibits superior resistance to reductive interference and effectively eliminates the impact of phenoxyl-radical-mediated intermediate valence iron transfer processes associated with electron-rich organic compounds. Furthermore, this method is resilient to particle interference and demonstrates practical applicability in authentic waters.


Assuntos
Elétrons , Oxirredução , Ferro/química , Compostos Orgânicos/química , Benzotiazóis/química , Ácidos Sulfônicos
16.
Environ Sci Technol ; 58(23): 10227-10239, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38817092

RESUMO

Incidences of thyroid disease, which has long been hypothesized to be partially caused by exposure to thyroid hormone disrupting chemicals (TDCs), have rapidly increased in recent years. However, known TDCs can only explain a small portion (∼1%) of in vitro human transthyretin (hTTR) binding activities in environmental samples, indicating the existence of unknown hTTR ligands. In this study, we aimed to identify the major environmental hTTR ligands by employing protein Affinity Purification with Nontargeted Analysis (APNA). hTTR binding activities were detected in all 11 indoor dust and 9 out of 10 sewage sludge samples by the FITC-T4 displacement assay. By using APNA, 31 putative hTTR ligands were detected including perfluorooctanesulfonate (PFOS). Two of the most abundant ligands were identified as hydrocarbon surfactants (e.g., dodecyl benzenesulfonate). Moreover, another abundant ligand was surprisingly identified as a disulfonate fluorescent brightener, 4,4'-bis(2-sulfostyryl)biphenyl sodium (CBS). CBS was validated as a nM-affinity hTTR ligand with an IC50 of 345 nM. In total, hydrocarbon surfactants and fluorescent brighteners explain 1.92-17.0 and 5.74-54.3% of hTTR binding activities in dust and sludge samples, respectively, whereas PFOS only contributed <0.0001%. Our study revealed for the first time that hydrocarbon sulfonates are previously overlooked hTTR ligands in the environment.


Assuntos
Pré-Albumina , Pré-Albumina/metabolismo , Ligantes , Humanos , Hidrocarbonetos , Fluorocarbonos , Ácidos Alcanossulfônicos , Poeira , Ácidos Sulfônicos
17.
Environ Sci Technol ; 58(1): 150-159, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38153813

RESUMO

Nontarget analysis has gained prominence in screening novel perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the environment, yet remaining limited in human biological matrices. In this study, 155 whole blood samples were collected from the general population in Shijiazhuang City, China. By nontarget analysis, 31 legacy and novel PFASs were assigned with the confidence level of 3 or above. For the first time, 11 PFASs were identified in human blood, including C1 and C3 perfluoroalkyl sulfonic acids (PFSAs), C4 ether PFSA, C8 ether perfluoroalkyl carboxylic acid (ether PFCA), C4-5 unsaturated perfluoroalkyl alcohols, C9-10 carboxylic acid-perfluoroalkyl sulfonamides (CA-PFSMs), and C1 perfluoroalkyl sulfonamide. It is surprising that the targeted PFASs were the highest in the suburban population which was impacted by industrial emission, while the novel PFASs identified by nontarget analysis, such as C1 PFSA and C9-11 CA-PFSMs, were the highest in the rural population who often drank contaminated groundwater. Combining the toxicity prediction results of the bioaccumulation potential, lethality to rats, and binding affinity to target proteins, C3 PFSA, C4 and C7 ether PFSAs, and C9-11 CA-PFSMs exhibit great health risks. These findings emphasize the necessity of broadening nontarget analysis in assessing the PFAS exposure risks, particularly in rural populations.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Humanos , Animais , Ratos , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Ácidos Sulfônicos , Sulfanilamida/análise , Ácidos Carboxílicos/análise , Sulfonamidas , Éteres , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
18.
Environ Sci Technol ; 58(37): 16258-16268, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39146316

RESUMO

Perfluorohexanesulfonic acid (PFHxS), an emerging short-chain per- and polyfluoroalkyl substance, has been frequently detected in aquatic environments. Adverse outcome pathway studies have shown that perfluorinated compounds impair lipid homeostasis through peroxisome proliferator activated receptors (PPARs). However, many of these studies were performed at high concentrations and may thus be a result of overt toxicity. To better characterize the molecular and key events of PFHxS to biota, early life-stage zebrafish (Danio rerio) were exposed to concentrations detected in the environment (0.01, 0.1, 1, and 10 µg/L). Lipidomic and transcriptomic evaluations were integrated to predict potential molecular targets. PFHxS significantly impaired lipid homeostasis by the dysregulation of glycerophospholipids, fatty acyls, glycerolipids, sphingolipids, prenol lipids, and sterol lipids. Informatic analyses of the lipidome and transcriptome indicated alterations of the PPAR signaling pathway, with downstream changes to retinol, linoleic acid, and glycerophospholipid metabolism. To assess the role of PPARs, potential binding of PFHxS to PPARs was predicted and animals were coexposed to a PPAR antagonist (GW6471). Molecular simulation indicated PFHxS had a 27.1% better binding affinity than oleic acid, an endogenous agonist of PPARα. Antagonist coexposures rescued impaired glycerophosphocholine concentrations altered by PFHxS. These data indicate PPARα activation may be an important molecular initiating event for PFHxS.


Assuntos
Homeostase , Larva , PPAR alfa , Peixe-Zebra , Animais , Larva/efeitos dos fármacos , Larva/metabolismo , PPAR alfa/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fluorocarbonos , Ácidos Sulfônicos
19.
Bioorg Med Chem ; 110: 117836, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39029437

RESUMO

Liver cancer is a complex disease that involves various oncoproteins and the inactivation of tumor suppressor proteins (TSPs). Gankyrin is one such oncoprotein, first identified in human hepatocellular carcinoma, that is known to inactivate multiple TSPs, leading to proliferation and metastasis of tumor cells. Despite this, there has been limited development of small molecule gankyrin binders for the treatment of liver cancer. In this study, we are reporting the structure-based design of gankyrin-binding small molecules which inhibit the proliferation of HuH6 and HepG2 cells while also increasing the levels of certain TSPs, such as Rb and p53. Interestingly the first molecule to exhibit inhibition by 3D structure stabilization is seen. These results suggest a possible mechanism for small-molecule inhibition of gankyrin and demonstrate that gankyrin is a viable therapeutic target for the treatment of liver cancer.


Assuntos
Antineoplásicos , Proliferação de Células , Proteínas Proto-Oncogênicas , Triazóis , Humanos , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Relação Estrutura-Atividade , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Ácidos Sulfônicos/química , Ácidos Sulfônicos/farmacologia , Ácidos Sulfônicos/antagonistas & inibidores , Linhagem Celular Tumoral , Ésteres/química , Ésteres/farmacologia , Ésteres/síntese química , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Relação Dose-Resposta a Droga , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Benzenossulfonatos
20.
Bioorg Med Chem ; 101: 117645, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401456

RESUMO

All three possible sulfamate derivatives of the selective estrogen receptor modulator Raloxifene (bis-sulfamate 7 and two mono-sulfamates 8-9) were synthesized and evaluated as inhibitors of the clinical drug target steroid sulfatase (STS), both in cell-free and in cell-based assays, and also as estrogen receptor (ER) modulators. Bis-sulfamate 7 was the most potent STS inhibitor with an IC50 of 12.2 nM in a whole JEG3 cell-based assay, with the two mono-sulfamates significantly weaker. The estrogen receptor-modulating activities of 7-9 showed generally lower affinities compared to Raloxifene HCl, diethylstilbestrol and other known ligands, with mono-sulfamate 8 being the best ligand (Ki of 1.5 nM) for ERα binding, although 7 had a Ki of 13 nM and both showed desirable antagonist activity. The antiproliferative activities of the sulfamate derivatives against the T-47D breast cancer cell line showed 7 as most potent (GI50 = 7.12 µM), comparable to that of Raloxifene. Compound 7 also showed good antiproliferative potency in the NCI-60 cell line panel with a GI50 of 1.34 µM against MDA-MB-231 breast cancer cells. Stability testing of 7-9 showed that bis-sulfamate 7 hydrolyzed by desulfamoylation at a surprisingly rapid rate, initially leading selectively to 8 and finally to Raloxifene 3 without formation of 9. The mechanisms of these hydrolysis reactions could be extensively rationalized. Conversion of Raloxifene (3) into its bis-sulfamate (7) thus produced a promising drug lead with nanomolar dual activity as an STS inhibitor and ERα antagonist, as a potential candidate for treatment of estrogen-dependent breast cancer.


Assuntos
Neoplasias da Mama , Cloridrato de Raloxifeno , Ácidos Sulfônicos , Humanos , Feminino , Cloridrato de Raloxifeno/farmacologia , Receptor alfa de Estrogênio , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Esteril-Sulfatase , Neoplasias da Mama/tratamento farmacológico , Moduladores de Receptor Estrogênico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA