Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.385
Filtrar
1.
CA Cancer J Clin ; 72(1): 34-56, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792808

RESUMO

Radiation therapy (RT) continues to play an important role in the treatment of cancer. Adaptive RT (ART) is a novel method through which RT treatments are evolving. With the ART approach, computed tomography or magnetic resonance (MR) images are obtained as part of the treatment delivery process. This enables the adaptation of the irradiated volume to account for changes in organ and/or tumor position, movement, size, or shape that may occur over the course of treatment. The advantages and challenges of ART maybe somewhat abstract to oncologists and clinicians outside of the specialty of radiation oncology. ART is positioned to affect many different types of cancer. There is a wide spectrum of hypothesized benefits, from small toxicity improvements to meaningful gains in overall survival. The use and application of this novel technology should be understood by the oncologic community at large, such that it can be appropriately contextualized within the landscape of cancer therapies. Likewise, the need to test these advances is pressing. MR-guided ART (MRgART) is an emerging, extended modality of ART that expands upon and further advances the capabilities of ART. MRgART presents unique opportunities to iteratively improve adaptive image guidance. However, although the MRgART adaptive process advances ART to previously unattained levels, it can be more expensive, time-consuming, and complex. In this review, the authors present an overview for clinicians describing the process of ART and specifically MRgART.


Assuntos
Imagem por Ressonância Magnética Intervencionista/métodos , Neoplasias/radioterapia , Aceleradores de Partículas , Radioterapia (Especialidade)/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , História do Século XX , História do Século XXI , Humanos , Imagem por Ressonância Magnética Intervencionista/história , Imagem por Ressonância Magnética Intervencionista/instrumentação , Imagem por Ressonância Magnética Intervencionista/tendências , Neoplasias/diagnóstico por imagem , Radioterapia (Especialidade)/história , Radioterapia (Especialidade)/instrumentação , Radioterapia (Especialidade)/tendências , Planejamento da Radioterapia Assistida por Computador/história , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/tendências
2.
Strahlenther Onkol ; 200(1): 83-96, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37872398

RESUMO

PURPOSE: In stereotactic arrhythmia radioablation (STAR), the target is defined using multiple imaging studies and a multidisciplinary team consisting of electrophysiologist, cardiologist, cardiac radiologist, and radiation oncologist collaborate to identify the target and delineate it on the imaging studies of interest. This report describes the workflow employed in our radiotherapy department to transfer the target identified based on electrophysiology and cardiology imaging to the treatment planning image set. METHODS: The radiotherapy team was presented with an initial target in cardiac axes orientation, contoured on a wideband late gadolinium-enhanced (WB-LGE) cardiac magnetic resonance (CMR) study, which was subsequently transferred to the computed tomography (CT) scan used for treatment planning-i.e., the average intensity projection (AIP) image set derived from a 4D CT-via an axial CMR image set, using rigid image registration focused on the target area. The cardiac and the respiratory motion of the target were resolved using ciné-CMR and 4D CT imaging studies, respectively. RESULTS: The workflow was carried out for 6 patients and resulted in an internal target defined in standard anatomical orientation that encompassed the cardiac and the respiratory motion of the initial target. CONCLUSION: An image registration-based workflow was implemented to render the STAR target on the planning image set in a consistent manner, using commercial software traditionally available for radiation therapy.


Assuntos
Tomografia Computadorizada Quadridimensional , Planejamento da Radioterapia Assistida por Computador , Humanos , Fluxo de Trabalho , Planejamento da Radioterapia Assistida por Computador/métodos , Aceleradores de Partículas , Arritmias Cardíacas
3.
Opt Lett ; 49(9): 2425-2428, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691735

RESUMO

Cherenkov imaging is an ideal tool for real-time in vivo verification of a radiation therapy dose. Given that radiation is pulsed from a medical linear accelerator (LINAC) together with weak Cherenkov emissions, time-gated high-sensitivity imaging is required for robust measurements. Instead of using an expensive camera system with limited efficiency of detection in each pixel, a single-pixel imaging (SPI) approach that maintains promising sensitivity over the entire spectral band could be used to provide a low-cost and viable alternative. A prototype SPI system was developed and demonstrated here in Cherenkov imaging of LINAC dose delivery to a water tank. Validation experiments were performed using four regular fields and an intensity-modulated radiotherapy (IMRT) delivery plan. The Cherenkov image-based projection percent depth dose curves (pPDDs) were compared to pPDDs simulated by the treatment planning system (TPS), with an overall average error of 0.48, 0.42, 0.65, and 1.08% for the 3, 5, 7, and 9 cm square beams, respectively. The composite image of the IMRT plan achieved a 85.9% pass rate using 3%/3 mm gamma index criteria, in comparing Cherenkov intensity and TPS dose. This study validates the feasibility of applying SPI to the Cherenkov imaging of radiotherapy dose for the first time to our knowledge.


Assuntos
Aceleradores de Partículas , Fatores de Tempo , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica
4.
BMC Cancer ; 24(1): 324, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459443

RESUMO

BACKGROUND AND PURPOSE: Radiotherapy (RT) is an essential treatment modality against cancer and becoming even more in demand due to the anticipated increase in cancer incidence. Due to the rapid development of RT technologies amid financial challenges, we aimed to assess the available RT facilities and the issues with achieving health equity based on current equipment compared to the previous reports from Iran. MATERIALS AND METHODS: A survey arranged by the Iran Cancer Institute's Radiation Oncology Research Center (RORC) was sent to all of the country's radiotherapy centers in 2022. Four components were retrieved: the reimbursement type, equipment, human resources, and patient load. To calculate the radiotherapy utilization rate (RUR), the Lancet Commission was used. The findings were compared with the previous national data. RESULTS: Seventy-six active radiotherapy centers with 123 Linear accelerators (LINACs) were identified. The centers have been directed in three ways. 10 (20 LINACs), 36 (50 LINACs), and 30 centers (53 LINACs) were charity-, private-, and public-based, respectively. Four provinces had no centers. There was no active intraoperative radiotherapy machine despite its availability in 4 centers. One orthovoltage X-ray machine was active and 14 brachytherapy devices were treating patients. There were 344, 252, and 419 active radiation oncologists, medical physicists, and radiation therapy technologists, respectively. The ratio of LINAC and radiation oncologists to one million populations was 1.68 and 4.10, respectively. Since 2017, 35±5 radiation oncology residents have been trained each year. CONCLUSION: There has been a notable growth in RT facilities since the previous reports and Iran's situation is currently acceptable among LMICs. However, there is an urgent need to improve the distribution of the RT infrastructure and provide more facilities that can deliver advanced techniques.


Assuntos
Neoplasias , Radioterapia (Especialidade) , Humanos , Irã (Geográfico)/epidemiologia , Neoplasias/epidemiologia , Neoplasias/radioterapia , Aceleradores de Partículas , Inquéritos e Questionários , Radioterapia/métodos
5.
J Appl Clin Med Phys ; 25(3): e14291, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306504

RESUMO

PURPOSE: To present a modified calibration method to reduce signal drift due to table sagging in Respiratory Gating for Scanner (RGSC) systems with a wall-mounted camera. MATERIALS AND METHODS: Approximately 70 kg of solid water phantoms were evenly distributed on the CT couch, mimicking the patient's weight. New calibration measurements were performed at 9 points at the combination of three lateral positions, the CT isocenter and ±10 cm laterally from the isocenter, and three longitudinal locations, the CT isocenter and ±30 cm or ±40 cm from the isocenter. The new calibration was tested in two hospitals. RESULTS: Implementing the new weighed calibration method at the extended distance yielded improved results during the DIBH scan, reducing the drift to within 1 from 3 mm. The extended calibration positions exhibited similarly reduced drift in both hospitals, reinforcing the method's robustness and its potential applicability across all centers. CONCLUSION: This proposed solution aims to minimize the systematic error in radiation delivery for patients undergoing motion management with wall-mounted camera RGSC systems, especially in conjunction with a bariatric CT couchtop.


Assuntos
Aceleradores de Partículas , Humanos , Imagens de Fantasmas , Movimento (Física)
6.
J Appl Clin Med Phys ; 25(2): e14173, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37858985

RESUMO

The purpose is to reduce normal tissue radiation toxicity for electron therapy through the creation of a surface-conforming electron multileaf collimator (SCEM). The SCEM combines the benefits of skin collimation, electron conformal radiotherapy, and modulated electron radiotherapy. An early concept for the SCEM was constructed. It consists of leaves that protrude towards the patient, allowing the leaves to conform closely to irregular patient surfaces. The leaves are made of acrylic to decrease bremsstrahlung, thereby decreasing the out-of-field dose. Water tank scans were performed with the SCEM in place for various field sizes for all available electron energies (6, 9, 12, and 15 MeV) with a 0.5 cm air gap to the water surface at 100 cm source-to-surface distance (SSD). These measurements were compared with Cerrobend cutouts with the field size-matched at 100 and 110 cm SSD. Output factor measurements were taken in solid water for each energy at dmax for both the cerrobend cutouts and SCEM at 100 cm SSD. Percent depth dose (PDD) curves for the SCEM shifted shallower for all energies and field sizes. The SCEM also produced a higher surface dose relative to Cerrobend cutouts, with the maximum being a 9.8% increase for the 3 cm × 9 cm field at 9 MeV. When compared to the Cerrobend cutouts at 110 cm SSD, the SCEM showed a significant decrease in the penumbra, particularly for lower energies (i.e., 6 and 9 MeV). The SCEM also showed reduced out-of-field dose and lower bremsstrahlung production than the Cerrobend cutouts. The SCEM provides significant improvement in the penumbra and out-of-field dose by allowing collimation close to the skin surface compared to Cerrobend cutouts. However, the added scatter from the SCEM increases shallow PDD values. Future work will focus on reducing this scatter while maintaining the penumbra and out-of-field benefits the SCEM has over conventional collimation.


Assuntos
Elétrons , Aceleradores de Partículas , Humanos , Dosagem Radioterapêutica , Radiometria , Planejamento da Radioterapia Assistida por Computador , Água
7.
J Appl Clin Med Phys ; 25(2): e14159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37735808

RESUMO

PURPOSE: Radiotherapy delivered at ultra-high-dose-rates (≥40 Gy/s), that is, FLASH, has the potential to effectively widen the therapeutic window and considerably improve the care of cancer patients. The underlying mechanism of the FLASH effect is not well understood, and commercial systems capable of delivering such dose rates are scarce. The purpose of this study was to perform the initial acceptance and commissioning tests of an electron FLASH research product for preclinical studies. METHODS: A linear accelerator (Clinac 23EX) was modified to include a non-clinical FLASH research extension (the Clinac-FLEX system) by Varian, a Siemens Healthineers company (Palo Alto, CA) capable of delivering a 16 MeV electron beam with FLASH and conventional dose rates. The acceptance, commissioning, and dosimetric characterization of the FLEX system was performed using radiochromic film, optically stimulated luminescent dosimeters, and a plane-parallel ionization chamber. A radiation survey was conducted for which the shielding of the pre-existing vault was deemed sufficient. RESULTS: The Clinac-FLEX system is capable of delivering a 16 MeV electron FLASH beam of approximately 1 Gy/pulse at isocenter and reached a maximum dose rate >3.8 Gy/pulse near the upper accessory mount on the linac gantry. The percent depth dose curves of the 16 MeV FLASH and conventional modes for the 10 × 10 cm2 applicator agreed within 0.5 mm at a range of 50% of the maximum dose. Their respective profiles agreed well in terms of flatness but deviated for field sizes >10 × 10 cm2 . The output stability of the FLASH system exhibited a dose deviation of <1%. Preliminary cell studies showed that the FLASH dose rate (180 Gy/s) had much less impact on the cell morphology of 76N breast normal cells compared to the non-FLASH dose rate (18 Gy/s), which induced large-size cells. CONCLUSION: Our studies characterized the non-clinical Clinac-FLEX system as a viable solution to conduct FLASH research that could substantially increase access to ultra-high-dose-rate capabilities for scientists.


Assuntos
Elétrons , Radiometria , Humanos , Dosagem Radioterapêutica , Aceleradores de Partículas , Dosímetros de Radiação
8.
J Appl Clin Med Phys ; 25(2): e14246, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134322

RESUMO

PURPOSE: Medical linear accelerators are the most costly standard equipment used in radiation oncology, however the service costs for these machines are not well understood. With an increasing demand for linear accelerators due to a global increase in cancer incidence, it is important to understand the expected maintenance costs of a larger global installed base so that these costs can be incorporated into budgeting. The purpose of this investigation is to analyze the costs for medical linear accelerator service and maintenance at our institution, in order to estimate the service cost ratio. METHODS: We collected the costs of parts used for all service work done on 32 medical linear accelerators over a two year period. The data was segregated by center, machine, linear accelerator type, and failure area in the machine. RESULTS: We found the service cost ratio (excluding software support expenses) to be 3.13% [2.74%, 3.52%,]. We observed a variability of parts costs, and overall variability of the service cost ratio to be between 2.14% and 5.25%. This result is lower than other estimates for service costs for medical equipment in general and medical linear accelerators specifically. Two-thirds of the service costs were due to labor costs, which indicate the importance of a well-trained service technician workforce. CONCLUSIONS: We estimated the service cost ratio for medical linear accelerators to be 3.13% [3.52%, 2.74%] of the initial capital cost. This result was lower than other estimates of the service cost ratio.


Assuntos
Radioterapia (Especialidade) , Software , Humanos , Custos e Análise de Custo , Aceleradores de Partículas
9.
J Appl Clin Med Phys ; 25(4): e14288, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38345201

RESUMO

PURPOSE: This study aims to evaluate the viability of utilizing the Structural Similarity Index (SSI*) as an innovative imaging metric for quality assurance (QA) of the multi-leaf collimator (MLC). Additionally, we compared the results obtained through SSI* with those derived from a conventional Gamma index test for three types of Varian machines (Trilogy, Truebeam, and Edge) over a 12-week period of MLC QA in our clinic. METHOD: To assess sensitivity to MLC positioning errors, we designed a 1 cm slit on the reference MLC, subsequently shifted by 0.5-5 mm on the target MLC. For evaluating sensitivity to output error, we irradiated five 25 cm × 25 cm open fields on the portal image with varying Monitor Units (MUs) of 96-100. We compared SSI* and Gamma index tests using three linear accelerator (LINAC) machines: Varian Trilogy, Truebeam, and Edge, with MLC leaf widths of 1, 0.5, and 0.25 mm. Weekly QA included VMAT and static field modes, with Picket fence test images acquired. Mechanical uncertainties related to the LINAC head, electronic portal imaging device (EPID), and MLC during gantry rotation and leaf motion were monitored. RESULTS: The Gamma index test started detecting the MLC shift at a threshold of 4 mm, whereas the SSI* metric showed sensitivity to shifts as small as 2 mm. Moreover, the Gamma index test identified dose changes at 95MUs, indicating a 5% dose difference based on the distance to agreement (DTA)/dose difference (DD) criteria of 1 mm/3%. In contrast, the SSI* metric alerted to dose differences starting from 97MUs, corresponding to a 3% dose difference. The Gamma index test passed all measurements conducted on each machine. However, the SSI* metric rejected all measurements from the Edge and Trilogy machines and two from the Truebeam. CONCLUSIONS: Our findings demonstrate that the SSI* exhibits greater sensitivity than the Gamma index test in detecting MLC positioning errors and dose changes between static and VMAT modes. The SSI* metric outperformed the Gamma index test regarding sensitivity across these parameters.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Equipamentos e Provisões Elétricas , Imagens de Fantasmas , Rotação , Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador
10.
J Appl Clin Med Phys ; 25(2): e14245, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194595

RESUMO

PURPOSE: To study the feasibility of using the Integral Quality Monitoring (IQM) system for routine quality assurance (QA) of photon beams. METHODS: The IQM system is a commercially available dose delivery verification tool, which consists of a spatially sensitive large area transmission ion chamber, mounted on the Linac collimator, and a calculation algorithm to predict the signals in response to radiation beams. By comparing the measured and predicted signals the system verifies the accuracy of beam delivery. The ion chamber unit is a battery powered system including a dual-electrometer, temperature and pressure sensors, and inclinometers. The feasibility of using the IQM system for routine QA tests was investigated by measuring constancy values of beam parameters, with specially designed tests fields, and comparing them with those determined by a conventional system. RESULTS: The sensitivity of the beam output constancy measurements by the IQM system was found to agree with those measured by a Farmer type ion chamber placed in water phantoms to within 0.1% for typical daily output variation of ± 0.5% and ± 1%. The beam symmetry was measured with a 4 cm × 4 cm aperture at multiple off-axis distances and was found to have a highly linear relationship with those measured in a water phantom scan for intentionally introduced asymmetry between -3% and +3%. The beam flatness was measured with a two-field ratio method and was found to be linearly correlated with those measured by water phantom scan. The dosimetric equivalent of a picket fence test performed by the IQM system can serve as a constancy check of the multileaf collimator (MLC) bank positioning test. CONCLUSIONS: The IQM system has been investigated for constancy measurements of various beam parameters for photon beams. The results suggest that the system can be used for most of the routine QA tests effectively and efficiently.


Assuntos
Aceleradores de Partículas , Garantia da Qualidade dos Cuidados de Saúde , Humanos , Estudos de Viabilidade , Radiometria , Água
11.
J Appl Clin Med Phys ; 25(7): e14339, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38608655

RESUMO

PURPOSE: The accuracy of dose delivery to all patients treated with medical linacs depends on the accuracy of beam calibration. Dose delivery cannot be any more accurate than this. Given the importance of this, it seems worthwhile taking another look at the expected uncertainty in TG-51 photon dose calibration and a first look at electron calibration. This work builds on the 2014 addendum to TG-51 for photons and adds to it by also considering electrons. In that publication, estimates were made of the uncertainty in the dose calibration. In this paper, we take a deeper look at this important issue. METHODS: The methodology used here is more rigorous than previous determinations as it is based on Monte Carlo simulation of uncertainties. It is assumed that mechanical QA has been performed following TG-142 prior to beam calibration and that there are no uncertainties that exceed the tolerances specified by TG-142. RESULTS/CONCLUSIONS: Despite the different methodology and assumptions, the estimated uncertainty in photon beam calibration is close to that in the addendum. The careful user should be able to easily reach a 95% confidence interval (CI) of ± 2.3% for photon beam calibration with standard instrumentation. For electron beams calibrated with a Farmer chamber, the estimated uncertainties are slightly larger, and the 95% CI is ±2.6% for 6 MeV and slightly smaller than this for 18 MeV. There is no clear energy dependence in these results. It is unlikely that the user will be able to improve on these uncertainties as the dominant factor in the uncertainty resides in the ion chamber dose calibration factor N D , w 60 Co $N_{D,w}^{{}^{60}{\mathrm{Co}}}$ . For both photons and electrons, reduction in the ion chamber depth uncertainty below about 0.5 mm and SSD uncertainty below 1 mm have almost no effect on the total dose uncertainty, as uncertainties beyond the user's control totally dominate under these circumstances.


Assuntos
Elétrons , Método de Monte Carlo , Aceleradores de Partículas , Fótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Calibragem , Humanos , Incerteza , Planejamento da Radioterapia Assistida por Computador/métodos , Aceleradores de Partículas/instrumentação , Radiometria/métodos , Imagens de Fantasmas
12.
J Appl Clin Med Phys ; 25(5): e14357, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38620027

RESUMO

PURPOSE: To investigate and characterize the performance of a novel orthogonal dual-layer alpha multileaf collimator (αMLC) mounted on the LinaTech VenusX linac. METHODS: We evaluated leaf positioning accuracy and reproducibility using an electronic portal imaging device through the picket fence test. The average, interleaf, intraleaf, and leaf tip transmissions of the single and dual layers were measured using an ionization chamber. Square and rhombus fields were used to evaluate the leaf penumbra of αMLC. To investigate the advantages of the orthogonal dual-layer multileaf collimator (MLC) in field shaping, right triangular and circular pattern fields were formed using both the dual layers and single layers of the αMLC. RESULTS: The average maximum positioning deviations of the upper and lower αMLC over 1 year were 0.76 ± 0.09 mm and 0.62 ± 0.07 mm, respectively. The average transmissions were 1.87%, 1.83%, and 0.03% for the upper-, lower- and dual-layer αMLC, respectively. The maximum interleaf transmissions of the lower- and dual-layer were 2.43% and 0.17%, respectively. The leaf tip transmissions were 9.34% and 0.25%, respectively. The penumbra of the square field was 6.2 mm in the X direction and 8.0 mm in the Y direction. The average penumbras of the rhombus fields with side lengths of 5 and 10 cm were 3.6 and 4.9 mm, respectively. For the right triangular and circular fields, the fields shaped by the dual-layer leaves were much closer to the set field than those shaped by single-layer leaves. The dose undulation amplitude of the 50% isodose lines and leaf stepping angle change of the dual-layer leaves were smaller than those of the single-layer leaves. CONCLUSIONS: The αMLC benefits from its orthogonal dual-layer design. Leaf transmission, dose undulations at the field edge, and MLC field dependence of the leaf stepping angle of the dual-layer αMLC were remarkably reduced.


Assuntos
Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Aceleradores de Partículas/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias/radioterapia , Imagens de Fantasmas
13.
J Appl Clin Med Phys ; 25(7): e14369, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38685586

RESUMO

BACKGROUND: Particle accelerators, manufactured for delivering patient radiation treatment, require numerous and frequent quality assurance measures. One of those is the periodic check for electron energy stability. The American Association of Physicists in Medicine has established requirements for this procedure. The current recommendation is to perform a ratio of two ionization points, one at Dmax and another at a point approximately to the 50% depth, compared to a baseline as a relative check. PURPOSE: This ratio method is a sensitive measurement and sometimes produces results that are difficult to interpret or relate to acceptable tolerances. We sought to find a simple method that gives more stable results, which can be interpreted and related to energy changes. METHOD: We propose a method that takes two measurements on the descending portion of the shifted percent depth ionization (PDI) curves to calculate the slope, tangent to the I50 point, the point at which the ionization falls to 50% of its maximum value. We then used the slope measurement, compared to an established baseline, to relate energy. RESULTS: After collecting data over a 3-year period, we saw that standard deviations for the slope method have much less variability than the traditional ratio method. We were also able to correlate the slope results to ionization scans performed in water and found they were in better agreement than the traditional ratio method. CONCLUSION: The slope method does not require precise positioning since the slope remains relatively constant over the descending portion of the curve. Our data show that this results in an easier interpretative test of electron energy stability and delivers reliable feedback for quality assurance.


Assuntos
Elétrons , Aceleradores de Partículas , Garantia da Qualidade dos Cuidados de Saúde , Garantia da Qualidade dos Cuidados de Saúde/normas , Aceleradores de Partículas/instrumentação , Aceleradores de Partículas/normas , Humanos , Controle de Qualidade , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radiometria/métodos , Radiometria/normas
14.
J Appl Clin Med Phys ; 25(1): e14226, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009990

RESUMO

PURPOSE: The purpose of this study was to evaluate the performance of our quality assurance (QA) automation system and to evaluate the machine performance of a new type linear accelerator uRT-linac 506c within 6 months using this system. METHODS: This QA automation system consists of a hollow cylindrical phantom with 18 steel balls in the phantom surface and an analysis software to process electronic portal imaging device (EPID) measurement image data and report the results. The performance of the QA automation system was evaluated by the tests of repeatability, archivable precision, detectability of introduced errors, and the impact of set-up errors on QA results. The performance of this linac was evaluated by 31 items using this QA system over 6 months. RESULTS: This QA system was able to automatically deliver QA plan, EPID image acquisition, and automatic analysis. All images acquiring and analysis took approximately 4.6 min per energy. The preset error of 0.1 mm in multi-leaf collimator (MLC) leaf were detected as 0.12 ± 0.01 mm for Bank A and 0.10 ± 0.01 mm in Bank B. The 2 mm setup error was detected as -1.95 ± 0.01 mm, -2.02 ± 0.01 mm, 2.01 ± 0.01 mm for X, Y, Z directions, respectively. And data from the tests of repeatability and detectability of introduced errors showed the standard deviation were all within 0.1 mm and 0.1°. and data of the machine performance were all within the tolerance specified by AAPM TG-142. CONCLUSIONS: The QA automation system has high precision and good performance, and it can improve the QA efficiency. The performance of the new accelerator has also performed very well during the testing period.


Assuntos
Aceleradores de Partículas , Radioterapia de Intensidade Modulada , Humanos , Software , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Imagens de Fantasmas , Automação , Garantia da Qualidade dos Cuidados de Saúde
15.
J Appl Clin Med Phys ; 25(7): e14370, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38661097

RESUMO

PURPOSE: To evaluate the accuracy of different dosimeters and the treatment planning system (TPS) for assessing the skin dose due to the electron streaming effect (ESE) on a 1.5 T magnetic resonance (MR)-linac. METHOD: Skin dose due to the ESE on an MR-linac (Unity, Elekta) was investigated using a solid water phantom rotated 45° in the x-y plane (IEC61217) and centered at the isocenter. The phantom was irradiated with 1 × 1, 3 × 3, 5 × 5, 10 × 10, and 22 × 22 cm2 fields, gantry at 90°. Out-of-field doses (OFDs) deposited by electron streams generated at the entry and exit surface of the angled phantom were measured on the surface of solid water slabs placed ±20.0 cm from the isocenter along the x-direction. A high-resolution MOSkin™ detector served as a benchmark due to its shallower depth of measurement that matches the International Commission on Radiological Protection (ICRP) recommended depth for skin dose assessment (0.07 mm). MOSkin™ doses were compared to EBT3 film, OSLDs, a diamond detector, and the TPS where the experimental setup was modeled using two separate calculation parameters settings: a 0.1 cm dose grid with 0.2% statistical uncertainty (0.1 cm, 0.2%) and a 0.2 cm dose grid with 3.0% statistical uncertainty (0.2 cm, 3.0%). RESULTS: OSLD, film, the 0.1 cm, 0.2%, and 0.2 cm, 3.0% TPS ESE doses, underestimated skin doses measured by the MOSkin™ by as much as -75.3%, -7.0%, -24.7%, and -41.9%, respectively. Film results were most similar to MOSkin™ skin dose measurements. CONCLUSIONS: These results show that electron streams can deposit significant doses outside the primary field and that dosimeter choice and TPS calculation settings greatly influence the reported readings. Due to the steep dose gradient of the ESE, EBT3 film remains the choice for accurate skin dose assessment in this challenging environment.


Assuntos
Elétrons , Imageamento por Ressonância Magnética , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Aceleradores de Partículas/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Radioterapia de Intensidade Modulada/métodos , Pele/efeitos da radiação , Método de Monte Carlo
16.
J Appl Clin Med Phys ; 25(8): e14450, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39031891

RESUMO

The purpose of this study is to develop an electronic portal imaging device-based multi-leaf collimator calibration procedure using log files. Picket fence fields with 2-14 mm nominal strip widths were performed and normalized by open field. Normalized pixel intensity profiles along the direction of leaf motion for each leaf pair were taken. Three independent algorithms and an integration method derived from them were developed according to the valley value, valley area, full-width half-maximum (FWHM) of the profile, and the abutment width of the leaf pairs obtained from the log files. Three data processing schemes (Scheme A, Scheme B, and Scheme C) were performed based on different data processing methods. To test the usefulness and robustness of the algorithm, the known leaf position errors along the direction of perpendicular leaf motion via the treatment planning system were introduced in the picket fence field with nominal 5, 8, and 11 mm. Algorithm tests were performed every 2 weeks over 4 months. According to the log files, about 17.628% and 1.060% of the leaves had position errors beyond ± 0.1 and ± 0.2 mm, respectively. The absolute position errors of the algorithm tests for different data schemes were 0.062 ± 0.067 (Scheme A), 0.041 ± 0.045 (Scheme B), and 0.037 ± 0.043 (Scheme C). The absolute position errors of the algorithms developed by Scheme C were 0.054 ± 0.063 (valley depth method), 0.040 ± 0.038 (valley area method), 0.031 ± 0.031 (FWHM method), and 0.021 ± 0.024 (integrated method). For the efficiency and robustness test of the algorithm, the absolute position errors of the integration method of Scheme C were 0.020 ± 0.024 (5 mm), 0.024 ± 0.026 (8 mm), and 0.018 ± 0.024 (11 mm). Different data processing schemes could affect the accuracy of the developed algorithms. The integration method could integrate the benefits of each algorithm, which improved the level of robustness and accuracy of the algorithm. The integration method can perform multi-leaf collimator (MLC) quality assurance with an accuracy of 0.1 mm. This method is simple, effective, robust, quantitative, and can detect a wide range of MLC leaf position errors.


Assuntos
Algoritmos , Aceleradores de Partículas , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Radioterapia de Intensidade Modulada/métodos , Garantia da Qualidade dos Cuidados de Saúde/normas , Aceleradores de Partículas/instrumentação , Calibragem , Neoplasias/radioterapia
17.
J Appl Clin Med Phys ; 25(8): e14410, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810092

RESUMO

PURPOSE: The purpose of this study is to characterize the dosimetric properties of a commercial brass GRID collimator for high energy photon beams including 15 and 10 MV. Then, the difference in dosimetric parameters of GRID beams among different energies and linacs was evaluated. METHOD: A water tank scanning system was used to acquire the dosimetric parameters, including the percentage depth dose (PDD), beam profiles, peak to valley dose ratios (PVDRs), and output factors (OFs). The profiles at various depths were measured at 100 cm source to surface distance (SSD), and field sizes of 10 × 10 cm2 and 20 × 20 cm2 on three linacs. The PVDRs and OFs were measured and compared with the treatment planning system (TPS) calculations. RESULTS: Compared with the open beam data, there were noticeable changes in PDDs of GRID fields across all the energies. The GRID fields demonstrated a maximal of 3 mm shift in dmax (Truebeam STX, 15MV, 10 × 10 cm2). The PVDR decreased as beam energy increases. The difference in PVDRs between Trilogy and Truebeam STx using 6MV and 15MV was 1.5% ± 4.0% and 2.1% ± 4.3%, respectively. However, two Truebeam linacs demonstrated less than 2% difference in PVDRs. The OF of the GRID field was dependent on the energy and field size. The measured PDDs, PVDRs, and OFs agreed with the TPS calculations within 3% difference. The TPS calculations agreed with the measurements when using 1 mm calculation resolution. CONCLUSION: The dosimetric characteristics of high-energy GRID fields, especially PVDR, significantly differ from those of low-energy GRID fields. Two Truebeam machines are interchangeable for GRID therapy, while a pronounced difference was observed between Truebeam and Trilogy. A series of empirical equations and reference look-up tables for GRID therapy can be generated to facilitate clinical applications.


Assuntos
Neoplasias , Aceleradores de Partículas , Fótons , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Aceleradores de Partículas/instrumentação , Radiometria/métodos , Radiometria/instrumentação , Neoplasias/radioterapia , Radioterapia de Intensidade Modulada/métodos , Imagens de Fantasmas , Fracionamento da Dose de Radiação , Método de Monte Carlo
18.
J Appl Clin Med Phys ; 25(6): e14265, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38335230

RESUMO

BACKGROUND: Electron out-of-field scatter is generally not given importance mainly in electron fields. However, this is important when applicator down and boost treatments are given usually at an angle from the central axis. The electron scatter dose is found to be far away from the central axis which could be easily ignored. PURPOSE: This study aims to investigate the out-of-field radiation doses from electron applicators and their effects on clinical treatment. By identifying the parameters that contribute to out-of-field doses and to explore potential strategies for reducing these doses in order to improve patient outcomes from modern machines. METHODS: Measurements were performed in water phantom using electron diode for modern Elekta and Varian machines. Dose profiles were acquired at surface and dmax with 0° and 90° collimation angle. Various gantry angles were also studied for some data with IC Profiler. The profiles were normalized with respect to the central axis dose. RESULTS: The scatter dose peaks were found at a distance between 11 and 28 cm from the central axis on all machines. However, the peak shifts to 15 cm at 90° collimator when beam is tilted. The position and intensity of the dose varies with depth, collimator, and gantry angles for both Elekta and Varian machines. Due to clearance issues more gantry angles were studied for Elekta applicator compared to Varian. In general, Varian TrueBeam has a lower scatter that Elekta Infinity. The 90° collimator angle has a higher scatter compared to zero degree for both machines. CONCLUSIONS: There are clinically significant peripheral doses around 3% of the central axis dose from the electron applicator. Elekta has a slightly higher scatter (3%) than Varian (2%) that peaks at 25 cm which is clinically important but often overlooked.


Assuntos
Elétrons , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Espalhamento de Radiação , Aceleradores de Partículas/instrumentação , Elétrons/uso terapêutico , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias/radioterapia , Radioterapia de Intensidade Modulada/métodos , Radiometria/métodos
19.
J Appl Clin Med Phys ; 25(5): e14318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38427776

RESUMO

PURPOSE: To quantify the impact of treatment planning system beam model parameters, based on the actual spread in radiotherapy community data, on clinical treatment plans and determine which complexity metrics best describe the impact beam modeling errors have on dose accuracy. METHODS: Ten beam modeling parameters for a Varian accelerator were modified in RayStation to match radiotherapy community data at the 2.5, 25, 50, 75, and 97.5 percentile levels. These modifications were evaluated on 25 patient cases, including prostate, non-small cell lung, H&N, brain, and mesothelioma, generating 1,000 plan perturbations. Differences in the mean planned dose to clinical target volumes (CTV) and organs at risk (OAR) were evaluated with respect to the planned dose using the reference (50th-percentile) parameter values. Correlation between CTV dose differences, and 18 different complexity metrics were evaluated using linear regression; R-squared values were used to determine the best metric. RESULTS: Perturbations to MLC offset and transmission parameters demonstrated the greatest changes in dose: up to 5.7% in CTVs and 16.7% for OARs. More complex clinical plans showed greater dose perturbation with atypical beam model parameters. The mean MLC Gap and Tongue & Groove index (TGi) complexity metrics best described the impact of TPS beam modeling variations on clinical dose delivery across all anatomical sites; similar, though not identical, trends between complexity and dose perturbation were observed among all sites. CONCLUSION: Extreme values for MLC offset and MLC transmission beam modeling parameters were found to most substantially impact the dose distribution of clinical plans and careful attention should be given to these beam modeling parameters. The mean MLC Gap and TGi complexity metrics were best suited to identifying clinical plans most sensitive to beam modeling errors; this could help provide focus for clinical QA in identifying unacceptable plans.


Assuntos
Neoplasias , Órgãos em Risco , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco/efeitos da radiação , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Algoritmos
20.
J Appl Clin Med Phys ; 25(2): e14187, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37890864

RESUMO

PURPOSE: Transit dosimetry is a safety tool based on the transit images acquired during treatment. Forward-projection transit dosimetry software, as PerFRACTION, compares the transit images acquired with an expected image calculated from the DICOM plan, the CT, and the structure set. This work aims to validate PerFRACTION expected transit dose using PRIMO Monte Carlo simulations and ionization chamber measurements, and propose a methodology based on MPPG5a report. METHODS: The validation process was divided into three groups of tests according to MPPG5a: basic dose validation, IMRT dose validation, and heterogeneity correction validation. For the basic dose validation, the fields used were the nine fields needed to calibrate PerFRACTION and three jaws-defined. For the IMRT dose validation, seven sweeping gaps fields, the MLC transmission and 29 IMRT fields from 10 breast treatment plans were measured. For the heterogeneity validation, the transit dose of these fields was studied using three phantoms: 10 , 30 , and a 3 cm cork slab placed between 10 cm of solid water. The PerFRACTION expected doses were compared with PRIMO Monte Carlo simulation results and ionization chamber measurements. RESULTS: Using the 10 cm solid water phantom, for the basic validation fields, the root mean square (RMS) of the difference between PerFRACTION and PRIMO simulations was 0.6%. In the IMRT fields, the RMS of the difference was 1.2%. When comparing respect ionization chamber measurements, the RMS of the difference was 1.0% both for the basic and the IMRT validation. The average passing rate with a γ(2%/2 mm, TH = 20%) criterion between PRIMO dose distribution and PerFRACTION expected dose was 96.0% ± 5.8%. CONCLUSION: We validated PerFRACTION calculated transit dose with PRIMO Monte Carlo and ionization chamber measurements adapting the methodology of the MMPG5a report. The methodology presented can be applied to validate other forward-projection transit dosimetry software.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Aceleradores de Partículas , Algoritmos , Radiometria/métodos , Imagens de Fantasmas , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA