Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 490
Filtrar
1.
J Biol Chem ; 299(5): 104609, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924942

RESUMO

KpsC is a dual-module glycosyltransferase (GT) essential for "group 2" capsular polysaccharide biosynthesis in Escherichia coli and other Gram-negative pathogens. Capsules are vital virulence determinants in high-profile pathogens, making KpsC a viable target for intervention with small-molecule therapeutic inhibitors. Inhibitor development can be facilitated by understanding the mechanism of the target enzyme. Two separate GT modules in KpsC transfer 3-deoxy-ß-d-manno-oct-2-ulosonic acid (ß-Kdo) from cytidine-5'-monophospho-ß-Kdo donor to a glycolipid acceptor. The N-terminal and C-terminal modules add alternating Kdo residues with ß-(2→4) and ß-(2→7) linkages, respectively, generating a conserved oligosaccharide core that is further glycosylated to produce diverse capsule structures. KpsC is a retaining GT, which retains the donor anomeric carbon stereochemistry. Retaining GTs typically use an SNi (substitution nucleophilic internal return) mechanism, but recent studies with WbbB, a retaining ß-Kdo GT distantly related to KpsC, strongly suggest that this enzyme uses an alternative double-displacement mechanism. Based on the formation of covalent adducts with Kdo identified here by mass spectrometry and X-ray crystallography, we determined that catalytically important active site residues are conserved in WbbB and KpsC, suggesting a shared double-displacement mechanism. Additional crystal structures and biochemical experiments revealed the acceptor binding mode of the ß-(2→4)-Kdo transferase module and demonstrated that acceptor recognition (and therefore linkage specificity) is conferred solely by the N-terminal α/ß domain of each GT module. Finally, an Alphafold model provided insight into organization of the modules and a C-terminal membrane-anchoring region. Altogether, we identified key structural and mechanistic elements providing a foundation for targeting KpsC.


Assuntos
Cápsulas Bacterianas , Glicosiltransferases , Cápsulas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicolipídeos/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/química , Lipopolissacarídeos/metabolismo , Açúcares Ácidos/metabolismo , Transferases/metabolismo , Polissacarídeos Bacterianos/metabolismo
2.
Glycobiology ; 33(1): 47-56, 2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36036828

RESUMO

Sialic acid (Sia) is a group of acidic sugars with a 9-carbon backbone, and classified into 3 species based on the substituent group at C5 position: N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), and deaminoneuraminic acid (Kdn). In Escherichia coli, the sialate aldolase or N-acetylneuraminate aldolase (NanA) is known to catabolize these Sia species into pyruvate and the corresponding 6-carbon mannose derivatives. However, in bacteria, very little is known about the catabolism of Kdn, compared with Neu5Ac. In this study, we found a novel Kdn-specific aldolase (Kdn-aldolase), which can exclusively degrade Kdn, but not Neu5Ac or Neu5Gc, from Sphingobacterium sp., which was previously isolated from a Kdn-assimilating bacterium. Kdn-aldolase had the optimal pH and temperature at 7.0-8.0 and 50 °C, respectively. It also had the synthetic activity of Kdn from pyruvate and mannose. Site-specific mutagenesis revealed that N50 residue was important for the Kdn-specific reaction. Existence of the Kdn-aldolase suggests that Kdn-specific metabolism may play a specialized role in some bacteria.


Assuntos
Sphingobacterium , Sphingobacterium/genética , Sphingobacterium/metabolismo , Açúcares Ácidos/metabolismo , Frutose-Bifosfato Aldolase , Manose , Ácido N-Acetilneuramínico/metabolismo , Bactérias/metabolismo , Aldeído Liases/genética , Piruvatos
3.
Appl Microbiol Biotechnol ; 107(1): 153-162, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36445390

RESUMO

Gluconobacter is a potential strain for single-step production of 2-keto-L-gulonic acid (2-KLG), which is the direct precursor of vitamin C. Three dehydrogenases, namely, sorbitol dehydrogenase (SLDH), sorbose dehydrogenase (SDH), and sorbosone dehydrogenase (SNDH), are involved in the production of 2-KLG from D-sorbitol. In the present study, the potential SNDH/SDH gene cluster in the strain Gluconobacter cerinus CGMCC 1.110 was mined by genome analysis, and its function in transforming L-sorbose to 2-KLG was verified. Proteomic analysis showed that the expression level of SNDH/SDH had a great influence on the titer of 2-KLG, and fermentation results showed that SDH was the rate-limiting enzyme. A systematic metabolic engineering process, which was theoretically suitable for increasing the titer of many products involving membrane-bound dehydrogenase from Gluconobacter, was then performed to improve the 2-KLG titer in G. cerinus CGMCC 1.110 from undetectable to 51.9 g/L in a 5-L bioreactor after fermentation optimization. The strategies used in this study may provide a reference for mining other potential applications of Gluconobacter. KEY POINTS: • The potential SNDH/SDH gene cluster in G. cerinus CGMCC 1.110 was mined. • A systematic engineering process was performed to improve the titer of 2-KLG. • The 2-KLG titer was successfully increased from undetectable to 51.9 g/L.


Assuntos
Gluconacetobacter , Gluconobacter , Proteômica , Açúcares Ácidos/metabolismo , Sorbose/metabolismo , Gluconobacter/metabolismo , Gluconacetobacter/metabolismo
4.
Biochemistry (Mosc) ; 88(1): 131-141, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37068875

RESUMO

Inhibition of biosynthetic pathways of compounds essential for Trypanosoma cruzi is considered as one of the possible action mechanisms of drugs against Chagas disease. Here, we investigated the inhibition of galactonolactone oxidase from T. cruzi (TcGAL), which catalyzes the final step in the synthesis of vitamin C, an antioxidant that T. cruzi is unable to assimilate from outside and must synthesize itself, and identified allylbenzenes from plant sources as a new class of TcGAL inhibitors. Natural APABs (apiol, dillapiol, etc.) inhibited TcGAL with IC50 = 20-130 µM. The non-competitive mechanism of TcGAL inhibition by apiol was established. Conjugation of APABs with triphenylphosphonium, which ensures selective delivery of biologically active substances to the mitochondria, increased the efficiency and/or the maximum percentage of TcGAL inhibition compared to nonmodified APABs.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/metabolismo , Oxirredutases/metabolismo , Açúcares Ácidos/metabolismo
5.
Plant J ; 107(6): 1724-1738, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245628

RESUMO

Ascorbate is an abundant and indispensable redox compound in plants. Genetic and biochemical studies have established the d-mannose/l-galactose (d-Man/l-Gal) pathway as the predominant ascorbate biosynthetic pathway in streptophytes, while the d-galacturonate (d-GalUA) pathway is found in prasinophytes and euglenoids. Based on the presence of the complete set of genes encoding enzymes involved in the d-Man/l-Gal pathway and an orthologous gene encoding aldonolactonase (ALase) - a key enzyme for the d-GalUA pathway - Physcomitrium patens may possess both pathways. Here, we have characterized the moss ALase as a functional lactonase and evaluated the ascorbate biosynthesis capability of the two pathways using knockout mutants. Physcomitrium patens expresses two ALase paralogs, namely PpALase1 and PpALase2. Kinetic analyses with recombinant enzymes indicated that PpALase1 is a functional enzyme catalyzing the conversion of l-galactonic acid to the final precursor l-galactono-1,4-lactone and that it also reacts with dehydroascorbate as a substrate. Interestingly, mutants lacking PpALase1 (Δal1) showed 1.2-fold higher total ascorbate content than the wild type, and their dehydroascorbate content was increased by 50% compared with that of the wild type. In contrast, the total ascorbate content of mutants lacking PpVTC2-1 (Δvtc2-1) or PpVTC2-2 (Δvtc2-2), which encode the rate-limiting enzyme GDP-l-Gal phosphorylase in the d-Man/l-Gal pathway, was markedly decreased to 46 and 17%, respectively, compared with that of the wild type. Taken together, the dominant ascorbate biosynthetic pathway in P. patens is the d-Man/l-Gal pathway, not the d-GalUA pathway, and PpALase1 may play a significant role in ascorbate metabolism by facilitating dehydroascorbate degradation rather than ascorbate biosynthesis.


Assuntos
Ácido Ascórbico/biossíntese , Bryopsida/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Galactose/metabolismo , Manose/metabolismo , Ácido Ascórbico/metabolismo , Bryopsida/genética , Hidrolases de Éster Carboxílico/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genoma de Planta , Cinética , Luz , Redes e Vias Metabólicas , Mutação , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Açúcares Ácidos/metabolismo
6.
Mol Microbiol ; 115(4): 591-609, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33068046

RESUMO

Several GntR/FadR transcriptional regulators govern sugar acid metabolism in bacteria. Although effectors have been identified for a few sugar acid regulators, the mode of effector binding is unknown. Even in the overall FadR subfamily, there are limited details on effector-regulator interactions. Here, we identified the effector-binding cavity in Escherichia coli DgoR, a FadR subfamily transcriptional repressor of D-galactonate metabolism that employs D-galactonate as its effector. Using a genetic screen, we isolated several dgoR superrepressor alleles. Blind docking suggested eight amino acids corresponding to these alleles to form a part of the effector-binding cavity. In vivo and in vitro assays showed that these mutations compromise the inducibility of DgoR without affecting its oligomeric status or affinity for target DNA. Taking Bacillus subtilis GntR as a representative, we demonstrated that the effector-binding cavity is similar among FadR subfamily sugar acid regulators. Finally, a comparison of sugar acid regulators with other FadR members suggested conserved features of effector-regulator recognition within the FadR subfamily. Sugar acid metabolism is widely implicated in bacterial colonization and virulence. The present study sets the basis to investigate the influence of natural genetic variations in FadR subfamily regulators on their sensitivity to sugar acids and ultimately on host-bacterial interactions.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Açúcares Ácidos/metabolismo , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/fisiologia , Proteínas de Bactérias/fisiologia , Metabolismo dos Carboidratos , DNA Bacteriano , Escherichia coli/química , Simulação de Acoplamento Molecular , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/fisiologia , Fatores de Transcrição/química
7.
Biochem Biophys Res Commun ; 635: 252-258, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36283338

RESUMO

Campylobacter jejuni PseI is a pseudaminic acid synthase that condenses the 2,4-diacetamido-2,4,6-trideoxy-l-altrose sugar (6-deoxy AltdiNAc) and phosphoenolpyruvate to generate pseudaminic acid, a sialic acid-like 9-carbon backbone α-keto sugar. Pseudaminic acid is conjugated to cell surface proteins and lipids and plays a key role in the mobility and virulence of C. jejuni and other pathogenic bacteria. To provide insights into the catalytic mechanism of PseI, we performed a structural study on PseI. PseI forms a two-domain structure and assembles into a domain-swapped homodimer. The PseI dimer has two cavities, each of which accommodates a metal ion using conserved histidine residues. A comparative analysis of structures and sequences suggests that the cavity of PseI functions as an active site that binds the 6-deoxy AltdiNAc and phosphoenolpyruvate substrates and mediates their condensation. Furthermore, we propose the substrate binding-induced structural rearrangement of PseI and predict 6-deoxy AltdiNAc recognition residues that are specific to PseI.


Assuntos
Campylobacter jejuni , Fosfoenolpiruvato/metabolismo , Açúcares Ácidos/metabolismo , Domínio Catalítico
8.
PLoS Biol ; 17(5): e3000260, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31083648

RESUMO

Members of the solute carrier 17 (SLC17) family use divergent mechanisms to concentrate organic anions. Membrane potential drives uptake of the principal excitatory neurotransmitter glutamate into synaptic vesicles, whereas closely related proteins use proton cotransport to drive efflux from the lysosome. To delineate the divergent features of ionic coupling by the SLC17 family, we determined the structure of Escherichia coli D-galactonate/H+ symporter D-galactonate transporter (DgoT) in 2 states: one open to the cytoplasmic side and the other open to the periplasmic side with substrate bound. The structures suggest a mechanism that couples H+ flux to substrate recognition. A transition in the role of H+ from flux coupling to allostery may confer regulation by trafficking to and from the plasma membrane.


Assuntos
Metabolismo Energético , Escherichia coli/metabolismo , Transportadores de Ânions Orgânicos/química , Transportadores de Ânions Orgânicos/metabolismo , Transporte Biológico , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformação Proteica , Prótons , Açúcares Ácidos/metabolismo
9.
Nature ; 534(7609): 697-9, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27309805

RESUMO

Changes in the gut microbiota may underpin many human diseases, but the mechanisms that are responsible for altering microbial communities remain poorly understood. Antibiotic usage elevates the risk of contracting gastroenteritis caused by Salmonella enterica serovars, increases the duration for which patients shed the pathogen in their faeces, and may on occasion produce a bacteriologic and symptomatic relapse. These antibiotic-induced changes in the gut microbiota can be studied in mice, in which the disruption of a balanced microbial community by treatment with the antibiotic streptomycin leads to an expansion of S. enterica serovars in the large bowel. However, the mechanisms by which streptomycin treatment drives an expansion of S. enterica serovars are not fully resolved. Here we show that host-mediated oxidation of galactose and glucose promotes post-antibiotic expansion of S. enterica serovar Typhimurium (S. Typhimurium). By elevating expression of the gene encoding inducible nitric oxide synthase (iNOS) in the caecal mucosa, streptomycin treatment increased post-antibiotic availability of the oxidation products galactarate and glucarate in the murine caecum. S. Typhimurium used galactarate and glucarate within the gut lumen of streptomycin pre-treated mice, and genetic ablation of the respective catabolic pathways reduced S. Typhimurium competitiveness. Our results identify host-mediated oxidation of carbohydrates in the gut as a mechanism for post-antibiotic pathogen expansion.


Assuntos
Antibacterianos/farmacologia , Metabolismo dos Carboidratos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Estreptomicina/farmacologia , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Ceco/efeitos dos fármacos , Ceco/enzimologia , Ceco/microbiologia , Feminino , Galactose/metabolismo , Gastroenterite/microbiologia , Ácido Glucárico/metabolismo , Glucose/metabolismo , Mucosa Intestinal/enzimologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óperon/genética , Oxirredução/efeitos dos fármacos , Espécies Reativas de Nitrogênio/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Açúcares Ácidos/metabolismo
10.
Glycobiology ; 31(3): 288-306, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886756

RESUMO

Some bacterial flagellins are O-glycosylated on surface-exposed serine/threonine residues with nonulosonic acids such as pseudaminic acid, legionaminic acid and their derivatives by flagellin nonulosonic acid glycosyltransferases, also called motility-associated factors (Maf). We report here two new glycosidic linkages previously unknown in any organism, serine/threonine-O-linked N-acetylneuraminic acid (Ser/Thr-O-Neu5Ac) and serine/threonine-O-linked 3-deoxy-D-manno-octulosonic acid or keto-deoxyoctulosonate (Ser/Thr-O-KDO), both catalyzed by Geobacillus kaustophilus Maf and Clostridium botulinum Maf. We identified these novel glycosidic linkages in recombinant G. kaustophilus and C. botulinum flagellins that were coexpressed with their cognate recombinant Maf protein in Escherichia coli strains producing the appropriate nucleotide sugar glycosyl donor. Our finding that both G. kaustophilus Maf (putative flagellin sialyltransferase) and C. botulinum Maf (putative flagellin legionaminic acid transferase) catalyzed Neu5Ac and KDO transfer on to flagellin indicates that Maf glycosyltransferases display donor substrate promiscuity. Maf glycosyltransferases have the potential to radically expand the scope of neoglycopeptide synthesis and posttranslational protein engineering.


Assuntos
Flagelina/metabolismo , Glicosiltransferases/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Serina/metabolismo , Açúcares Ácidos/metabolismo , Treonina/metabolismo , Glicosilação , Ácido N-Acetilneuramínico/química , Serina/química , Açúcares Ácidos/química , Treonina/química
11.
Anal Biochem ; 622: 114116, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33716126

RESUMO

Arabinose 5-phosphate isomerase (API) catalyzes the reversible isomerization of Ribulose 5-phosphate (Ru5P) to Arabinose 5-Phosphate (Ar5P) for the production of 3-deoxy-2-octulosonic acid 8-phosphate (KDO), a component of bacterial lipopolysaccharide (LPS) of gram-negative bacteria. API is an attractive target for therapeutic development against gram-negative bacterial pathogens. The current assay method of API activity utilizes a general reaction for keto sugar determination in a secondary, 3-h color development reaction with 25 N sulfuric acid which poses hazard to both personnel and instrumentation. We therefore aimed to develop a more user friendly assay of the enzyme. Since Ru5P absorbs in the UV region and contains at least 2 chiral centers, it can be expected to display circular dichroism (CD). A wavelength scan revealed indeed Ru5P displays a pronounced negative ellipticity of 30,560 mDeg M-1cm-1 at 279 nm in Tris buffer pH 9.1 but Ar5P does not have any CD. API enzymatic reactions were monitored directly and continuously in real time by following the disappearance of CD from the Ru5P substrate, or by the appearance of CD from Ar5P substrate. The CD signal at this wavelength was not affected by absorption of the enzyme protein or of small molecules, or turbidity of the solution. Common additives in protein and enzyme reaction mixtures such as detergents, metals, and 5% dimethylsulfoxide did not interfere with the CD signal. Assay reactions of 1-3 min consistently yielded reproducible results. Introduction of accessories in a spectropolarimeter will easily adapt this assay to high throughput format for screening thousands of small molecules as inhibitor candidates of API.


Assuntos
Aldose-Cetose Isomerases/análise , Dicroísmo Circular/métodos , Ensaios Enzimáticos/métodos , Proteínas de Bactérias/metabolismo , Catálise , Francisella tularensis/metabolismo , Lipopolissacarídeos/metabolismo , Pentosefosfatos/metabolismo , Ribulosefosfatos/análise , Ribulosefosfatos/metabolismo , Especificidade por Substrato , Açúcares Ácidos/metabolismo , Fosfatos Açúcares/metabolismo
12.
Arch Insect Biochem Physiol ; 106(4): e21783, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33719082

RESUMO

Vitamin C (VC) is an essential nutrient for many animals. However, whether insects, including Bombyx mori, can synthesize VC remains unclear. In this article, the optimized HPLC method was used to determine the content of l-ascorbic acid (AsA) in silkworm eggs, larvae and pupae, and the activity of l-gulono-1,4-lactone oxidase (GULO), a key enzyme in VC synthesis. The RNA interference method was used to determine the effect of the BmGulo-like gene on embryonic development and GULO activity in the pupal fat body. The AsA content increased significantly during E144 h-E168 h in the late embryonic stage and P48 h-P144 h in the middle-late pupal stage, in which exogenous VC was not ingested. Furthermore, the body AsA content in larvae fed VC-free feed also increased with larval stage. The GULO enzymatic activity was present in eggs and the fat bodies of larvae and pupae, even when the larvae were reared with fresh mulberry leaves. Moreover, the activity was higher in the later embryonic stages (E144 h-E168 h) and the early pupal stage (before P24 h). The GULO activity in the pupal fat body dramatically decreased when the screened BmGulo-like gene (BGIBMGA005735) was knocked down with small interfering RNA; in addition, the survival rate and hatching rate of eggs significantly decreased 21% and 44%, respectively, and embryonic development was delayed. Thus, Bombyx mori can synthesize AsA through the l-gulose pathway, albeit with low activity, and this synthesis ability varies with developmental stages.


Assuntos
Ácido Ascórbico/metabolismo , Bombyx/metabolismo , Animais , Bombyx/crescimento & desenvolvimento , Hexoses/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Açúcares Ácidos/metabolismo
13.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830284

RESUMO

Human α-defensin 5 (HD5) is a host-defense peptide exhibiting broad-spectrum antimicrobial activity. The lipopolysaccharide (LPS) layer on the Gram-negative bacterial membrane acts as a barrier to HD5 insertion. Therefore, the pore formation and binding mechanism remain unclear. Here, the binding mechanisms at five positions along the bacterial membrane axis were investigated using Molecular Dynamics. (MD) simulations. We found that HD5 initially placed at positions 1 to 3 moved up to the surface, while HD5 positioned at 4 and 5 remained within the membrane interacting with the middle and inner leaflet of the membrane, respectively. The arginines were key components for tighter binding with 3-deoxy-d-manno-octulosonic acid (KDO), phosphates of the outer and inner leaflets. KDO appeared to retard the HD5 penetration.


Assuntos
Anti-Infecciosos/metabolismo , Membrana Celular/metabolismo , Bactérias Gram-Negativas/metabolismo , Simulação de Dinâmica Molecular , alfa-Defensinas/metabolismo , Sequência de Aminoácidos , Anti-Infecciosos/química , Arginina/metabolismo , Humanos , Ligação de Hidrogênio , Lipopolissacarídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Açúcares Ácidos/metabolismo , alfa-Defensinas/química
14.
Prep Biochem Biotechnol ; 51(7): 678-685, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33302794

RESUMO

Microbial fermentation has become the main method to produce target compound. In this study, a 2-Keto-D-gluconic acid (2-KGA) producing mutant strain was obtained by mutation with rational screening methods. Meanwhile, prodigiosin was produced when the nitrogen source in the medium was changed to peptone and its fermentation conditions were evaluated to achieve high-efficient accumulation. The mutant strain SDSPY-136 was firstly identified as Serratia marcescens by morphological observation and 16S rDNA sequencing. The 2-KGA synthetic capacity of S. marcescens SDSPY-136 was evaluated by shake fermentation with 110 g/L glucose as substrates. For fermentation, 2-KGA yield, conversation rate and purity of SDSPY-136 reached 104.60 g/L, 95.10%, 99.11% in 72 h. The red pigment was extracted from the fermentation broth using acidic methanol and identified as prodigiosin by FT-IR. The optimal conditions were as follows: glycerol 20 g/L, peptone 20 g/L, MgSO415 g/L, pH 6.0, a 2% (v/v) inoculum, 30 °C and 200 rpm of shaking culture. Eventually, prodigiosin reached a yield of 9.89 g/Lafter shake culturing for 50 h under this condition. The mutant S. marcescens SDSPY-136 was shown to be promising for 2-KGA and prodigiosin production and a suitable object for prodigiosin metabolism research of S. marcescens.


Assuntos
Prodigiosina/biossíntese , Serratia marcescens/crescimento & desenvolvimento , Açúcares Ácidos/metabolismo , Mutação , Serratia marcescens/genética
16.
J Biol Chem ; 294(44): 15932-15946, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31488549

RESUMO

Tartaric acid has high economic value as an antioxidant and flavorant in food and wine industries. l-Tartaric acid biosynthesis in wine grape (Vitis vinifera) uses ascorbic acid (vitamin C) as precursor, representing an unusual metabolic fate for ascorbic acid degradation. Reduction of the ascorbate breakdown product 2-keto-l-gulonic acid to l-idonic acid constitutes a critical step in this l-tartaric acid biosynthetic pathway. However, the underlying enzymatic mechanisms remain obscure. Here, we identified a V. vinifera aldo-keto reductase, Vv2KGR, with 2-keto-l-gulonic acid reductase activity. Vv2KGR belongs to the d-isomer-specific 2-hydroxyacid dehydrogenase superfamily and displayed the highest similarity to the hydroxyl pyruvate reductase isoform 2 in Arabidopsis thaliana Enzymatic analyses revealed that Vv2KGR efficiently reduces 2-keto-l-gulonic acid to l-idonic acid and uses NADPH as preferred coenzyme. Moreover, Vv2KGR exhibited broad substrate specificity toward glyoxylate, pyruvate, and hydroxypyruvate, having the highest catalytic efficiency for glyoxylate. We further determined the X-ray crystal structure of Vv2KGR at 1.58 Å resolution. Comparison of the Vv2KGR structure with those of d-isomer-specific 2-hydroxyacid dehydrogenases from animals and microorganisms revealed several unique structural features of this plant hydroxyl pyruvate reductase. Substrate structural analysis indicated that Vv2KGR uses two modes (A and B) to bind different substrates. 2-Keto-l-gulonic acid displayed the lowest predicted free-energy binding to Vv2KGR among all docked substrates. Hence, we propose that Vv2KGR functions in l-tartaric acid biosynthesis. To the best of our knowledge, this is the first report of a d-isomer-specific 2-hydroxyacid dehydrogenase that reduces 2-keto-l-gulonic acid to l-idonic acid in plants.


Assuntos
Aldo-Ceto Redutases/metabolismo , Ácido Ascórbico/metabolismo , Proteínas de Plantas/metabolismo , Açúcares Ácidos/metabolismo , Tartaratos/metabolismo , Vitis/enzimologia , Aldo-Ceto Redutases/química , Domínio Catalítico , Glioxilatos/metabolismo , Proteínas de Plantas/química , Ácido Pirúvico/metabolismo , Especificidade por Substrato , Vitis/metabolismo
17.
Glycobiology ; 30(5): 325-333, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-31804700

RESUMO

N-acetylneuraminic acid (5-acetamido-3,5-dideoxy-d-glycero-d-galacto-non-2-ulosonic acid), which is the principal sialic acid family member of the non-2-ulosonic acids and their various derivatives, is often found at the terminal position on the glycan chains that adorn all vertebrate cells. This terminal position combined with subtle variations in structure and linkage to the underlying glycan chains between humans and other mammals points to the importance of this diverse group of nine-carbon sugars as indicators of the unique aspects of human evolution and is relevant to understanding an array of human conditions. Enzymes that catalyze the removal N-acetylneuraminic acid from glycoconjugates are called neuraminidases. However, despite their documented role in numerous diseases, due to the promiscuous activity of many neuraminidases, our knowledge of the functions and metabolism of many sialic acids and the effect of the attachment to cellular glycans is limited. To this end, through a concerted effort of generation of random and site-directed mutagenesis libraries, subsequent screens and positive and negative evolutionary selection protocols, we succeeded in identifying three enzyme variants of the neuraminidase from the soil bacterium Micromonospora viridifaciens with markedly altered specificity for the hydrolysis of natural Kdn (3-deoxy-d-glycero-d-galacto-non-2-ulosonic acid) glycosidic linkages compared to those of N-acetylneuraminic acid. These variants catalyze the hydrolysis of Kdn-containing disaccharides with catalytic efficiencies (second-order rate constants: kcat/Km) of greater than 105 M-1 s-1; the best variant displayed an efficiency of >106 M-1 s-1 at its optimal pH.


Assuntos
Evolução Molecular Direcionada , Micromonospora/enzimologia , Neuraminidase/metabolismo , Biocatálise , Configuração de Carboidratos , Neuraminidase/genética , Açúcares Ácidos/metabolismo
18.
J Am Chem Soc ; 142(46): 19446-19450, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33166120

RESUMO

Pseudaminic acid (Pse), a unique carbohydrate in surface-associated glycans of pathogenic bacteria, has pivotal roles in virulence. Owing to its significant antigenicity and absence in mammals, Pse is considered an attractive target for vaccination or antibody-based therapies against bacterial infections. However, a specific and universal probe for Pse, which could also be used in immunotherapy, has not been reported. In a prior study, we used a tail spike protein from a bacteriophage (ΦAB6TSP) that digests Pse-containing exopolysaccharide (EPS) from Acinetobacter baumannii strain 54149 (Ab-54149) to form a glycoconjugate for preparing anti-Ab-54149 EPS serum. We report here that a catalytically inactive ΦAB6TSP (I-ΦAB6TSP) retains binding ability toward Pse. In addition, an I-ΦAB6TSP-DyLight-650 conjugate (Dy-I-ΦAB6TSP) was more sensitive in detecting Ab-54149 than an antibody purified from anti- Ab-54149 EPS serum. Dy-I-ΦAB6TSP also cross-reacted with other pathogenic bacteria containing Pse on their surface polysaccharides (e.g., Helicobacter pylori and Enterobacter cloacae), revealing it to be a promising probe for detecting Pse across bacterial species. We also developed a detection method that employs I-ΦAB6TSP immobilized on microtiter plate. These results suggested that the anti-Ab-54149 EPS serum would exhibit cross-reactivity to Pse on other organisms. When this was tested, this serum facilitated complement-mediated killing of H. pylori and E. cloacae, indicating its potential as a cross-species antibacterial agent. This work opens new avenues for diagnosis and treatment of multidrug resistant (MDR) bacterial infections.


Assuntos
Antibacterianos/química , Infecções Bacterianas/terapia , Bacteriófagos/química , Açúcares Ácidos/química , Proteínas da Cauda Viral/química , Acinetobacter baumannii/química , Antibacterianos/farmacologia , Anticorpos/química , Farmacorresistência Bacteriana Múltipla , Enterobacter cloacae/virologia , Glicoconjugados/química , Glicosídeo Hidrolases , Helicobacter pylori/virologia , Polissacarídeos/química , Soro/química , Açúcares Ácidos/metabolismo , Açúcares Ácidos/uso terapêutico , Proteínas da Cauda Viral/metabolismo
19.
Mol Microbiol ; 112(1): 147-165, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30985034

RESUMO

The gene context in microorganism genomes is of considerable help for identifying potential substrates. The C785_RS13685 gene in Herbaspirillum huttiense IAM 15032 is a member of the d-altronate dehydratase protein family, and which functions as a d-arabinonate dehydratase in vitro, is clustered with genes related to putative pentose metabolism. In the present study, further biochemical characterization and gene expression analyses revealed that l-xylonate is a physiological substrate that is ultimately converted to α-ketoglutarate via so-called Route II of a non-phosphorylative pathway. Several hexonates, including d-altronate, d-idonate and l-gluconate, which are also substrates of C785_RS13685, also significantly up-regulated the gene cluster containing C785_RS13685, suggesting a possibility that pyruvate and d- or l-glycerate were ultimately produced (novel Route III). On the contrary, ACAV_RS08155 of Acidovorax avenae ATCC 19860, a homologous gene to C785_RS13685, functioned as a d-altronate dehydratase in a novel l-galactose pathway, through which l-galactonate was epimerized at the C5 position by the sequential activity of two dehydrogenases, resulting in d-altronate. Furthermore, this pathway completely overlapped with Route III of the non-phosphorylative l-fucose pathway. The 'substrate promiscuity' of d-altronate dehydratase protein(s) is significantly expanded to 'metabolic promiscuity' in the d-arabinose, sugar acid, l-fucose and l-galactose pathways.


Assuntos
Hidroliases/genética , Hidroliases/metabolismo , Sequência de Aminoácidos/genética , Arabinose/metabolismo , Clonagem Molecular/métodos , Fucose/metabolismo , Galactose/metabolismo , Genoma Bacteriano/genética , Gluconatos/metabolismo , Herbaspirillum/genética , Herbaspirillum/metabolismo , Hidroliases/fisiologia , Família Multigênica/genética , Açúcares Ácidos/metabolismo
20.
Chembiochem ; 21(10): 1397-1407, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31944494

RESUMO

Pseudaminic acids (Pses) are a group of non-mammalian nonulosonic acids (nulOs) that have been shown to be an important virulence factor for a number of pathogenic bacteria, including emerging multidrug-resistant ESKAPE pathogens. Despite their discovery over 30 years ago, relatively little is known about the biological significance of Pse glycans compared with their sialic acid analogues, primarily due to a lack of access to the synthetically challenging Pse architecture. Recently, however, the Pse backbone has been subjected to increasing synthetic exploration by carbohydrate (bio)chemists, and the total synthesis of complex Pse glycans achieved with inspiration from the biosynthesis and subsequent detailed study of chemical glycosylation by using Pse donors. Herein, context is provided for these efforts by summarising recent synthetic approaches pioneered for accessing Pse glycans, which are set to open up this underexplored area of glycoscience to the wider scientific community.


Assuntos
Bactérias/metabolismo , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos/metabolismo , Açúcares Ácidos/metabolismo , Biologia Sintética , Glicosilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA