Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 631(8022): 899-904, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838737

RESUMO

Synaptic vesicles are organelles with a precisely defined protein and lipid composition1,2, yet the molecular mechanisms for the biogenesis of synaptic vesicles are mainly unknown. Here we discovered a well-defined interface between the synaptic vesicle V-ATPase and synaptophysin by in situ cryo-electron tomography and single-particle cryo-electron microscopy of functional synaptic vesicles isolated from mouse brains3. The synaptic vesicle V-ATPase is an ATP-dependent proton pump that establishes the proton gradient across the synaptic vesicle, which in turn drives the uptake of neurotransmitters4,5. Synaptophysin6 and its paralogues synaptoporin7 and synaptogyrin8 belong to a family of abundant synaptic vesicle proteins whose function is still unclear. We performed structural and functional studies of synaptophysin-knockout mice, confirming the identity of synaptophysin as an interaction partner with the V-ATPase. Although there is little change in the conformation of the V-ATPase upon interaction with synaptophysin, the presence of synaptophysin in synaptic vesicles profoundly affects the copy number of V-ATPases. This effect on the topography of synaptic vesicles suggests that synaptophysin assists in their biogenesis. In support of this model, we observed that synaptophysin-knockout mice exhibit severe seizure susceptibility, suggesting an imbalance of neurotransmitter release as a physiological consequence of the absence of synaptophysin.


Assuntos
Sinaptofisina , ATPases Vacuolares Próton-Translocadoras , Animais , Masculino , Camundongos , Microscopia Crioeletrônica , Camundongos Knockout , Modelos Moleculares , Neurotransmissores/metabolismo , Ligação Proteica , Convulsões/genética , Convulsões/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/enzimologia , Vesículas Sinápticas/ultraestrutura , Sinaptofisina/química , Sinaptofisina/deficiência , Sinaptofisina/metabolismo , Sinaptofisina/ultraestrutura , ATPases Vacuolares Próton-Translocadoras/análise , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Tomografia com Microscopia Eletrônica
2.
Mol Cell ; 80(3): 501-511.e3, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33065002

RESUMO

Vesicular- or vacuolar-type adenosine triphosphatases (V-ATPases) are ATP-driven proton pumps comprised of a cytoplasmic V1 complex for ATP hydrolysis and a membrane-embedded Vo complex for proton transfer. They play important roles in acidification of intracellular vesicles, organelles, and the extracellular milieu in eukaryotes. Here, we report cryoelectron microscopy structures of human V-ATPase in three rotational states at up to 2.9-Å resolution. Aided by mass spectrometry, we build all known protein subunits with associated N-linked glycans and identify glycolipids and phospholipids in the Vo complex. We define ATP6AP1 as a structural hub for Vo complex assembly because it connects to multiple Vo subunits and phospholipids in the c-ring. The glycolipids and the glycosylated Vo subunits form a luminal glycan coat critical for V-ATPase folding, localization, and stability. This study identifies mechanisms of V-ATPase assembly and biogenesis that rely on the integrated roles of ATP6AP1, glycans, and lipids.


Assuntos
ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/fisiologia , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Microscopia Crioeletrônica/métodos , Citoplasma/metabolismo , Citosol/metabolismo , Células HEK293 , Humanos , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade
3.
Mol Cell ; 69(6): 993-1004.e3, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29526695

RESUMO

The molecular mechanism of transmembrane proton translocation in rotary motor ATPases is not fully understood. Here, we report the 3.5-Å resolution cryoEM structure of the lipid nanodisc-reconstituted Vo proton channel of the yeast vacuolar H+-ATPase, captured in a physiologically relevant, autoinhibited state. The resulting atomic model provides structural detail for the amino acids that constitute the proton pathway at the interface of the proteolipid ring and subunit a. Based on the structure and previous mutagenesis studies, we propose the chemical basis of transmembrane proton transport. Moreover, we discovered that the C terminus of the assembly factor Voa1 is an integral component of mature Vo. Voa1's C-terminal transmembrane α helix is bound inside the proteolipid ring, where it contributes to the stability of the complex. Our structure rationalizes possible mechanisms by which mutations in human Vo can result in disease phenotypes and may thus provide new avenues for therapeutic interventions.


Assuntos
Microscopia Crioeletrônica , Nanopartículas , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Genótipo , Humanos , Lipídeos de Membrana/química , Modelos Moleculares , Mutação , Fenótipo , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas , Prótons , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
4.
Nature ; 539(7627): 118-122, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27776355

RESUMO

Vacuolar-type ATPases (V-ATPases) are ATP-powered proton pumps involved in processes such as endocytosis, lysosomal degradation, secondary transport, TOR signalling, and osteoclast and kidney function. ATP hydrolysis in the soluble catalytic V1 region drives proton translocation through the membrane-embedded VO region via rotation of a rotor subcomplex. Variability in the structure of the intact enzyme has prevented construction of an atomic model for the membrane-embedded motor of any rotary ATPase. We induced dissociation and auto-inhibition of the V1 and VO regions of the V-ATPase by starving the yeast Saccharomyces cerevisiae, allowing us to obtain a ~3.9-Šresolution electron cryomicroscopy map of the VO complex and build atomic models for the majority of its subunits. The analysis reveals the structures of subunits ac8c'c″de and a protein that we identify and propose to be a new subunit (subunit f). A large cavity between subunit a and the c-ring creates a cytoplasmic half-channel for protons. The c-ring has an asymmetric distribution of proton-carrying Glu residues, with the Glu residue of subunit c″ interacting with Arg735 of subunit a. The structure suggests sequential protonation and deprotonation of the c-ring, with ATP-hydrolysis-driven rotation causing protonation of a Glu residue at the cytoplasmic half-channel and subsequent deprotonation of a Glu residue at a luminal half-channel.


Assuntos
Microscopia Crioeletrônica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Arginina/química , Arginina/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Hidrólise , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Prótons , Rotação , Saccharomyces cerevisiae/química
5.
Nature ; 521(7551): 241-5, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25971514

RESUMO

Eukaryotic vacuolar H(+)-ATPases (V-ATPases) are rotary enzymes that use energy from hydrolysis of ATP to ADP to pump protons across membranes and control the pH of many intracellular compartments. ATP hydrolysis in the soluble catalytic region of the enzyme is coupled to proton translocation through the membrane-bound region by rotation of a central rotor subcomplex, with peripheral stalks preventing the entire membrane-bound region from turning with the rotor. The eukaryotic V-ATPase is the most complex rotary ATPase: it has three peripheral stalks, a hetero-oligomeric proton-conducting proteolipid ring, several subunits not found in other rotary ATPases, and is regulated by reversible dissociation of its catalytic and proton-conducting regions. Studies of ATP synthases, V-ATPases, and bacterial/archaeal V/A-ATPases have suggested that flexibility is necessary for the catalytic mechanism of rotary ATPases, but the structures of different rotational states have never been observed experimentally. Here we use electron cryomicroscopy to obtain structures for three rotational states of the V-ATPase from the yeast Saccharomyces cerevisiae. The resulting series of structures shows ten proteolipid subunits in the c-ring, setting the ATP:H(+) ratio for proton pumping by the V-ATPase at 3:10, and reveals long and highly tilted transmembrane α-helices in the a-subunit that interact with the c-ring. The three different maps reveal the conformational changes that occur to couple rotation in the symmetry-mismatched soluble catalytic region to the membrane-bound proton-translocating region. Almost all of the subunits of the enzyme undergo conformational changes during the transitions between these three rotational states. The structures of these states provide direct evidence that deformation during rotation enables the smooth transmission of power through rotary ATPases.


Assuntos
Microscopia Crioeletrônica , Rotação , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Trifosfato de Adenosina/metabolismo , Biocatálise , Membrana Celular/química , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Maleabilidade , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Prótons , Solubilidade , ATPases Vacuolares Próton-Translocadoras/metabolismo
6.
J Struct Biol ; 186(1): 1-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24607413

RESUMO

Cryo-electron microscopy is an increasingly popular tool for studying the structure and dynamics of biological macromolecules at high resolution. A crucial step in automating single-particle reconstruction of a biological sample is the selection of particle images from a micrograph. We present a novel algorithm for selecting particle images in low-contrast conditions; it proves more effective than the human eye on close-to-focus micrographs, yielding improved or comparable resolution in reconstructions of two macromolecular complexes.


Assuntos
Microscopia Crioeletrônica/métodos , Imageamento Tridimensional , Inteligência Artificial , Proteínas de Bactérias/ultraestrutura , Escherichia coli , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Subunidades Ribossômicas Menores de Bactérias/ultraestrutura , Software , Thermus thermophilus , ATPases Vacuolares Próton-Translocadoras/ultraestrutura
7.
Biochem Cell Biol ; 92(6): 460-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25350640

RESUMO

Nature's molecular machines often work through the concerted action of many different protein subunits, which can give rise to large structures with complex activities. Vacuolar-type ATPases (V-ATPases) are membrane-embedded protein assemblies with a unique rotary catalytic mechanism. The dynamic nature and instability of V-ATPases make structural and functional studies of these enzymes challenging. Electron microscopy (EM) techniques, especially single particle electron cryomicroscopy (cryo-EM) and negative-stain EM, have provided extensive insight into the structure and function of these protein complexes. This minireview outlines what has been learned about V-ATPases using electron microscopy, highlights current challenges for their structural study, and discusses what cryo-EM will allow us to learn about these fascinating enzymes in the future.


Assuntos
Microscopia Crioeletrônica/métodos , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Animais , Humanos
8.
Science ; 385(6705): 168-174, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38900912

RESUMO

Intercellular communication in the nervous system occurs through the release of neurotransmitters into the synaptic cleft between neurons. In the presynaptic neuron, the proton pumping vesicular- or vacuolar-type ATPase (V-ATPase) powers neurotransmitter loading into synaptic vesicles (SVs), with the V1 complex dissociating from the membrane region of the enzyme before exocytosis. We isolated SVs from rat brain using SidK, a V-ATPase-binding bacterial effector protein. Single-particle electron cryomicroscopy allowed high-resolution structure determination of V-ATPase within the native SV membrane. In the structure, regularly spaced cholesterol molecules decorate the enzyme's rotor and the abundant SV protein synaptophysin binds the complex stoichiometrically. ATP hydrolysis during vesicle loading results in a loss of the V1 region of V-ATPase from the SV membrane, suggesting that loading is sufficient to induce dissociation of the enzyme.


Assuntos
Vesículas Sinápticas , ATPases Vacuolares Próton-Translocadoras , Animais , Ratos , Proteínas de Bactérias/química , Encéfalo/ultraestrutura , Encéfalo/enzimologia , Colesterol/química , Microscopia Crioeletrônica , Hidrólise , Vesículas Sinápticas/enzimologia , Vesículas Sinápticas/ultraestrutura , Sinaptofisina/metabolismo , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/isolamento & purificação , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Conformação Proteica
9.
J Struct Biol ; 181(2): 149-54, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23142631

RESUMO

One of the major methodological challenges in single particle electron microscopy is obtaining initial reconstructions which represent the structural heterogeneity of the dataset. Random Conical Tilt and Orthogonal Tilt Reconstruction techniques in combination with 3D alignment and classification can be used to obtain initial low-resolution reconstructions which represent the full range of structural heterogeneity of the dataset. In order to achieve statistical significance, however, a large number of 3D reconstructions, and, in turn, a large number of tilted image pairs are required. The extraction of single particle tilted image pairs from micrographs can be tedious and time-consuming, as it requires intensive user input even for semi-automated approaches. To overcome the bottleneck of manual selection of a large number of tilt pairs, we developed an algorithm for the correlation of single particle images from tilted image pairs in a fully automated and user-independent manner. The algorithm reliably correlates correct pairs even from noisy micrographs. We further demonstrate the applicability of the algorithm by using it to obtain initial references both from negative stain and unstained cryo datasets.


Assuntos
Algoritmos , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Transmissão/métodos , Modelos Moleculares , Simulação por Computador , Razão Sinal-Ruído , Thermus thermophilus/enzimologia , ATPases Vacuolares Próton-Translocadoras/ultraestrutura
10.
Proc Natl Acad Sci U S A ; 107(4): 1367-72, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20080582

RESUMO

The eubacterium Thermus thermophilus uses a macromolecular assembly closely related to eukaryotic V-ATPase to produce its supply of ATP. This simplified V-ATPase offers several advantages over eukaryotic V-ATPases for structural analysis and investigation of the mechanism of the enzyme. Here we report the structure of the complex at approximately 16 A resolution as determined by single particle electron cryomicroscopy (cryo-EM). The resolution of the map and our use of cryo-EM, rather than negative stain EM, reveals detailed information about the internal organization of the assembly. We could separate the map into segments corresponding to subunits A and B, the threefold pseudosymmetric C-subunit, a central rotor consisting of subunits D and F, the L-ring, the stator subcomplex consisting of subunits I, E, and G, and a micelle of bound detergent. The architecture of the V(O) region shows a remarkably small area of contact between the I-subunit and the ring of L-subunits and is consistent with a two half-channel model for proton translocation. The arrangement of structural elements in V(O) gives insight into the mechanism of torque generation from proton translocation.


Assuntos
Membrana Celular/metabolismo , Thermus thermophilus/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Prótons , ATPases Vacuolares Próton-Translocadoras/química
11.
STAR Protoc ; 2(1): 100350, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33665630

RESUMO

Vesicular- or vacuolar-type adenosine triphosphatases (V-ATPases) are multi-component, ATP-driven proton pumps, which play important roles in many physiological processes by acidifying intracellular vesicles, organelles, and the extracellular milieu. Long-standing challenges in purifying mammalian V-ATPases have limited the biochemical and structural study of mammalian V-ATPase. Here, we provide a protocol for purifying milligrams of human V-ATPase and detail procedures for the reconstruction of its structure by cryo-EM. Our method can be applied to any biochemical and biophysical study of human V-ATPase. For complete details on the use and execution of this protocol, please refer to Wang et al. (2020).


Assuntos
Microscopia Crioeletrônica , ATPases Vacuolares Próton-Translocadoras , Células HEK293 , Humanos , Estrutura Quaternária de Proteína , ATPases Vacuolares Próton-Translocadoras/biossíntese , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/isolamento & purificação , ATPases Vacuolares Próton-Translocadoras/ultraestrutura
12.
Nat Commun ; 12(1): 1782, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741963

RESUMO

Pharmacological inhibition of vacuolar-type H+-ATPase (V-ATPase) by its specific inhibitor can abrogate tumor metastasis, prevent autophagy, and reduce cellular signaling responses. Bafilomycin A1, a member of macrolide antibiotics and an autophagy inhibitor, serves as a specific and potent V-ATPases inhibitor. Although there are many V-ATPase structures reported, the molecular basis of specific inhibitors on V-ATPase remains unknown. Here, we report the cryo-EM structure of bafilomycin A1 bound intact bovine V-ATPase at an overall resolution of 3.6-Å. The structure reveals six bafilomycin A1 molecules bound to the c-ring. One bafilomycin A1 molecule engages with two c subunits and disrupts the interactions between the c-ring and subunit a, thereby preventing proton translocation. Structural and sequence analyses demonstrate that the bafilomycin A1-binding residues are conserved in yeast and mammalian species and the 7'-hydroxyl group of bafilomycin A1 acts as a unique feature recognized by subunit c.


Assuntos
Macrolídeos/farmacologia , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Sítios de Ligação , Biocatálise/efeitos dos fármacos , Bovinos , Microscopia Crioeletrônica , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Macrolídeos/química , Macrolídeos/metabolismo , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/ultraestrutura
13.
Structure ; 16(12): 1789-98, 2008 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19081055

RESUMO

Vacuolar ATPases (V-ATPases) are ATP-dependent proton pumps that maintain the acidity of cellular compartments. They are composed of a membrane-integrated proton-translocating V(0) and an extrinsic cytoplasmic catalytic domain V(1), joined by several connecting subunits. To clarify the arrangement of these peripheral connections and their interrelation with other subunits of the holocomplex, we have determined the solution structures of isolated EG and EGC connecting subcomplexes by small angle X-ray scattering and the 3D map of the yeast V-ATPase by electron microscopy. In solution, EG forms a slightly kinked rod, which assembles with subunit C into an L-shaped structure. This model is supported by the microscopy data, which show three copies of EG with two of these linked by subunit C. However, the relative arrangement of the EG and C subunits in solution is more open than that in the holoenzyme, suggesting a conformational change of EGC during regulatory assembly and disassembly.


Assuntos
Conformação Molecular , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Processamento de Imagem Assistida por Computador , Luz , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Espalhamento de Radiação , Solubilidade , Soluções/química , Relação Estrutura-Atividade , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/isolamento & purificação , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Difração de Raios X
14.
Nat Commun ; 11(1): 3921, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764564

RESUMO

The vacuolar-type H+-ATPases (V-ATPase) hydrolyze ATP to pump protons across the plasma or intracellular membrane, secreting acids to the lumen or acidifying intracellular compartments. It has been implicated in tumor metastasis, renal tubular acidosis, and osteoporosis. Here, we report two cryo-EM structures of the intact V-ATPase from bovine brain with all the subunits including the subunit H, which is essential for ATPase activity. Two type-I transmembrane proteins, Ac45 and (pro)renin receptor, along with subunit c", constitute the core of the c-ring. Three different conformations of A/B heterodimers suggest a mechanism for ATP hydrolysis that triggers a rotation of subunits DF, inducing spinning of subunit d with respect to the entire c-ring. Moreover, many lipid molecules have been observed in the Vo domain to mediate the interactions between subunit c, c", (pro)renin receptor, and Ac45. These two structures reveal unique features of mammalian V-ATPase and suggest a mechanism of V1-Vo torque transmission.


Assuntos
Encéfalo/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , Trifosfato de Adenosina/metabolismo , Animais , Bovinos , Microscopia Crioeletrônica , Hidrólise , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Prótons , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/ultraestrutura
15.
Biochim Biophys Acta ; 1768(9): 2263-70, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17573038

RESUMO

A 900-MHz NMR study is reported of peptide sMTM7 that mimics the cytoplasmic proton hemi-channel domain of the seventh transmembrane segment (TM7) from subunit a of H(+)-V-ATPase from Saccharomyces cerevisiae. The peptide encompasses the amino acid residues known to actively participate in proton translocation. In addition, peptide sMTM7 contains the amino acid residues that upon mutation cause V-ATPase to become resistant against the inhibitor bafilomycin. 2D TOCSY and NOESY (1)H-(1)H NMR spectra are obtained of sMTM7 dissolved in d(6)-DMSO and are used to calculate the three-dimensional structure of the peptide. The NMR-based structures and corresponding dynamical features of peptide sMTM7 show that sMTM7 is composed of two alpha-helical regions. These regions are separated by a flexible hinge of two residues. The hinge acts as a ball-and-joint socket and both helical segments move independently with respect to one another. This movement in TM7 is suggested to cause the opening and closing of the cytoplasmic proton hemi-channel and enables proton translocation.


Assuntos
Citoplasma/química , Modelos Químicos , Modelos Moleculares , Bombas de Próton/química , Bombas de Próton/ultraestrutura , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Simulação por Computador , Difusão , Movimento (Física) , Conformação Proteica , Estrutura Terciária de Proteína
16.
Structure ; 14(7): 1149-56, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16843896

RESUMO

The vacuolar ATPase integral membrane c-ring from Nephrops norvegicus occurs in paired complexes in a double membrane. Using cryo-electron microscopy and single particle image processing of 2D crystals, we have obtained a projection structure of the c-ring of N. norvegicus. The c-ring was found to be very flexible, most likely as a result of an expanded conformation of the c subunits. This structure may support a role for the vacuolar ATPase c-rings in membrane fusion.


Assuntos
Nephropidae/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Sequência de Aminoácidos , Animais , Membrana Celular/enzimologia , Microscopia Crioeletrônica , Cristalografia , Dados de Sequência Molecular , Conformação Proteica , Subunidades Proteicas/química
17.
Nat Commun ; 9(1): 89, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311594

RESUMO

Proton translocating rotary ATPases couple ATP hydrolysis/synthesis, which occurs in the soluble domain, with proton flow through the membrane domain via a rotation of the common central rotor complex against the surrounding peripheral stator apparatus. Here, we present a large data set of single particle cryo-electron micrograph images of the V/A type H+-rotary ATPase from the bacterium Thermus thermophilus, enabling the identification of three rotational states based on the orientation of the rotor subunit. Using masked refinement and classification with signal subtractions, we obtain homogeneous reconstructions for the whole complexes and soluble V1 domains. These reconstructions are of higher resolution than any EM map of intact rotary ATPase reported previously, providing a detailed molecular basis for how the rotary ATPase maintains structural integrity of the peripheral stator apparatus, and confirming the existence of a clear proton translocation path from both sides of the membrane.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Thermus thermophilus/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Transporte Biológico , Microscopia Crioeletrônica , Hidrólise , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Prótons , Rotação , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/ultraestrutura
18.
Sci Rep ; 8(1): 15632, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30353110

RESUMO

EhV-ATPase is an ATP-driven Na+ pump in the eubacteria Enterococcus hirae (Eh). Here, we present the first entire structure of detergent-solubilized EhV-ATPase by single-particle cryo-electron microscopy (cryo-EM) using Zernike phase plate. The cryo-EM map dominantly showed one of three catalytic conformations in this rotary enzyme. To further stabilize the originally heterogeneous structure caused by the ATP hydrolysis states of the V1-ATPases, a peptide epitope tag system was adopted, in which the inserted peptide epitope sequence interfered with rotation of the central rotor by binding the Fab. As a result, the map unexpectedly showed another catalytic conformation of EhV-ATPase. Interestingly, these two conformations identified with and without Fab conversely coincided with those of the minor state 2 and the major state 1 of Thermus thermophilus V/A-ATPase, respectively. The most prominent feature in EhV-ATPase was the off-axis rotor, where the cytoplasmic V1 domain was connected to the transmembrane Vo domain through the off-axis central rotor. Furthermore, compared to the structure of ATP synthases, the larger size of the interface between the transmembrane a-subunit and c-ring of EhV-ATPase would be more advantageous for active ion pumping.


Assuntos
Microscopia Crioeletrônica , Streptococcus faecium ATCC 9790/enzimologia , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica/métodos , Streptococcus faecium ATCC 9790/metabolismo , Streptococcus faecium ATCC 9790/ultraestrutura , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Modelos Moleculares , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , ATPases Vacuolares Próton-Translocadoras/metabolismo
19.
Protein Sci ; 26(5): 896-909, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28247968

RESUMO

The vacuolar ATPase (V-ATPase; V1 Vo -ATPase) is a large multisubunit proton pump found in the endomembrane system of all eukaryotic cells where it acidifies the lumen of subcellular organelles including lysosomes, endosomes, the Golgi apparatus, and clathrin-coated vesicles. V-ATPase function is essential for pH and ion homeostasis, protein trafficking, endocytosis, mechanistic target of rapamycin (mTOR), and Notch signaling, as well as hormone secretion and neurotransmitter release. V-ATPase can also be found in the plasma membrane of polarized animal cells where its proton pumping function is involved in bone remodeling, urine acidification, and sperm maturation. Aberrant (hypo or hyper) activity has been associated with numerous human diseases and the V-ATPase has therefore been recognized as a potential drug target. Recent progress with moderate to high-resolution structure determination by cryo electron microscopy and X-ray crystallography together with sophisticated single-molecule and biochemical experiments have provided a detailed picture of the structure and unique mode of regulation of the V-ATPase. This review summarizes the recent advances, focusing on the structural and biophysical aspects of the field.


Assuntos
ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Animais , Remodelação Óssea/fisiologia , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , Endocitose/fisiologia , Homeostase/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Transporte Proteico/fisiologia , Serina-Treonina Quinases TOR/química , Serina-Treonina Quinases TOR/metabolismo
20.
Acta Crystallogr D Struct Biol ; 73(Pt 6): 534-540, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28580915

RESUMO

Recent developments in electron microscopy (EM) have led to a step change in our ability to solve the structures of previously intractable systems, especially membrane proteins and large protein complexes. This has provided new opportunities in the field of structure-based drug design, with a number of high-profile publications resolving the binding sites of small molecules and peptide inhibitors. There are a number of advantages of EM over the more traditional X-ray crystallographic approach, such as resolving different conformational states and permitting the dynamics of a system to be better resolved when not constrained by a crystal lattice. There are still significant challenges to be overcome using an EM approach, not least the speed of structure determination, difficulties with low-occupancy ligands and the modest resolution that is available. However, with the anticipated developments in the field of EM, the potential of EM to become a key tool for structure-based drug design, often complementing X-ray and NMR studies, seems promising.


Assuntos
Desenho de Fármacos , Microscopia Eletrônica/métodos , Animais , Ligantes , Modelos Moleculares , Plasmodium falciparum/enzimologia , Plasmodium falciparum/ultraestrutura , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Ratos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA