Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.650
Filtrar
1.
Nature ; 626(7998): 419-426, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052229

RESUMO

Determining the structure and phenotypic context of molecules detected in untargeted metabolomics experiments remains challenging. Here we present reverse metabolomics as a discovery strategy, whereby tandem mass spectrometry spectra acquired from newly synthesized compounds are searched for in public metabolomics datasets to uncover phenotypic associations. To demonstrate the concept, we broadly synthesized and explored multiple classes of metabolites in humans, including N-acyl amides, fatty acid esters of hydroxy fatty acids, bile acid esters and conjugated bile acids. Using repository-scale analysis1,2, we discovered that some conjugated bile acids are associated with inflammatory bowel disease (IBD). Validation using four distinct human IBD cohorts showed that cholic acids conjugated to Glu, Ile/Leu, Phe, Thr, Trp or Tyr are increased in Crohn's disease. Several of these compounds and related structures affected pathways associated with IBD, such as interferon-γ production in CD4+ T cells3 and agonism of the pregnane X receptor4. Culture of bacteria belonging to the Bifidobacterium, Clostridium and Enterococcus genera produced these bile amidates. Because searching repositories with tandem mass spectrometry spectra has only recently become possible, this reverse metabolomics approach can now be used as a general strategy to discover other molecules from human and animal ecosystems.


Assuntos
Amidas , Ácidos e Sais Biliares , Ésteres , Ácidos Graxos , Metabolômica , Animais , Humanos , Bifidobacterium/metabolismo , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Clostridium/metabolismo , Estudos de Coortes , Doença de Crohn/metabolismo , Enterococcus/metabolismo , Ésteres/química , Ésteres/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Metabolômica/métodos , Fenótipo , Receptor de Pregnano X/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Amidas/química , Amidas/metabolismo
2.
Cell ; 159(2): 238-40, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25303521

RESUMO

Fatty acids are an important class of signaling molecules regulating key aspects of whole body metabolism and physiology. In this issue, Yore et al. report a group of branched fatty acid esters of hydroxy fatty acids that regulate insulin secretion and glucose uptake through the activation of GPR120.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ésteres/metabolismo , Ácidos Graxos/metabolismo , Animais , Feminino , Humanos , Masculino
3.
Cell ; 159(2): 318-32, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25303528

RESUMO

Increased adipose tissue lipogenesis is associated with enhanced insulin sensitivity. Mice overexpressing the Glut4 glucose transporter in adipocytes have elevated lipogenesis and increased glucose tolerance despite being obese with elevated circulating fatty acids. Lipidomic analysis of adipose tissue revealed the existence of branched fatty acid esters of hydroxy fatty acids (FAHFAs) that were elevated 16- to 18-fold in these mice. FAHFA isomers differ by the branched ester position on the hydroxy fatty acid (e.g., palmitic-acid-9-hydroxy-stearic-acid, 9-PAHSA). PAHSAs are synthesized in vivo and regulated by fasting and high-fat feeding. PAHSA levels correlate highly with insulin sensitivity and are reduced in adipose tissue and serum of insulin-resistant humans. PAHSA administration in mice lowers ambient glycemia and improves glucose tolerance while stimulating GLP-1 and insulin secretion. PAHSAs also reduce adipose tissue inflammation. In adipocytes, PAHSAs signal through GPR120 to enhance insulin-stimulated glucose uptake. Thus, FAHFAs are endogenous lipids with the potential to treat type 2 diabetes.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ésteres/metabolismo , Ácidos Graxos/metabolismo , Adulto , Animais , Diabetes Mellitus Tipo 2/dietoterapia , Dieta , Ésteres/administração & dosagem , Ésteres/análise , Ácidos Graxos/administração & dosagem , Ácidos Graxos/análise , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Humanos , Inflamação/dietoterapia , Insulina/metabolismo , Resistência à Insulina , Lipogênese , Masculino , Espectrometria de Massas , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptores Acoplados a Proteínas G/metabolismo
4.
Nature ; 623(7986): 397-405, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914940

RESUMO

Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain1. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues2-6. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development7-10. However, current approaches do not incorporate microglia or address their role in organoid maturation11-21. Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac)22. In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2+ lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2+ lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis.


Assuntos
Encéfalo , Colesterol , Células-Tronco Pluripotentes Induzidas , Microglia , Células-Tronco Neurais , Neurogênese , Organoides , Animais , Humanos , Camundongos , Encéfalo/citologia , Encéfalo/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Microglia/citologia , Microglia/metabolismo , Organoides/citologia , Organoides/metabolismo , Colesterol/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Axônios , Proliferação de Células , Ésteres/metabolismo , Gotículas Lipídicas/metabolismo
5.
Nature ; 606(7916): 968-975, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676490

RESUMO

Branched fatty acid (FA) esters of hydroxy FAs (HFAs; FAHFAs) are recently discovered lipids that are conserved from yeast to mammals1,2. A subfamily, palmitic acid esters of hydroxy stearic acids (PAHSAs), are anti-inflammatory and anti-diabetic1,3. Humans and mice with insulin resistance have lower PAHSA levels in subcutaneous adipose tissue and serum1. PAHSA administration improves glucose tolerance and insulin sensitivity and reduces inflammation in obesity, diabetes and immune-mediated diseases1,4-7. The enzyme(s) responsible for FAHFA biosynthesis in vivo remains unknown. Here we identified adipose triglyceride lipase (ATGL, also known as patatin-like phospholipase domain containing 2 (PNPLA2)) as a candidate biosynthetic enzyme for FAHFAs using chemical biology and proteomics. We discovered that recombinant ATGL uses a transacylation reaction that esterifies an HFA with a FA from triglyceride (TG) or diglyceride to produce FAHFAs. Overexpression of wild-type, but not catalytically dead, ATGL increases FAHFA biosynthesis. Chemical inhibition of ATGL or genetic deletion of Atgl inhibits FAHFA biosynthesis and reduces the levels of FAHFA and FAHFA-TG. Levels of endogenous and nascent FAHFAs and FAHFA-TGs are 80-90 per cent lower in adipose tissue of mice in which Atgl is knocked out specifically in the adipose tissue. Increasing TG levels by upregulating diacylglycerol acyltransferase (DGAT) activity promotes FAHFA biosynthesis, and decreasing DGAT activity inhibits it, reinforcing TGs as FAHFA precursors. ATGL biosynthetic transacylase activity is present in human adipose tissue underscoring its potential clinical relevance. In summary, we discovered the first, to our knowledge, biosynthetic enzyme that catalyses the formation of the FAHFA ester bond in mammals. Whereas ATGL lipase activity is well known, our data establish a paradigm shift demonstrating that ATGL transacylase activity is biologically important.


Assuntos
Aciltransferases , Ésteres , Ácidos Graxos , Hidroxiácidos , Aciltransferases/genética , Aciltransferases/metabolismo , Tecido Adiposo/química , Tecido Adiposo/metabolismo , Animais , Diglicerídeos , Esterificação , Ésteres/química , Ésteres/metabolismo , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Humanos , Hidroxiácidos/química , Hidroxiácidos/metabolismo , Resistência à Insulina , Camundongos , Triglicerídeos
6.
Nature ; 609(7929): 1005-1011, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36131016

RESUMO

Lysosomes have many roles, including degrading macromolecules and signalling to the nucleus1. Lysosomal dysfunction occurs in various human conditions, such as common neurodegenerative diseases and monogenic lysosomal storage disorders (LSDs)2-4. For most LSDs, the causal genes have been identified but, in some, the function of the implicated gene is unknown, in part because lysosomes occupy a small fraction of the cellular volume so that changes in lysosomal contents are difficult to detect. Here we develop the LysoTag mouse for the tissue-specific isolation of intact lysosomes that are compatible with the multimodal profiling of their contents. We used the LysoTag mouse to study CLN3, a lysosomal transmembrane protein with an unknown function. In children, the loss of CLN3 causes juvenile neuronal ceroid lipofuscinosis (Batten disease), a lethal neurodegenerative LSD. Untargeted metabolite profiling of lysosomes from the brains of mice lacking CLN3 revealed a massive accumulation of glycerophosphodiesters (GPDs)-the end products of glycerophospholipid catabolism. GPDs also accumulate in the lysosomes of CLN3-deficient cultured cells and we show that CLN3 is required for their lysosomal egress. Loss of CLN3 also disrupts glycerophospholipid catabolism in the lysosome. Finally, we found elevated levels of glycerophosphoinositol in the cerebrospinal fluid of patients with Batten disease, suggesting the potential use of glycerophosphoinositol as a disease biomarker. Our results show that CLN3 is required for the lysosomal clearance of GPDs and reveal Batten disease as a neurodegenerative LSD with a defect in glycerophospholipid metabolism.


Assuntos
Ésteres , Glicerofosfolipídeos , Fosfatos de Inositol , Lisossomos , Glicoproteínas de Membrana , Chaperonas Moleculares , Animais , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Criança , Ésteres/metabolismo , Glicerofosfolipídeos/líquido cefalorraquidiano , Glicerofosfolipídeos/metabolismo , Humanos , Fosfatos de Inositol/líquido cefalorraquidiano , Fosfatos de Inositol/metabolismo , Doenças por Armazenamento dos Lisossomos/líquido cefalorraquidiano , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Lipofuscinoses Ceroides Neuronais/líquido cefalorraquidiano , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo
7.
Nature ; 609(7928): 801-807, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35901960

RESUMO

Anorexia and fasting are host adaptations to acute infection, and induce a metabolic switch towards ketogenesis and the production of ketone bodies, including ß-hydroxybutyrate (BHB)1-6. However, whether ketogenesis metabolically influences the immune response in pulmonary infections remains unclear. Here we show that the production of BHB is impaired in individuals with SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) but not in those with  influenza-induced ARDS. We found that BHB promotes both the survival of and the production of interferon-γ by CD4+ T cells. Applying a metabolic-tracing analysis, we established that BHB provides an alternative carbon source to fuel oxidative phosphorylation (OXPHOS) and the production of bioenergetic amino acids and glutathione, which is important for maintaining the redox balance. T cells from patients with SARS-CoV-2-induced ARDS were exhausted and skewed towards glycolysis, but could be metabolically reprogrammed by BHB to perform OXPHOS, thereby increasing their functionality. Finally, we show in mice that a ketogenic diet and the delivery of BHB as a ketone ester drink restores CD4+ T cell metabolism and function in severe respiratory infections, ultimately reducing the mortality of mice infected with SARS-CoV-2. Altogether, our data reveal that BHB is an alternative source of carbon that promotes T cell responses in pulmonary viral infections, and highlight impaired ketogenesis as a potential confounding factor in severe COVID-19.


Assuntos
COVID-19 , Metabolismo Energético , Cetonas , Síndrome do Desconforto Respiratório , SARS-CoV-2 , Linfócitos T , Ácido 3-Hidroxibutírico/biossíntese , Ácido 3-Hidroxibutírico/metabolismo , Aminoácidos/biossíntese , Aminoácidos/metabolismo , Animais , COVID-19/complicações , COVID-19/imunologia , COVID-19/patologia , Dieta Cetogênica , Ésteres/metabolismo , Glutationa/biossíntese , Glutationa/metabolismo , Glicólise , Interferon gama/biossíntese , Corpos Cetônicos/metabolismo , Cetonas/metabolismo , Camundongos , Orthomyxoviridae/patogenicidade , Oxirredução , Fosforilação Oxidativa , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2/patogenicidade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
8.
FASEB J ; 38(18): e70025, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39279493

RESUMO

Extracellular hydrolysis of the phosphate esters of B vitamins (B1, B2, and B6) is crucial for their cellular uptake and metabolism. Although a few zinc-dependent enzymes have been implicated in these processes, their exact mechanisms of action remain largely unknown. This study investigated the potential involvement of phosphate group hydrolyzing enzymes in the hydrolysis of B vitamin phosphate esters. We evaluated enzyme activity in membrane lysates prepared from cells transiently transfected with these enzymes or those endogenously expressing them. Specifically, we investigated how zinc deficiency affects the rate of hydrolysis of B vitamin phosphate esters in cellular lysates. Assessment of the activities of zinc-dependent ectoenzymes in the lysates prepared from cells cultured in zinc-deficient conditions and in the serum of rats fed zinc-deficient diets revealed that zinc deficiency reduced the extracellular hydrolysis activity of B vitamin phosphate esters. Furthermore, our findings explain the similarities between several symptoms of B vitamin and zinc deficiencies. Collectively, this study provides novel insights into the diverse symptoms of zinc deficiency and could guide the development of appropriate clinical strategies.


Assuntos
Ésteres , Zinco , Animais , Zinco/metabolismo , Zinco/deficiência , Ratos , Hidrólise , Ésteres/metabolismo , Humanos , Masculino , Complexo Vitamínico B/metabolismo , Fosfatos/metabolismo , Fosfatos/deficiência , Vitamina B 6/metabolismo , Ratos Wistar
9.
Nature ; 570(7760): 219-223, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31132786

RESUMO

The combination of computational design and laboratory evolution is a powerful and potentially versatile strategy for the development of enzymes with new functions1-4. However, the limited functionality presented by the genetic code restricts the range of catalytic mechanisms that are accessible in designed active sites. Inspired by mechanistic strategies from small-molecule organocatalysis5, here we report the generation of a hydrolytic enzyme that uses Nδ-methylhistidine as a non-canonical catalytic nucleophile. Histidine methylation is essential for catalytic function because it prevents the formation of unreactive acyl-enzyme intermediates, which has been a long-standing challenge when using canonical nucleophiles in enzyme design6-10. Enzyme performance was optimized using directed evolution protocols adapted to an expanded genetic code, affording a biocatalyst capable of accelerating ester hydrolysis with greater than 9,000-fold increased efficiency over free Nδ-methylhistidine in solution. Crystallographic snapshots along the evolutionary trajectory highlight the catalytic devices that are responsible for this increase in efficiency. Nδ-methylhistidine can be considered to be a genetically encodable surrogate of the widely employed nucleophilic catalyst dimethylaminopyridine11, and its use will create opportunities to design and engineer enzymes for a wealth of valuable chemical transformations.


Assuntos
Evolução Molecular Direcionada , Hidrolases/genética , Hidrolases/metabolismo , Engenharia de Proteínas , 4-Aminopiridina/análogos & derivados , 4-Aminopiridina/metabolismo , Biocatálise , Domínio Catalítico/genética , Cristalografia por Raios X , Ésteres/metabolismo , Código Genético , Hidrolases/química , Hidrólise , Metilistidinas/metabolismo , Modelos Moleculares , Mutagênese , Mutação , Pyrococcus horikoshii/enzimologia , Pyrococcus horikoshii/genética , Especificidade por Substrato/genética
10.
Biochemistry ; 63(20): 2580-2593, 2024 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-39359146

RESUMO

As a traceless, bioreversible modification, the esterification of carboxyl groups in peptides and proteins has the potential to increase their clinical utility. An impediment is the lack of strategies to quantify esterase-catalyzed hydrolysis rates for esters in esterified biologics. We have developed a continuous Förster resonance energy transfer (FRET) assay for esterase activity based on a peptidic substrate and a protease, Glu-C, that cleaves a glutamyl peptide bond only if the glutamyl side chain is a free acid. Using pig liver esterase (PLE) and human carboxylesterases, we validated the assay with substrates containing simple esters (e.g., ethyl) and esters designed to be released by self-immolation upon quinone methide elimination. We found that simple esters were not cleaved by esterases, likely for steric reasons. To account for the relatively low rate of quinone methide elimination, we extended the mathematics of the traditional Michaelis-Menten model to conclude with a first-order intermediate decay step. By exploring two regimes of our substrate → intermediate → product (SIP) model, we evaluated the rate constants for the PLE-catalyzed cleavage of an ester on a glutamyl side chain (kcat/KM = 1.63 × 103 M-1 s-1) and subsequent spontaneous quinone methide elimination to regenerate the unmodified peptide (kI = 0.00325 s-1; t1/2 = 3.55 min). The detection of esterase activity was also feasible in the human intestinal S9 fraction. Our assay and SIP model increase the understanding of the release kinetics of esterified biologics and facilitate the rational design of efficacious peptide prodrugs.


Assuntos
Esterases , Peptídeos , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Humanos , Animais , Peptídeos/química , Peptídeos/metabolismo , Suínos , Esterases/metabolismo , Esterases/química , Transferência Ressonante de Energia de Fluorescência , Fígado/enzimologia , Cinética , Hidrólise , Especificidade por Substrato , Ésteres/química , Ésteres/metabolismo
11.
J Am Chem Soc ; 146(40): 27267-27273, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39331495

RESUMO

α-Amino esters are precursors to noncanonical amino acids used in developing small-molecule therapeutics, biologics, and tools in chemical biology. α-C-H amination of abundant and inexpensive carboxylic acid esters through nitrene transfer presents a direct approach to α-amino esters. Methods for nitrene-mediated amination of the protic α-C-H bonds in carboxylic acid esters, however, are underdeveloped. This gap arises because hydrogen atom abstraction (HAA) of protic C-H bonds by electrophilic metal-nitrenoids is slow: metal-nitrenoids preferentially react with polarity-matched, hydridic C-H bonds, even when weaker protic C-H bonds are present. This study describes the discovery and evolution of highly stable protoglobin nitrene transferases that catalyze the enantioselective intermolecular amination of the α-C-H bonds in carboxylic acid esters. We developed a high-throughput assay to evaluate the activity and enantioselectivity of mutant enzymes together with their sequences using the Every Variant Sequencing (evSeq) method. The assay enabled the identification of enantiodivergent enzymes that function at ambient conditions in Escherichia coli whole cells and whose activities can be enhanced by directed evolution for the amination of a range of substrates.


Assuntos
Biocatálise , Ésteres , Ésteres/química , Ésteres/metabolismo , Aminação , Aminoácidos/química , Aminoácidos/metabolismo , Ácidos Carboxílicos/química , Estereoisomerismo , Estrutura Molecular , Iminas/química , Iminas/metabolismo
12.
Chembiochem ; 25(7): e202300848, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38353515

RESUMO

We have recently discovered that ester-stabilized phosphorus ylides, resulting from deprotonation of a phosphonium salt such as [Ph3PCH2COOR], can transfer protons across artificial and biological membranes. To create more effective cationic protonophores, we synthesized similar phosphonium salts with one ((heptyloxycarbonylmethyl)(p-tolyl)bromide) or two ((butyloxycarbonylmethyl)(3,5-xylyl)osphonium bromide) methyl substituents in the phenyl groups. The methylation enormously augmented both protonophoric activity of the ylides on planar bilayer lipid membrane (BLM) and uncoupling of mammalian mitochondria, which correlated with strongly accelerated flip-flop of their cationic precursors across the BLM.


Assuntos
Mitocôndrias Hepáticas , Fósforo , Animais , Mitocôndrias Hepáticas/metabolismo , Fósforo/metabolismo , Ésteres/metabolismo , Brometos/metabolismo , Metilação , Bicamadas Lipídicas/metabolismo , Mamíferos
13.
PLoS Pathog ; 18(7): e1010615, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35816546

RESUMO

Tuberculosis (TB) is one of the leading infectious diseases of global concern, and one quarter of the world's population are TB carriers. Biotin metabolism appears to be an attractive anti-TB drug target. However, the first-stage of mycobacterial biotin synthesis is fragmentarily understood. Here we report that three evolutionarily-distinct BioH isoenzymes (BioH1 to BioH3) are programmed in biotin synthesis of Mycobacterium smegmatis. Expression of an individual bioH isoform is sufficient to allow the growth of an Escherichia coli ΔbioH mutant on the non-permissive condition lacking biotin. The enzymatic activity in vitro combined with biotin bioassay in vivo reveals that BioH2 and BioH3 are capable of removing methyl moiety from pimeloyl-ACP methyl ester to give pimeloyl-ACP, a cognate precursor for biotin synthesis. In particular, we determine the crystal structure of dimeric BioH3 at 2.27Å, featuring a unique lid domain. Apart from its catalytic triad, we also dissect the substrate recognition of BioH3 by pimeloyl-ACP methyl ester. The removal of triple bioH isoforms (ΔbioH1/2/3) renders M. smegmatis biotin auxotrophic. Along with the newly-identified Tam/BioC, the discovery of three unusual BioH isoforms defines an atypical 'BioC-BioH(3)' paradigm for the first-stage of mycobacterial biotin synthesis. This study solves a long-standing puzzle in mycobacterial nutritional immunity, providing an alternative anti-TB drug target.


Assuntos
Antituberculosos , Biotina , Biotina/química , Biotina/metabolismo , Escherichia coli/metabolismo , Ésteres/metabolismo , Isoenzimas/metabolismo
14.
Metab Eng ; 85: 180-193, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39134117

RESUMO

Despite being present in trace amounts, ethyl esters play a crucial role as flavour compounds in lager beer. In yeast, ethyl hexanoate, ethyl octanoate and ethyl decanoate, responsible for fruity and floral taste tones, are synthesized from the toxic medium chain acyl-CoA intermediates released by the fatty acid synthase complex during the fatty acid biosynthesis, as a protective mechanism. The aim of this study was to enhance the production of ethyl esters in the hybrid lager brewing yeast Saccharomyces pastorianus by improving the medium chain acyl-CoA precursor supply. Through CRISPR-Cas9-based genetic engineering, specific FAS1 and FAS2 genes harbouring mutations in domains of the fatty acid synthesis complex were overexpressed in a single and combinatorial approach. These mutations in the ScFAS genes led to specific overproduction of the respective ethyl esters: overexpression of ScFAS1I306A and ScFAS2G1250S significantly improved ethyl hexanoate production and ScFAS1R1834K boosted the ethyl octanoate production. Combinations of ScFAS1 mutant genes with ScFAS2G1250S greatly enhanced predictably the final ethyl ester concentrations in cultures grown on full malt wort, but also resulted in increased levels of free medium chain fatty acids causing alterations in flavour profiles. Finally, the elevated medium chain fatty acid pool was directed towards the ethyl esters by overexpressing the esterase ScEEB1. The genetically modified S. pastorianus strains were utilized in lager beer production, and the resulting beverage exhibited significantly altered flavour profiles, thereby greatly expanding the possibilities of the flavour palette of lager beers.


Assuntos
Cerveja , Ésteres , Engenharia Metabólica , Saccharomyces , Saccharomyces/genética , Saccharomyces/metabolismo , Ésteres/metabolismo , Sistemas CRISPR-Cas , Aromatizantes/metabolismo
15.
Plant Physiol ; 193(4): 2442-2458, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590971

RESUMO

Volatile esters in apple (Malus domestica) fruit are the critical aroma components determining apple flavor quality. While the exact molecular regulatory mechanism remains unknown, jasmonic acid (JA) plays a crucial role in stimulating the synthesis of ester aromas in apples. In our study, we investigated the effects of methyl jasmonate (MeJA) on the production of ester aroma in apples. MeJA treatment significantly increased ester aroma synthesis, accompanied by the upregulation of several genes involved in the jasmonate pathway transduction. Specifically, expression of the gene MdMYC2, which encodes a transcription factor associated with the jasmonate pathway, and the R2R3-MYB transcription factor gene MdMYB85 increased upon MeJA treatment. Furthermore, the essential gene ALCOHOL ACYLTRANSFERASE 1 (MdAAT1), encoding an enzyme responsible for ester aroma synthesis, showed increased expression levels as well. Our investigation revealed that MdMYC2 and MdMYB85 directly interacted with the promoter region of MdAAT1, thereby enhancing its transcriptional activity. In addition, MdMYC2 and MdMYB85 directly bind their promoters and activate transcription. Notably, the interaction between MdMYC2 and MdMYB85 proteins further amplified the regulatory effect of MdMYB85 on MdMYC2 and MdAAT1, as well as that of MdMYC2 on MdMYB85 and MdAAT1. Collectively, our findings elucidate the role of the gene module consisting of MdMYC2, MdMYB85, and MdAAT1 in mediating the effects of JA and promoting ester aroma synthesis in apples.


Assuntos
Malus , Malus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Odorantes , Proteínas de Plantas/metabolismo , Ésteres/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas
16.
Insect Mol Biol ; 33(4): 405-416, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38478920

RESUMO

Odorant-binding proteins (OBPs) initiate insect olfactory perception and mediate specific binding and selection of odorants via uncertain binding mechanisms. We characterized the binding characteristics of four OBPs from the striped flea beetle Phyllotreta striolata (SFB), a major cruciferous crop pest. Tissue expression analysis revealed that the two ABPII OBPs (PstrOBP12 and PstrOBP19) were highly expressed mainly in the antenna, whereas the two minus-C OBPs (PstrOBP13 and PstrOBP16) showed a broad expression pattern. Competitive binding assays of cruciferous plant volatiles showed that PstrOBP12, PstrOBP16 and PstrOBP19 had very strong binding capacities for only two phthalate esters (Ki < 20 µM), and PstrOBP13 specifically bound to four aromatic volatiles (Ki < 11 µM). Fluorescence quenching assays displayed that two phthalate esters bound to three PstrOBPs via different quenching mechanisms. PstrOBP12/PstrOBP16-diisobutyl phthalate and PstrOBP19-bis(6-methylheptyl) phthalate followed static quenching, while PstrOBP12/PstrOBP16-bis(6-methylheptyl) phthalate and PstrOBP19-diisobutyl phthalate followed dynamic quenching. Homology modelling and molecular docking displayed that PstrOBP12-diisobutyl phthalate was driven by H-bonding and van der Waals interactions, while PstrOBP16-diisobutyl phthalate and PstrOBP19-bis(6-methylheptyl) phthalate followed hydrophobic interactions. Finally, behavioural activity analysis demonstrated that phthalate esters exhibited different behavioural activities of SFB at different doses, with low doses attracting and high doses repelling. Overall, we thus revealed the different binding properties of the three PstrOBPs to two phthalate esters, which was beneficial in shedding light on the ligand-binding mechanisms of OBPs.


Assuntos
Besouros , Ésteres , Proteínas de Insetos , Ácidos Ftálicos , Receptores Odorantes , Animais , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/química , Besouros/metabolismo , Ácidos Ftálicos/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/genética , Ésteres/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Filogenia
17.
Environ Sci Technol ; 58(39): 17441-17453, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39298521

RESUMO

This study provides a comprehensive investigation into the structure-dependent uptake, distribution, biotransformation, and potential toxicity effects of alkyl organophosphate esters (OPEs) in hydroponic lettuce (Lactuca sativa L.). Trimethyl, triethyl, and tripropyl phosphates were readily absorbed and acropetally translocated, while tributyl, tripentyl, and trihexyl phosphates accumulated mainly in lateral roots. The acropetal translocation potential was negatively associated with log Kow values. Trimethyl and triethyl phosphates are less prone to biotransformation, while a total of 14 novel hydrolysis, hydroxylated, and conjugated metabolites were identified for other OPEs using nontarget analysis. The extent of hydroxylation decreases from tripropyl phosphate to trihexyl phosphate, but multiple hydroxylations occurred more frequently on longer chain OPEs. Further comparative toxicity test revealed that hydrolyzed and hydroxylated metabolites have stronger toxic effects on Ca2+-dependent protein kinases (CDPK) than their parent OPEs. Dibutyl 3-hydroxybutyl phosphate particularly induces upregulation of CDPK in lateral roots of lettuce, probably associated with adenine reduction that may play an important role in the self-defense and detoxification processes. This study contributes to understanding the uptake and transformation behaviors of alkyl OPEs as well as their associations with a toxic effect on lettuce. This emphasizes the necessary evaluation of the environmental risk of the use of OPEs, particularly focusing on their hydroxylated metabolites.


Assuntos
Ésteres , Lactuca , Organofosfatos , Lactuca/efeitos dos fármacos , Lactuca/metabolismo , Ésteres/metabolismo , Organofosfatos/toxicidade , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos
18.
Environ Sci Technol ; 58(13): 5739-5749, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38456395

RESUMO

Epidemiological studies have demonstrated the embryonic and developmental toxicity of plasticizers. Thus, understanding the in utero biotransformation and accumulation of plasticizers is essential to assessing their fate and potential toxicity in early life. In the present study, 311 infant hair samples and 271 paired meconium samples were collected at birth in Guangzhou, China, to characterize fetal exposure to legacy and emerging plasticizers and their metabolites. Results showed that most of the target plasticizers were detected in infant hair, with medians of 9.30, 27.6, and 0.145 ng/g for phthalate esters (PAEs), organic phosphate ester (OPEs), and alternative plasticizers (APs), and 1.44, 0.313, and 0.066 ng/g for the metabolites of PAEs, OPEs, and APs, respectively. Positive correlations between plasticizers and their corresponding primary metabolites, as well as correlations among the oxidative metabolites of bis(2-ethylhexyl) phthalate (DEHP) and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), were observed, indicating that infant hair retained the major phase-I metabolism of the target plasticizers. While no positive correlations were found in parent compounds or their primary metabolites between paired infant hair and meconium, significant positive correlations were observed among secondary oxidative metabolites of DEHP and DINCH in hair and meconium, suggesting that the primary metabolites in meconium come from hydrolysis of plasticizers in the fetus but most of the oxidative metabolites come from maternal-fetal transmission. The parent compound/metabolite ratios in infant hair showed a decreasing trend across pregnancy, suggesting in utero accumulation and deposition of plasticizers. To the best of our knowledge, this study is the first to report in utero exposure to both parent compounds and metabolites of plasticizers by using paired infant hair and meconium as noninvasive biomonitoring matrices and provides novel insights into the fetal biotransformation and accumulation of plasticizers across pregnancy.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Humanos , Gravidez , Recém-Nascido , Feminino , Plastificantes , Mecônio/metabolismo , Dietilexilftalato/metabolismo , Dietilexilftalato/toxicidade , Ácidos Ftálicos/metabolismo , Cabelo/metabolismo , Organofosfatos , Biotransformação , Ésteres/metabolismo , Exposição Ambiental/análise
19.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565314

RESUMO

AIMS: Ethyl hexanoate, one of the key flavor compounds in strong-flavor Baijiu. To improve the content of ethyl hexanoate in strong-flavor Baijiu, a functional strain with high yield of ethyl hexanoate was screened and its ester-producing performance was studied. METHODS AND RESULTS: Upon identification, the strain was classified as Candida sp. and designated as ZY002. Under optimal fermentation conditions, the content of ethyl hexanoate synthesized by ZY002 can be as high as 170.56 mg L-1. A fermentation test was carried out using the ZY002 strain bioaugmented Daqu to verify the role of the strain applied to Baijiu brewing. It was found that strain ZY002 could not only improve the moisture and alcohol contents of fermented grains but also diminish the presence of reducing sugar and crude starch. Furthermore, it notably amplified the abundance of flavor compounds. CONCLUSION: In this study, Candida sp. ZY002 with a high yield of ethyl hexanoate provided high-quality strain resources for the actual industrial production of Baijiu.


Assuntos
Candida , Caproatos , Ésteres , Fermentação , Alimentos Fermentados , Caproatos/metabolismo , Ésteres/metabolismo , Ésteres/análise , Alimentos Fermentados/microbiologia , Alimentos Fermentados/análise , Candida/metabolismo , Aromatizantes/metabolismo , Microbiologia de Alimentos , Bebidas Alcoólicas/microbiologia , Bebidas Alcoólicas/análise
20.
Environ Res ; 249: 118431, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38346481

RESUMO

Plant uptake, accumulation, and transformation of organophosphate esters (OPEs) play vital roles in their geochemical cycles and exposure risks. Here we reviewed the recent research advances in OPEs in plants. The mean OPE concentrations based on dry/wet/lipid weight varied in 4.80-3,620/0.287-26.8/12,000-315,000 ng g-1 in field plants, and generally showed positive correlations with those in plant habitats. OPEs with short-chain substituents and high hydrophilicity, particularly the commonly used chlorinated OPEs, showed dominance in most plant samples, whereas some tree barks, fruits, seeds, and roots demonstrated dominance of hydrophobic OPEs. Both hydrophilic and hydrophobic OPEs can enter plants via root and foliar uptake, and the former pathway is mainly passively mediated by various membrane proteins. After entry, different OPEs undergo diverse subcellular distributions and acropetal/basipetal/intergenerational translocations, depending on their physicochemical properties. Hydrophilic OPEs mainly exist in cell sap and show strong transferability, hydrophobic OPEs demonstrate dominant distributions in cell wall and limited migrations owing to the interception of Casparian strips and cell wall. Additionally, plant species, transpiration capacity, growth stages, commensal microorganisms, and habitats also affect OPE uptake and transfer in plants. OPE metabolites derived from various Phase I transformations and Phase II conjugations are increasingly identified in plants, and hydrolysis and hydroxylation are the most common metabolic processes. The metabolisms and products of OPEs are closely associated with their structures and degradation resistance and plant species. In contrast, plant-derived food consumption contributes considerably to the total dietary intakes of OPEs by human, particularly the cereals, and merits specifical attention. Based on the current research limitations, we proposed the research perspectives regarding OPEs in plants, with the emphases on their behavior and fate in field plants, interactions with plant-related microorganisms, multiple uptake pathways and mechanisms, and comprehensive screening analysis and risk evaluation.


Assuntos
Plantas , Humanos , Plantas/metabolismo , Ésteres/metabolismo , Organofosfatos/metabolismo , Poluentes Ambientais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA