Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Biochem Mol Toxicol ; 35(3): e22676, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33315275

RESUMO

The liver is the main organ responsible for drug and xenobiotic metabolism and detoxification in the body. There are many antiepileptic drugs and nanoparticles that have been reported to cause serious untoward biological responses and hepatotoxicity. The aim of this study is to investigate the potential toxic effect of aspartic acid-coated magnesium oxide nanoparticles (Mg nano) and valproate (valp) using an in vitro three-dimensional (3D) human liver organoid model and an in vivo pentylenetetrazole (PTZ)-induced convulsion model in rats. Here, 3D human liver organoids were treated with valp or valp + Mg nano for 24 h and then incubated with PTZ for an extra 24 h. As the in vivo model, rats were treated with valp, Mg nano, or valp + Mg nano for 4 weeks and then they were treated with PTZ for 24 h. Toxicity in the liver organoids was demonstrated by reduced cell viability, decreased ATP, and increased reactive oxygen species. In the rat convulsion model, results revealed elevated serum alanine aminotransferase and aspartate aminotransferase levels. Both the in vitro and in vivo data demonstrated the potential toxic effects of valp + Mg nano on the liver tissues.


Assuntos
Hepatócitos/metabolismo , Fígado/metabolismo , Óxido de Magnésio/toxicidade , Nanopartículas/toxicidade , Organoides/metabolismo , Ácido Valproico/efeitos adversos , Hepatócitos/patologia , Humanos , Fígado/patologia , Organoides/patologia , Ácido Valproico/farmacologia
2.
Arch Toxicol ; 93(6): 1491-1500, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30989313

RESUMO

Nanoparticles (NPs) are increasingly used in different consumer-related areas, for instance in food packaging or as additives, because of their enormous potential. Magnesium oxide (MgO) is an EU-approved food additive (E number 530). It is commonly used as a drying agent for powdered foods, for colour retention or as a food supplement. There are no consistent results regarding the effects of oral MgO NP uptake. Consequently, the aim of this study was to examine the effects of MgO NPs in the HT29 intestinal cell line. MgO NP concentrations ranged from 0.001 to 100 µg/ml and incubation times were up to 24 h. The cytotoxic and genotoxic potential were investigated. Apoptotic processes and cell cycle changes were analysed by flow cytometry. Finally, oxidative stress was examined. Transmission electron microscopy indicated that there was no cellular uptake. MgO NPs had no cytotoxic or genotoxic effects in HT29 cells and they did not induce apoptotic processes, cell cycle changes or oxidative stress.


Assuntos
Óxido de Magnésio/toxicidade , Nanopartículas Metálicas/toxicidade , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HT29 , Humanos , Óxido de Magnésio/metabolismo , Mutagênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos
3.
Environ Toxicol ; 33(4): 396-410, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29282847

RESUMO

Increased utilization and exposure levels of Magnesium oxide (MgO) nanoparticles (NPs) to humans and environment may raise unexpected consequences. The goal of this study was to evaluate the toxicological implications of MgO NPs and MPs after 28 day repeated oral administration in Wistar rats with three different doses (250, 500, and 1000 mg/kg). The MgO particles were characterised systematically in order to get more insights of the toxicological behaviour. MgO NPs induced significant DNA damage and aberrations in chromosomes. Moreover, hepatic enzymes released into the systemic circulation caused significant elevated levels of physiological enzymes in blood. NPs could interfere with proteins and enzymes and alter the redox balance in cell environment. Significant accumulation of Mg in all tissues and clearance via urine and faeces was noted in size dependent kinetics. Oral administration of MgO NPs altered the biochemical and genotoxic parameters in dose dependent and gender independent manner.


Assuntos
Dano ao DNA , Óxido de Magnésio/toxicidade , Nanopartículas Metálicas/toxicidade , Administração Oral , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Óxido de Magnésio/farmacocinética , Masculino , Tamanho da Partícula , Ratos Wistar , Distribuição Tecidual
4.
J Environ Sci (China) ; 66: 125-137, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29628079

RESUMO

Allium cepa bioassay had been used from decades for the assessment of toxicants and their harmful effects on environment as well as human health. Magnesium oxide (MgO) particles are being utilized in different fields. However, reports on the adverse effects of MgO nanoparticles on the environment and mankind are scarce. Hence, the toxicity of MgO particles is of concern because of their increased utilization. In the current study, A. cepa was used as an indicator to assess the toxicological efficiency of MgO nano- and microparticles (NPs and MPs) at a range of exposure concentrations (12.5, 25, 50, and 100µg/mL). The toxicity was evaluated by using various bioassays on A. cepa root tip cells such as comet assay, oxidative stress and their uptake/internalization profile. Results indicated a dose dependent increase in chromosomal aberrations and decrease in mitotic index (MI) when compared to control cells and the effect was more significant for NPs than MPs (at p<0.05). Comet analysis revealed that the Deoxyribonucleic acid (DNA) damage in terms of percent tail DNA ranged from 6.8-30.1 over 12.5-100µg/mL concentrations of MgO NPs and was found to be significant at the exposed concentrations. A significant increase in generation of hydrogen peroxide and superoxide radicals was observed in accordance with the lipid peroxidation profile in both MgO NPs and MPs treated plants when compared with control. In conclusion, this investigation revealed that MgO NPs exposure exhibited greater toxicity on A. cepa than MPs.


Assuntos
Óxido de Magnésio/toxicidade , Nanopartículas Metálicas/toxicidade , Cebolas/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Testes de Toxicidade/métodos , Bioensaio/métodos , Peroxidação de Lipídeos/efeitos dos fármacos
5.
J Adhes Dent ; 18(4): 325-30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27419241

RESUMO

PURPOSE: To examine whether a difference exists between the in vivo biocompatibility of glass-ionomer cements (GICs) containing chlorhexidine (CHX) in different concentrations. MATERIALS AND METHODS: Eighty-four male Wistar rats were distributed into 7 groups (n = 12) and received subcutaneous implants of small tubes containing different materials, as follows: Ketac control (K), Ketac-CHX 10% (K10), Ketac-CHX 18% (K18), Resilience control (R), Resilience-CHX 10% (R10), Resilience-CHX 18% (R18), Control (polyethylene). The animals were then sacrificed on post-insertion days 7, 15 and 30, and tissues were examined under an optical microscope for inflammatory infiltrate, edema, necrosis, granulation tissue, multinucleated giant cells, and collagen fibers. The results were statistically analyzed using Kruskal-Wallis and Dunn's tests (p < 0.05). RESULTS: Groups K18 and R18 showed larger areas of intense inflammatory infiltrate, with significant differences between group C and groups K18 and R18 (p = 0.007) at 7 days, and between groups C and K18 (p = 0.017) at 15 days. In terms of tissue repair, groups K18 and R18 demonstrated a lower quantity of collagen fibers with significant differences from group C (p = 0.019) at 7 days, and between group K18 and group C (p = 0.021) at 15 days. CONCLUSION: The 18% concentration of CHX was shown to have a toxic effect. The 10% concentration of CHX was shown to be suitable for tissue contact. The addition of CHX to the glass-ionomer cements is a highly promising method for obtaining of an antibacterial GIC for use in clinical practice.


Assuntos
Anti-Infecciosos Locais/administração & dosagem , Materiais Biocompatíveis/toxicidade , Clorexidina/administração & dosagem , Cimentos de Ionômeros de Vidro/toxicidade , Resinas Acrílicas/química , Resinas Acrílicas/toxicidade , Animais , Anti-Infecciosos Locais/química , Anti-Infecciosos Locais/toxicidade , Materiais Biocompatíveis/química , Ácido Carbônico/química , Ácido Carbônico/toxicidade , Clorexidina/química , Clorexidina/toxicidade , Colágeno/efeitos dos fármacos , Materiais Dentários/química , Materiais Dentários/toxicidade , Edema/induzido quimicamente , Fibroblastos/efeitos dos fármacos , Células Gigantes/efeitos dos fármacos , Cimentos de Ionômeros de Vidro/química , Tecido de Granulação/efeitos dos fármacos , Óxido de Magnésio/química , Óxido de Magnésio/toxicidade , Masculino , Teste de Materiais , Necrose , Cimento de Policarboxilato/química , Cimento de Policarboxilato/toxicidade , Polietileno/química , Distribuição Aleatória , Ratos , Tela Subcutânea/efeitos dos fármacos , Óxido de Zinco/química , Óxido de Zinco/toxicidade
6.
Int J Toxicol ; 35(4): 429-37, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27177543

RESUMO

Worldwide researchers have rising concerns about magnesium-based materials, especially magnesium oxide (MgO) nanaoparticles, due to increasing usage as promising structural materials in various fields including cancer treatment. However, there is a serious lack of information about their toxicity at the cellular and molecular levels. In this study, the toxic potentials of MgO nanoparticles were investigated on liver (HepG2), kidney (NRK-52E), intestine (Caco-2), and lung (A549) cell lines. For the toxicological assessment, the following assays were used: the particle characterization by transmission electron microscopy, the determination of cellular uptake by inductively coupled plasma-mass spectrometry, MTT and neutral red uptake assays for cytotoxicity, comet assay for genotoxicity, and the determination of malondialdehyde (MDA), 8-hydroxydeoxyguanosine, protein carbonyl, and glutathione levels by enzyme-linked immune sorbent assays for the potential of oxidative damage and annexin V-fluorescein isothiocyanate (FITC) apoptosis detection assay with propidium iodide (PI) for apoptosis. Magnesium oxide nanoparticles were taken up by the cells depending on their concentration and agglomeration/aggregation potentials. Magnesium oxide nanoparticles induced DNA (≤14.27 fold) and oxidative damage. At a concentration of ≥323.39 µg/mL, MgO nanoparticles caused 50% inhibition in cell viability by 2 different cytotoxicity assays. The cell sensitivity to cytotoxic and genotoxic damage induced by MgO nanoparticles was ranked as HepG2 < A549 < Caco-2 < NRK-52E. Although it was observed that MgO nanoparticles induced apoptotic effects on the cells, apoptosis was not the main cell death. DNA damage, cell death, and oxidative damage effects of MgO nanoparticles should raise concern about the safety associated with their applications in consumer products.


Assuntos
Óxido de Magnésio/toxicidade , Nanopartículas Metálicas/toxicidade , 8-Hidroxi-2'-Desoxiguanosina , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Ratos
7.
Ecotoxicol Environ Saf ; 122: 260-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26283286

RESUMO

Magnesium oxide nanoparticles (MgONPs) are used in medicine, manufacturing and food industries. Because of their extensive application in our daily lives, environmental exposure to these nanoparticles is inevitable. The present study examined the effects of MgONPs on zebrafish (Danio rerio) early developmental stages. The results showed that, at different concentrations, MgONPs induced cellular apoptosis and intracellular reactive oxygen species. The hatching rate and survival of embryos decreased in a dose dependent manner. The 96-h LC50 value of MgONPs on zebrafish survival was 428 mg/l and the 48-h EC50 value of MgONPs on zebrafish embryo hatching rate was 175 mg/l. Moreover different types of malformation were observed in exposed embryos. The results demonstrate the toxic effects of MgONPs on zebrafish embryos and emphasize the need for further studies.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Óxido de Magnésio/toxicidade , Nanopartículas/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Animais , Apoptose/efeitos dos fármacos , Embrião não Mamífero/anormalidades , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Larva/efeitos dos fármacos , Larva/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidade
8.
Environ Toxicol ; 30(3): 308-14, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24096598

RESUMO

In this study, we have evaluated the pulmonary toxicity of MgO nanoparticles (MgO NPs) in rats following their exposure. NPs in phosphate buffered saline + 1% Tween 80 were exposed via intratracheal instillation at a doses of 1 mg/kg or 5 mg/kg into rat lungs and evaluated for various tissue damage markers like alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in bronchoalveolar lavage (BAL) fluid and histopathology of lungs at 1, 7, and 30 days of post-exposure intervals. A dose-dependant increase in ALP and LDH activity was observed in BAL fluids of rat lungs than sham control at all post-exposure periods (P <0.05), and a dose-dependant infiltration of interstitial lymphocytes, peribronchiolar lymphocytic infiltration, and dilated and/or congested vessels at 1 day post-exposure period, worsened at 1 week period, and were reduced at 1 month at histology, indicating the pulmonary toxicity of MgO NPs. In conclusion, MgO NPs exposure produced a dose-dependent pulmonary toxicity in rats and was comparable with that of Quartz particles.


Assuntos
Pneumopatias/induzido quimicamente , Pneumopatias/patologia , Óxido de Magnésio/toxicidade , Nanopartículas/toxicidade , Fosfatase Alcalina/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/citologia , Relação Dose-Resposta a Droga , L-Lactato Desidrogenase/metabolismo , Pulmão/patologia , Masculino , Infiltração de Neutrófilos/efeitos dos fármacos , Quartzo/toxicidade , Ratos , Ratos Wistar
9.
Small ; 10(6): 1171-83, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24344000

RESUMO

The toxicity of metal oxide nanomaterials and their antimicrobial activity is attracting increasing attention. Among these materials, MgO is particularly interesting as a low cost, environmentally-friendly material. The toxicity of MgO, similar to other metal oxide nanomaterials, is commonly attributed to the production of reactive oxygen species (ROS). We investigated the toxicity of three different MgO nanoparticle samples, and clearly demonstrated robust toxicity towards Escherichia coli bacterial cells in the absence of ROS production for two MgO nanoparticle samples. Proteomics data also clearly demonstrate the absence of oxidative stress and indicate that the primary mechanism of cell death is related to the cell membrane damage, which does not appear to be due to lipid peroxidation.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Óxido de Magnésio/toxicidade , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Escherichia coli/efeitos da radiação , Escherichia coli/ultraestrutura , Ontologia Genética , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos da radiação , Testes de Sensibilidade Microbiana , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo , Raios Ultravioleta
10.
Langmuir ; 30(38): 11366-74, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25184703

RESUMO

ZnMgO nanoparticles have shown potential for medical applications as an efficient antibacterial agent. In this work, we investigate the effect of water and two commonly used cell culture media on the physicochemical properties of ZnMgO nanoparticles in correlation with their cytotoxicity. In vacuum, ZnMgO nanopowder consists of MgO (nanocubes) and ZnO (nanotetrapods and nanorods) particles. Upon exposure to water or the Luria-Bertani solution, ZnO characteristic shapes were not observable while MgO nanocubes transformed into octahedral form. In addition, water caused morphological alternations in form of disordered and fragmented structures. This effect was directly reflected in UV/vis absorption properties of ZnMgO, implying that formation of new states within the band gap of ZnO and redistribution of specific sites on MgO surfaces occurs in the presence of water. In mammalian culture cell medium, ZnMgO nanoparticles were shapeless, agglomerated, and coated with surrounding proteins. Serum albumin was found to adsorb as a major but not the only protein. Adsorbed albumin mainly preserved its α-helix secondary structure. Finally, the cytotoxicity of ZnMgO was shown to strongly depend on the environment: in the presence of serum proteins ZnMgO nanopowder was found to be safe for mammalian cells while highly toxic in a serum-free medium or a medium containing only albumin. Our results demonstrate that nanostructured ZnMgO reaches living cells with modified morphology and surface structure when compared to as-synthesized particles kept in vacuum. In addition, its biocompatibility can be modulated by proteins from biological environment.


Assuntos
Meios de Cultura/farmacologia , Óxido de Magnésio/química , Óxido de Magnésio/toxicidade , Nanopartículas/química , Água/farmacologia , Óxido de Zinco/química , Óxido de Zinco/toxicidade , Adsorção , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Físico-Química , Meios de Cultura/química , Cães , Humanos , Células Madin Darby de Rim Canino , Tamanho da Partícula , Albumina Sérica/química , Propriedades de Superfície , Água/química
11.
Drug Chem Toxicol ; 37(4): 400-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24393043

RESUMO

The purpose of this research was to evaluate toxicity of uncoated magnesium oxide nanoparticles (MgO NPs), MgO NPs coated with Peanut agglutinin (PNA) lectin, and PNA alone on the promastigotes of Leishmania major (L. major) and macrophages of BALB/c mice. On the other hand, antileishmanial property of uncoated MgO NPs, lectin coated MgO NPs, and PNA lectin alone was evaluated, and also macrophage activation was investigated after treatment with these materials by measurement of nitrite, H2O2, and some interleukins. This study showed that PNA lectin and lectin coated MgO NPs had approximately no toxicity on L. major and macrophages, but some toxic effects were observed for uncoated MgO NPs, especially at concentration of 500 µg/mL. Interestingly, lectin coated MgO NPs had the highest antileishmanial activity and macrophage activation, compared with uncoated MgO NPs and PNA lectin.


Assuntos
Antiprotozoários/farmacologia , Óxido de Magnésio/farmacologia , Nanopartículas , Aglutinina de Amendoim/química , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/toxicidade , Peróxido de Hidrogênio/metabolismo , Interleucinas/metabolismo , Leishmania major/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Óxido de Magnésio/administração & dosagem , Óxido de Magnésio/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Nitritos/metabolismo
12.
Biol Trace Elem Res ; 202(2): 736-742, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37231319

RESUMO

Nanotechnology is an advancing and emerging field of all environmental, medical, and industrial applications. Magnesium oxide nanoparticles have been widely used in medicine, consumer products, industrial products, textiles, ceramics, alleviation of heartburn, stomach ulcers, and bone regeneration. In the present study, acute toxicity (LC50) of MgO nanoparticles and hematological and histopathological changes in Cirrhinus mrigala was analyzed. The lethal concentration for 50% of MgO nanoparticles was 4.2321 mg/L. Hematological parameters such as white blood cells, red blood cells, hematocrit, hemoglobin, platelets, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration, as well as histopathological abnormalities in gills, muscle, and liver were observed on the 7th and 14th days of exposure. The WBC, RBC, HCT, Hb, and platelets count increased on the 14th day of exposure compared to the control and 7th day of exposure. The MCV, MCH, and MCHC levels decreased on the 7th day of exposure compared to the control and increased on the 14th day. Histopathological changes of MgO nanoparticles in gills, muscle, and liver highly damaged in the quantity of 3.6 mg/L compared to 12 mg/L on 7th and 14th days of exposure. This study finds the level of exposure in hematology and histopathological changes in tissues in relation to the exposure of MgO NPs.


Assuntos
Cyprinidae , Hematologia , Nanopartículas , Animais , Óxido de Magnésio/toxicidade , Brânquias/patologia , Hemoglobinas , Fígado/patologia , Nanopartículas/toxicidade , Músculos
13.
Environ Sci Pollut Res Int ; 31(20): 30149-30162, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602634

RESUMO

Nanoparticles, particularly magnesium oxide nanoparticles (MgO-NPs), are increasingly utilized in various fields, yet their potential impact on cellular systems remains a topic of concern. This study aimed to comprehensively investigate the molecular mechanisms underlying MgO-NP-induced cellular impairment in Saccharomyces cerevisiae, with a focus on cell wall integrity, endoplasmic reticulum (ER) stress response, mitochondrial function, lipid metabolism, autophagy, and epigenetic alterations. MgO-NPs were synthesized through a chemical reduction method, characterized for morphology, size distribution, and elemental composition. Concentration-dependent toxicity assays were conducted to evaluate the inhibitory effect on yeast growth, accompanied by propidium iodide (PI) staining to assess membrane damage. Intracellular reactive oxygen species (ROS) accumulation was measured, and chitin synthesis, indicative of cell wall perturbation, was examined along with the expression of chitin synthesis genes. Mitochondrial function was assessed through Psd1 localization, and ER structure was analyzed using dsRed-HDEL marker. The unfolded protein response (UPR) pathway activation was monitored, and lipid droplet formation and autophagy induction were investigated. Results demonstrated a dose-dependent inhibition of yeast growth by MgO-NPs, with concomitant membrane damage and ROS accumulation. Cell wall perturbation was evidenced by increased chitin synthesis and upregulation of chitin synthesis genes. MgO-NPs impaired mitochondrial function, disrupted ER structure, and activated the UPR pathway. Lipid droplet formation and autophagy were induced, indicating cellular stress responses. Additionally, MgO-NPs exhibited differential cytotoxicity on histone mutant strains, implicating specific histone residues in cellular response to nanoparticle stress. Immunoblotting revealed alterations in histone posttranslational modifications, particularly enhanced methylation of H3K4me. This study provides comprehensive insights into the multifaceted effects of MgO-NPs on S. cerevisiae, elucidating key molecular pathways involved in nanoparticle-induced cellular impairment. Understanding these mechanisms is crucial for assessing nanoparticle toxicity and developing strategies for safer nanoparticle applications.


Assuntos
Parede Celular , Estresse do Retículo Endoplasmático , Óxido de Magnésio , Nanopartículas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/efeitos dos fármacos , Óxido de Magnésio/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Autofagia/efeitos dos fármacos
14.
Toxicol Ind Health ; 29(10): 897-903, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22673104

RESUMO

In this present study, antioxidant status was evaluated in rat serum following exposure to magnesium oxide (MgO) nanoparticles. The lungs of rats were intratracheally instilled with (single dose) phosphate-buffered saline (PBS) + 1% of Tween 80 (solvent control) or MgO or carbonyl iron (negative control) or quartz particles (positive control) at a dose of 1 and 5 mg/kg of body weight. The blood samples were collected at 1, 7, and 30 days of postinstillation of nanoparticles after their exposure, and different parameters were estimated to assess the oxidative stress induced by the instillation of MgO. Exposure of rats to MgO produced a significant (p < 0.05) dose-dependent reduction in blood total antioxidant capacity, superoxide dismutase, and catalase activity levels than PBS + 1% Tween 80 control group. This reduction in the antioxidant capacity in MgO nanoparticle-exposed rats indicates the reduction in antioxidant defense mechanisms due to the instillation of MgO. These results indicate that exposure to MgO nanoparticles induces oxidative stress by reducing the total antioxidant capacity in rats. The findings suggest possible occupational health hazard in chronic exposures.


Assuntos
Óxido de Magnésio/toxicidade , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Administração por Inalação , Análise de Variância , Animais , Antioxidantes/análise , Catalase/sangue , Óxido de Magnésio/administração & dosagem , Masculino , Nanopartículas/administração & dosagem , Ratos , Ratos Wistar , Superóxido Dismutase/sangue
15.
Ann Med ; 55(2): 2258917, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37769030

RESUMO

INTRODUCTION: Magnesium oxide nanoparticles (MgO NPs) have a variety of applications that have contributed to their elevated popularity, however, the safety and toxic effects on humans are also of concern with these increased applications. There is insufficient data regarding the effect of MgO NPs on reproductive organs, which are crucial aspects to the body's vital physiological functions. The present study was undertaken in male and female rats to assess the reproductive toxicological potential of two doses (low versus high) of MgO NPs on testicular and ovarian tissues. The toxicity was evaluated using histological, hormonal, and oxidative parameters. MATERIAL AND METHODS: In this work, magnesium oxide nanoparticles (MgO NPs) were synthesized by the sol-gel route and were characterized by X ray diffraction analysis (XRD) and Fourier transform infra-red spectroscopy (FTIR). Forty-eight adult Wister albino rats were used in this experiment which were divided into groups of male and female, and then further into control, low dose MgO NPs, and high dose MgO NPs. The low dose used was 131.5 mg/kg b.w. (1/10 LD50) while the high dose used was 263 mg/kg b.w. (1/5 LD50). All doses were given orally by gastric tube. After 4 weeks, blood samples were collected to investigate the level of sex hormones and both ovarian and testicular tissues were examined for variable oxidative parameters and histopathological changes by light microscopy. RESULTS: The obtained findings showed that high dose of MgO NPs produced considerable changes in sex hormones and stress parameters in both male and female rats in comparison to the low dose and control groups. Histomorphometric analysis demonstrated the presence of histopathological alterations in the testicular and ovarian tissues. CONCLUSION: The results of this study showed dose-dependent adverse effects of MgO NPs on the testis and ovary both functionally and histopathologically as compared to the control rats.


Assuntos
Óxido de Magnésio , Nanopartículas Metálicas , Ratos , Masculino , Humanos , Feminino , Animais , Óxido de Magnésio/toxicidade , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Ratos Wistar , Genitália , Hormônios Esteroides Gonadais
16.
Nanotoxicology ; 16(3): 393-407, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35818303

RESUMO

The use of metal oxide nanoparticles (NPs) is steadily spreading, leading to increased environmental exposures to many organisms, including humans. To improve our knowledge of this potential hazard, we have evaluated the genotoxic risk of cerium oxide (CeO2NPs) and magnesium oxide (MgONPs) nanoparticle exposures using Drosophila as an in vivo assay model. In this study, two well-known assays, such as the wing somatic mutation and recombination test (wing-spot assay) and the single-cell gel electrophoresis test (comet assay) were used. As a novelty, and for the first time, changes in the expression levels of a wide panel of DNA repair genes were also evaluated. Our results indicate that none of the concentrations of CeO2NPs increased the total spot frequency in the wing-spot assay, while induction was observed at the highest dose of MgONPs. Regarding the comet assay, both tested NPs were unable to induce single DNA strand breaks or oxidative damage in DNA bases. Nevertheless, exposure to CeO2NPs induced significant increases in the expression levels of the Mlh1 and Brca2 genes, which are involved in the double-strand break repair pathway, together with a decrease in the expression levels of the MCPH1 and Rad51D genes. Regarding the effects of MgONPs exposure, the expression levels of the Ercc1, Brca2, Rad1, mu2, and stg genes were significantly increased, while Mlh1 and MCPH1 genes were decreased. Our results show the usefulness of our approach in detecting mild genotoxic effects by evaluating changes in the expression of a panel of genes involved in DNA repair pathways.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Animais , Proteínas de Ciclo Celular , Cério/toxicidade , Ensaio Cometa , Proteínas do Citoesqueleto , DNA , Dano ao DNA , Drosophila , Humanos , Óxido de Magnésio/toxicidade , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Óxidos
17.
Ann Med ; 53(1): 1850-1862, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34693843

RESUMO

Introduction: Recently, zein-coated MgO nanowires were synthesized, which could be promising as an effective antimicrobial compounds that can be combined in the preparation of a diversity of new dental formulations. However, there is a deficiency of information concerning their toxicological profile regarding the human health.Objective: This in vivo study aimed to explore the hepato- and nephrotoxicity of low versus high doses of zein-coated MgO nanowires in rats.Materials and Methods: A 21-day recurrent dose toxicity research was carried out. Wistar rats were divided into 2 main groups, males and females (n = 18). Each group was further subdivided into 3 subgroups: control, MgO-zein nanowires low dose, MgO-zein nanowires high dose. The low dose used was 100 mg/kg while the high dose used was 200 mg/kg.Results: The results showed that MgO-zein nanowires at both doses did not affect the electrolytes levels compared to the control levels. Also, they did not produce any significant alteration in liver function markers in both rats' genders. MgO-zein nanowires at both doses did not produce any effective alteration in serum creatinine in treated rats of both genders. Moreover, very minimal histological alterations were observed in both doses of MgO-zein nanowires in liver and kidney of both genders.Conclusion: Based on the observed safety of zein-coated MgO nanowires, it can be utilized as an effective antimicrobial compound that can be combined in the preparation of a diversity of new dental formulations.KEY MESSAGESMgO NPs are globally used in multiple fields including the therapeutic field.Zein has wide pharmaceutical applications especially coating the tablet over sugar.There are no cytotoxic studies that investigate MgO-zein nanowires safety until now.


Assuntos
Anti-Infecciosos/farmacologia , Óxido de Magnésio/toxicidade , Nanofios , Zeína/química , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Óxido de Magnésio/farmacologia , Masculino , Ratos , Ratos Wistar
18.
J Hazard Mater ; 411: 124884, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33858076

RESUMO

In the present scenario, the development of eco-friendly multifunctional biocidal substances with low cost and high efficiency, has become the center of focus. This study is, focused on the synthesis of magnesium oxide (MgO) and chitosan-modified magnesium oxide (CMgO) nanoparticles (NPs), via a green precipitation process. In this process, leaves extract of Plumbago zeylanica L was, used as a nucleating agent. The MgO and CMgO NPs exhibit face-centered cubic structures, as confirmed by XRD studies. Morphologically, the FESEM and TEM images showed that the MgO and CMgO NPs were spherical, with an average particle size of ~40±2 and ~37±2 nm, respectively. EDX spectra were used to identify the elemental compositions of the nanoparticles. By using FTIR spectra, the Mg-O stretching frequency of MgO and CMgO NPs were observed at 431 and 435 cm-1, respectively. The photoluminescence (PL) spectra of MgO and CMgO NPs, revealed oxygen vacancies at 499 nm and 519 nm, respectively, due to the active radicals generated, which were responsible for their biocidal activities. The toxicity effects of the nanoparticles developed, on cell viability (antibacterial and anticancer), were measured on the MCF-7 cell line and six different types of gram-negative bacteria. The antibacterial activities of the nanoparticles on: Klebsiella pneumoniae, Escherichia coli, Shigella dysenteriae, Pseudomonas aeruginosa, Proteus vulgaris and Vibrio cholerae bacteria, were studied with the well diffusion method. The MgO and CMgO NPs were tested on breast cancer cell line (MCF-7) via an MTT assay and it proved that CMgO NPs possess higher anticancer properties than MgO NPs. Overall, CMgO NPs showed a higher amount of cytotoxicity for both the bacterial and cancer cells when compared to the MgO NPs. Toxicity studies of fibroblast L929 cells revealed that the CMgO NPs were less harmful to the healthy cells when compared to the MgO NPs. These results suggest that biopolymer chitosan-modified MgO NPs can be used for healthcare industrial applications in order to improve human health conditions.


Assuntos
Quitosana , Nanopartículas Metálicas , Nanopartículas , Antibacterianos/toxicidade , Quitosana/toxicidade , Bactérias Gram-Negativas , Humanos , Óxido de Magnésio/toxicidade , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Nanopartículas/toxicidade , Extratos Vegetais
19.
Biomed Pharmacother ; 138: 111483, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33744756

RESUMO

The aim of this study was to prepare, characterize, and determine the in vitro anticancer effects of platinum-doped magnesia (Pt/MgO) nanoparticles. The chemical compositions, functional groups, and size of nanoparticles were determined using X-ray diffraction, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. Pt/MgO nanoparticles were cuboid and in the nanosize range of 30-50 nm. The cytotoxicity of Pt/MgO nanoparticles was determined via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on the human lung and colonic cancer cells (A549 and HT29 respectively) and normal human lung and colonic fibroblasts cells (MRC-5 and CCD-18Co repectively). The Pt/MgO nanoparticles were relatively innocuous to normal cells. Pt/MgO nanoparticles downregulated Bcl-2 and upregulated Bax and p53 tumor suppressor proteins in the cancer cells. Pt/MgO nanoparticles also induced production of reactive oxygen species, decreased cellular glutathione level, and increased lipid peroxidation. Thus, the anticancer effects of Pt/MgO nanoparticles were attributed to the induction of oxidative stress and apoptosis. The study showed the potential of Pt/MgO nanoparticles as an anti-cancer compound.


Assuntos
Citotoxinas/toxicidade , Óxido de Magnésio/toxicidade , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Platina/toxicidade , Células A549 , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Células HT29 , Humanos , Mediadores da Inflamação/metabolismo , Estresse Oxidativo/fisiologia
20.
Cutan Ocul Toxicol ; 28(2): 78-82, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19514931

RESUMO

The dermal absorption potential of a nanocrystalline magnesium oxide (MgO) and titanium dioxide (TiO(2)) mixture in dermatomed human skin was assessed in vitro using Bronaugh-type flow-through diffusion cells. Nanocrystalline material was applied to the skin surface at a dose rate of 50 mg/cm(2) as a dry powder, as a water suspension, and as a water/surfactant (sodium lauryl sulfate) suspension, for 8 hours. Dermal absorption of nanocrystalline MgO and TiO(2) through human skin with intact, functional stratum corneum was not detectable under the conditions of this experiment.


Assuntos
Óxido de Magnésio/farmacocinética , Nanopartículas , Absorção Cutânea , Pele/efeitos dos fármacos , Titânio/farmacocinética , Administração Tópica , Adulto , Cultura em Câmaras de Difusão , Humanos , Técnicas In Vitro , Óxido de Magnésio/administração & dosagem , Óxido de Magnésio/sangue , Óxido de Magnésio/química , Óxido de Magnésio/toxicidade , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Pele/metabolismo , Pele/ultraestrutura , Titânio/administração & dosagem , Titânio/sangue , Titânio/química , Titânio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA