RESUMO
The acetogen Acetobacterium woodii couples caffeate reduction with ferredoxin reduction and NADH oxidation via electron bifurcation, providing additional reduced ferredoxin for energy conservation and cell synthesis. Caffeate is first activated by an acyl-CoA synthetase (CarB), which ligates CoA to caffeate at the expense of ATP. After caffeoyl-CoA is reduced to hydrocaffeoyl-CoA, the CoA moiety in hydrocaffeoyl-CoA could be recycled for caffeoyl-CoA synthesis by an ATP-independent CoA transferase (CarA) to save energy. However, given that CarA and CarB are co-expressed, it was not well understood how ATP could be saved when both two competitive pathways of caffeate activation are present. Here, we reported a dual feedback inhibition of the CarB-mediated caffeate activation by the intermediate hydrocaffeoyl-CoA and the end-product hydrocaffeate. As the product of CarA, hydrocaffeate inhibited CarB-mediated caffeate activation by serving as another substrate of CarB with hydrocaffeoyl-CoA produced. It effectively competed with caffeate even at a concentration much lower than caffeate. Hydrocaffeoyl-CoA formed in this process can also inhibit CarB-mediated caffeate activation. Thus, the dual feedback inhibition of CarB, together with the faster kinetics of CarA, makes the ATP-independent CarA-mediated CoA loop the major route for caffeoyl-CoA synthesis, further saving ATP in the caffeate-dependent electron-bifurcating pathway. A genetic architecture similar to carABC has been found in other anaerobic bacteria, suggesting that the feedback inhibition of acyl-CoA ligases could be a widely employed strategy for ATP conservation in those pathways requiring substrate activation by CoA. IMPORTANCE: This study reports a dual feedback inhibition of caffeoyl-CoA synthetase by two downstream products, hydrocaffeate and hydrocaffeoyl-CoA. It elucidates how such dual feedback inhibition suppresses ATP-dependent caffeoyl-CoA synthesis, hence making the ATP-independent route the main pathway of caffeate activation. This newly discovered mechanism contributes to our current understanding of ATP conservation during the caffeate-dependent electron-bifurcating pathway in the ecologically important acetogen Acetobacterium woodii. Bioinformatic mining of microbial genomes revealed contiguous genes homologous to carABC within the genomes of other anaerobes from various environments, suggesting this mechanism may be widely used in other CoA-dependent electron-bifurcating pathways.
Assuntos
Acetobacterium , Trifosfato de Adenosina , Ácidos Cafeicos , Ácidos Cafeicos/metabolismo , Trifosfato de Adenosina/metabolismo , Acetobacterium/genética , Acetobacterium/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Retroalimentação Fisiológica , Oxirredução , Transporte de ElétronsRESUMO
BACKGROUND: Acetogens, a diverse group of anaerobic autotrophic bacteria, are promising whole-cell biocatalysts that fix CO2 during their growth. However, because of energetic constraints, acetogens exhibit slow growth and the product spectrum is often limited to acetate. Enabling acetogens to form more valuable products such as volatile fatty acids during autotrophic growth is imperative for cementing their place in the future carbon neutral industry. Co-cultivation of strains with different capabilities has the potential to ease the limiting energetic constraints. The lactate-mediated co-culture of an Acetobacterium woodii mutant strain, capable of lactate production, with the Clostridium drakei SL1 type strain can produce butyrate and hexanoate. In this study, the preceding co-culture is characterized by comparison of monocultures and different co-culture approaches. RESULTS: C. drakei grew with H2 + CO2 as main carbon and energy source and thrived when further supplemented with D-lactate. Gas phase components and lactate were consumed in a mixotrophic manner with acetate and butyrate as main products and slight accumulation of hexanoate. Formate was periodically produced and eventually consumed by C. drakei. A lactate-mediated co-culture of the A. woodii [PbgaL_ldhD_NFP] strain, engineered for autotrophic lactate production, and C. drakei produced up to 4 ± 1.7 mM hexanoate and 18.5 ± 5.8 mM butyrate, quadrupling and doubling the respective titers compared to a non-lactate-mediated co-culture. Further co-cultivation experiments revealed the possible advantage of sequential co-culture over concurrent approaches, where both strains are inoculated simultaneously. Scanning electron microscopy of the strains revealed cell-to-cell contact between the co-culture partners. Finally, a combined pathway of A. woodii [PbgaL_ldhD_NFP] and C. drakei for chain-elongation with positive ATP yield is proposed. CONCLUSION: Lactate was proven to be a well-suited intermediate to combine the high gas uptake capabilities of A. woodii with the chain-elongation potential of C. drakei. The cell-to-cell contact observed here remains to be further characterized in its nature but hints towards diffusive processes being involved in the co-culture. Furthermore, the metabolic pathways involved are still speculatory for C. drakei and do not fully explain the consumption of formate while H2 + CO2 is available. This study exemplifies the potential of combining metabolically engineered and native bacterial strains in a synthetic co-culture.
Assuntos
Acetobacterium , Processos Autotróficos , Clostridium , Técnicas de Cocultura , Ácidos Graxos Voláteis , Ácido Láctico , Ácido Láctico/metabolismo , Acetobacterium/metabolismo , Acetobacterium/crescimento & desenvolvimento , Acetobacterium/genética , Ácidos Graxos Voláteis/metabolismo , Clostridium/metabolismo , Clostridium/genética , Clostridium/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Acetatos/metabolismoRESUMO
The environmental fate and transformation mechanism(s) of 1,3-butadiene (BD) under anoxic conditions remain largely unexplored. Anaerobic consortia that can biohydrogenate BD to stoichiometric amounts of 1-butene at a maximum rate of 205.7 ± 38.6 µM day-1 were derived from freshwater river sediment. The formation of 1-butene occurred only in the presence of both H2 and CO2 with concomitant acetate production, suggesting the dependence of BD biohydrogenation on acetogenesis. The 16S rRNA gene-targeted amplicon sequencing revealed the enrichment and dominance of a novel Acetobacterium wieringae population, designated as strain N, in the BD-biohydrogenating community. Multiple genes encoding putative ene-reductases, candidate catalysts for the hydrogenation of the CâC bond in diene compounds, were annotated on the metagenome-assembled genome of strain N, and thus attributed the BD biohydrogenation activity to strain N. Our findings emphasize an essential but overlooked role of certain Acetobacterium members (e.g., strain N) contributing to the natural attenuation of BD in contaminated subsurface environments (e.g., sediment and groundwater). Future efforts to identify and characterize the ene-reductase(s) responsible for BD biohydrogenation in strain N hold promise for the development of industrial biocatalysts capable of stereoselective conversion of BD to 1-butene.
Assuntos
Acetobacterium , Acetobacterium/genética , RNA Ribossômico 16SRESUMO
Acetogenic bacteria such as Acetobacterium woodii use the Wood-Ljungdahl pathway (WLP) for fixation of CO2 and energy conservation. This pathway enables conversion of diverse substrates to the main product of acetogenesis, acetate. Methyl group containing substrates such as methanol or methylated compounds, derived from pectin, are abundant in the environment and a source for CO2 . Methyl groups enter the WLP at the level of methyltetrahydrofolic acid (methyl-THF). For methyl transfer from methanol to THF a substrate-specific methyltransferase system is required. In this study, we used genetic methods to identify mtaBC2A (Awo_c22760-Awo_c22740) as the methanol-specific methyltransferase system of A. woodii. After methyl transfer, methyl-THF serves as carbon and/or electron source and the respiratory Rnf complex is required for redox homeostasis if methanol + CO2 is the substrate. Resting cells fed with methanol + CO2 , indeed converted methanol to acetate in a 4:3 stoichiometry. When methanol was fed in combination with other electron sources such as H2 + CO2 or CO, methanol was converted Rnf-independently and the methyl group was condensed with CO to build acetate. When fed in combination with alternative electron sinks such as caffeate methanol was oxidized only and resulting electrons were used for non-acetogenic growth. These different pathways for the conversion of methyl-group containing substrates enable acetogens to adapt to various ecological niches and to syntrophic communities.
Assuntos
Acetobacterium , Metanol , Acetatos/metabolismo , Acetobacterium/metabolismo , Dióxido de Carbono/metabolismo , Metanol/metabolismo , Metiltransferases/metabolismoRESUMO
Methanol is one of the most widely produced organic substrates from syngas and can serve as a bio-feedstock to cultivate acetogenic bacteria which allows a major contribution to reducing greenhouse gas. Acetobacterium woodii is one of the very few acetogens that can utilize methanol to produce acetate as sole product. Since A. woodii is genetically tractable, it is an interesting candidate to introduce recombinant pathways for production of bio-commodities from methanol. In this study, we introduced the butyrate production operon from a related acetogen, Eubacterium callanderi KIST612, into A. woodii and show a stable production of butyrate from methanol. This study also reveals how butyrate production by recombinant A. woodii strains can be enhanced with addition of electrons in the form of carbon monoxide. Our results not only show a stable expression system of non-native enzymes in A. woodii but also increase in the product spectrum of A. woodii to compounds with higher economic value.
Assuntos
Acetobacterium , Monóxido de Carbono , Acetobacterium/genética , Acetobacterium/metabolismo , Butiratos/metabolismo , Monóxido de Carbono/metabolismo , Metanol/metabolismoRESUMO
Lactate has various uses as industrial platform chemical, poly-lactic acid precursor or feedstock for anaerobic co-cultivations. The aim of this study was to construct and characterise Acetobacterium woodii strains capable of autotrophic lactate production. Therefore, the lctBCD genes, encoding the native Lct dehydrogenase complex, responsible for lactate consumption, were knocked out. Subsequently, a gene encoding a D-lactate dehydrogenase (LDHD) originating from Leuconostoc mesenteroides was expressed in A. woodii, either under the control of the anhydrotetracycline-inducible promoter Ptet or under the lactose-inducible promoter PbgaL. Moreover, LDHD was N-terminally fused to the oxygen-independent fluorescence-activating and absorption-shifting tag (FAST) and expressed in respective A. woodii strains. Cells that produced the LDHD fusion protein were capable of lactate production of up to 18.8 mM in autotrophic batch experiments using H2 + CO2 as energy and carbon source. Furthermore, cells showed a clear and bright fluorescence during exponential growth, as well as in the stationary phase after induction, mediated by the N-terminal FAST. Flow cytometry at the single-cell level revealed phenotypic heterogeneities for cells expressing the FAST-tagged LDHD fusion protein. This study shows that FAST provides a new reporter tool to quickly analyze gene expression over the course of growth experiments of A. woodii. Consequently, fluorescence-based reporters allow for faster and more targeted optimization of production strains.Key points â¢Autotrophic lactate production was achieved with A. woodii. â¢FAST functions as fluorescent marker protein in A. woodii. â¢Fluorescence measurements on single-cell level revealed population heterogeneity.
Assuntos
Dióxido de Carbono , Ácido Láctico , Acetatos/metabolismo , Acetobacterium , Dióxido de Carbono/metabolismo , FluorescênciaRESUMO
Strategies for depleting carbon dioxide (CO2) from flue gases are urgently needed and carbonic anhydrases (CAs) can contribute to solving this problem. They catalyze the hydration of CO2 in aqueous solutions and therefore capture the CO2. However, the harsh conditions due to varying process temperatures are limiting factors for the application of enzymes. The current study aims to examine four recombinantly produced CAs from different organisms, namely CAs from Acetobacterium woodii (AwCA or CynT), Persephonella marina (PmCA), Methanobacterium thermoautotrophicum (MtaCA or Cab) and Sulphurihydrogenibium yellowstonense (SspCA). The highest expression yields and activities were found for AwCA (1814 WAU mg-1 AwCA) and PmCA (1748 WAU mg-1 PmCA). AwCA was highly stable in a mesophilic temperature range, whereas PmCA proved to be exceptionally thermostable. Our results indicate the potential to utilize CAs from anaerobic microorganisms to develop CO2 sequestration applications.
Assuntos
Acetobacterium/enzimologia , Bactérias/enzimologia , Dióxido de Carbono/metabolismo , Anidrases Carbônicas/genética , Acetobacterium/genética , Anaerobiose , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Estabilidade Enzimática , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , TemperaturaRESUMO
More than 2 million tons of glycerol are produced during industrial processes each year and, therefore, glycerol is an inexpensive feedstock to produce biocommodities by bacterial fermentation. Acetogenic bacteria are interesting production platforms and there have been few reports in the literature on glycerol utilization by this ecophysiologically important group of strictly anaerobic bacteria. Here, we show that the model acetogen Acetobacterium woodii DSM1030 is able to grow on glycerol, but contrary to expectations, only for 2-3 transfers. Transcriptome analysis revealed the expression of the pdu operon encoding a propanediol dehydratase along with genes encoding bacterial microcompartments. Deletion of pduAB led to a stable growth of A. woodii on glycerol, consistent with the hypothesis that the propanediol dehydratase also acts on glycerol leading to a toxic end-product. Glycerol is oxidized to acetate and the reducing equivalents are reoxidized by reducing CO2 in the Wood-Ljungdahl pathway, leading to an additional acetate. The possible oxidation product of glycerol, dihydroxyacetone (DHA), also served as carbon and energy source for A. woodii and growth was stably maintained on that compound. DHA oxidation was also coupled to CO2 reduction. Based on transcriptome data and enzymatic analysis we present the first metabolic and bioenergetic schemes for glycerol and DHA utilization in A. woodii.
Assuntos
Acetobacterium , Di-Hidroxiacetona , Acetobacterium/genética , Glicerol , OxirreduçãoRESUMO
Acetogenic bacteria are already established as biocatalysts for production of high-value compounds from C1 substrates such as H2 + CO2 or CO. However, little is known about the physiology, biochemistry and bioenergetics of acetogenesis from formate, an interesting feedstock for biorefineries. Here, we analysed formate metabolism in the model acetogen Acetobacterium woodii. Cells grew optimally on 200 mM formate to an optical density of 0.6. Formate was exclusively converted to acetate (and CO2 ) with a ratio of 4.4:1. Transcriptome analyses revealed genes/enzymes involved in formate metabolism. Strikingly, A. woodii has two genes potentially encoding a formyl-THF synthetase, fhs1 and fhs2. fhs2 forms an operon with a gene encoding a potential formate transporter, fdhC. Deletion of fhs2/fdhC led to a reduced growth rate, formate consumption and optical densities. Acetogenesis from H2 + CO2 was accompanied by transient formate production; strikingly, formate reutilization was completely abolished in the Δfhs2/fdhC mutant. Take together, our studies gave the first detailed insights into the formatotrophic lifestyle of A. woodii.
Assuntos
Acetobacterium , Acetobacterium/genética , Metabolismo Energético , Formiatos , ÓperonRESUMO
The acetogenic model bacterium Acetobacterium woodii is well-known to produce acetate by homoacetogenesis from sugars, but under certain conditions minor amounts of ethanol are produced in addition. Here, we have aimed to identify physiological conditions that increase electron and carbon flow towards ethanol production. Ethanol was only produced from fructose but not from H2 + CO2 , formate, pyruvate, lactate or alanine. In the absence of Na+ , the Wood-Ljungdahl pathway (WLP) of acetate formation is not functional. Therefore, the ethanol yield increased to 0.42 mol/mol (ethanol/fructose) with an ethanol/acetate ratio of 0.28 mol/mol. The presence of bicarbonate/CO2 stimulated electron and carbon flow through the WLP and led to less ethanol produced. Of the 11 potential alcohol dehydrogenase genes, the most upregulated during ethanologenesis was adh4. A deletion of adh4 led to an increase in ethanol production by 100% to a yield of 0.79 mol/mol (ethanol/fructose); this correlated with an increase in transcript abundance of adh6. In sum, our studies revealed low Na+ and bicarbonate/CO2 as factors that trigger ethanol formation and that a deletion of adh4 drastically increased ethanol formation in A. woodii.
Assuntos
Acetobacterium , Acetatos/metabolismo , Acetobacterium/genética , Acetobacterium/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Dióxido de Carbono/metabolismo , Etanol/metabolismoRESUMO
Acetobacterium woodii utilizes the Wood-Ljungdahl pathway for reductive synthesis of acetate from carbon dioxide. However, A. woodii can also perform non-acetogenic growth on 1,2-propanediol (1,2-PD) where instead of acetate, equal amounts of propionate and propanol are produced as metabolic end products. Metabolism of 1,2-PD occurs via encapsulated metabolic enzymes within large proteinaceous bodies called bacterial microcompartments. While the genome of A. woodii harbours 11 genes encoding putative alcohol dehydrogenases, the BMC-encapsulated propanol-generating alcohol dehydrogenase remains unidentified. Here, we show that Adh4 of A. woodii is the alcohol dehydrogenase required for propanol/ethanol formation within these microcompartments. It catalyses the NADH-dependent reduction of propionaldehyde or acetaldehyde to propanol or ethanol and primarily functions to recycle NADH within the BMC. Removal of adh4 gene from the A. woodii genome resulted in slow growth on 1,2-PD and the mutant displayed reduced propanol and enhanced propionate formation as a metabolic end product. In sum, the data suggest that Adh4 is responsible for propanol formation within the BMC and is involved in redox balancing in the acetogen, A. woodii.
Assuntos
Acetatos/metabolismo , Acetobacterium/enzimologia , Álcool Desidrogenase/metabolismo , Proteínas de Bactérias/metabolismo , 1-Propanol/metabolismo , Acetaldeído/metabolismo , Acetobacterium/genética , Acetobacterium/crescimento & desenvolvimento , Álcool Desidrogenase/genética , Aldeídos/metabolismo , Proteínas de Bactérias/genética , Dióxido de Carbono/metabolismo , Etanol/metabolismo , Genoma Bacteriano , NAD/metabolismo , OxirreduçãoRESUMO
Cheap and renewable feedstocks such as the one-carbon substrate formate are emerging for sustainable production in a growing chemical industry. We investigated the acetogen Acetobacterium woodii as a potential host for bioproduction from formate alone and together with autotrophic and heterotrophic co-substrates by quantitatively analyzing physiology, transcriptome, and proteome in chemostat cultivations in combination with computational analyses. Continuous cultivations with a specific growth rate of 0.05 h-1 on formate showed high specific substrate uptake rates (47 mmol g-1 h-1). Co-utilization of formate with H2, CO, CO2 or fructose was achieved without catabolite repression and with acetate as the sole metabolic product. A transcriptomic comparison of all growth conditions revealed a distinct adaptation of A. woodii to growth on formate as 570 genes were changed in their transcript level. Transcriptome and proteome showed higher expression of the Wood-Ljungdahl pathway during growth on formate and gaseous substrates, underlining its function during utilization of one-carbon substrates. Flux balance analysis showed varying flux levels for the WLP (0.7-16.4 mmol g-1 h-1) and major differences in redox and energy metabolism. Growth on formate, H2/CO2, and formate + H2/CO2 resulted in low energy availability (0.20-0.22 ATP/acetate) which was increased during co-utilization with CO or fructose (0.31 ATP/acetate for formate + H2/CO/CO2, 0.75 ATP/acetate for formate + fructose). Unitrophic and mixotrophic conversion of all substrates was further characterized by high energetic efficiencies. In silico analysis of bioproduction of ethanol and lactate from formate and autotrophic and heterotrophic co-substrates showed promising energetic efficiencies (70-92%). Collectively, our findings reveal A. woodii as a promising host for flexible and simultaneous bioconversion of multiple substrates, underline the potential of substrate co-utilization to improve the energy availability of acetogens and encourage metabolic engineering of acetogenic bacteria for the efficient synthesis of bulk chemicals and fuels from sustainable one carbon substrates.
Assuntos
Acetobacterium , Acetatos , Acetobacterium/genética , Fermentação , FormiatosRESUMO
Gas fermentation is a technology for producing platform chemicals as well as fuels and one of the most promising alternatives to petrochemicals. Medium-chained acids and alcohols such as hexanoate and hexanol are particularly interesting due to their versatile application. This study elucidated the pathway of chain elongation in native C6 compound-producing acetogens. Essential genes of Clostridium carboxidivorans for synthesis of medium-chained acids and alcohols were identified in order to demonstrate their catalytic activity in the acetogenic model organism Acetobacterium woodii. Two such gene clusters were identified, which are responsible for conversion of acetyl-CoA to butyryl-CoA by reverse ß-oxidation. Using RT-PCR it could be demonstrated that only genes of cluster 1 are expressed constitutively with simultaneous formation of C6 compounds. Based on genes from C. carboxidivorans, a modular hexanoyl-CoA synthesis (hcs) plasmid system was constructed and transferred into A. woodii. With the recombinant A. woodii strains AWO [pPta_hcs1], AWO [pPta_hcs2], AWO [pTet_hcs1], and AWO [pTet_hcs2] butyrate and hexanoate production under heterotrophic (1.22-4.15 mM hexanoate) and autotrophic conditions (0.48-1.56 mM hexanoate) with both hcs clusters could be detected. hcs Cluster 1 from C. carboxidivorans was transferred into the ABE-fermenting strain Clostridium saccharoperbutylacetonicum as well. For further analysis, genes were also cloned into the hcs plasmid system individually. The resulting recombinant C. saccharoperbutylacetonicum strains with just individual genes neither produced hexanoate nor hexanol, but the strains containing the entire gene cluster were capable of chain elongation. A production of 0.8 mM hexanoate and 5.2 mM hexanol in the fermentation with glucose could be observed.
Assuntos
Álcoois , Clostridium , Acetobacterium , Clostridium/genéticaRESUMO
Gas fermentation is a promising way to convert CO-rich gases to chemicals. We studied the use of synthetic cocultures composed of carboxydotrophic and propionigenic bacteria to convert CO to propionate. So far, isolated carboxydotrophs cannot directly ferment CO to propionate, and therefore, this cocultivation approach was investigated. Four distinct synthetic cocultures were constructed, consisting of Acetobacterium wieringae (DSM 1911T) and Pelobacter propionicus (DSM 2379T), Ac. wieringae (DSM 1911T) and Anaerotignum neopropionicum (DSM 3847T), Ac. wieringae strain JM and P. propionicus (DSM 2379T), and Ac. wieringae strain JM and An. neopropionicum (DSM 3847T). Propionate was produced by all the cocultures, with the highest titer (â¼24 mM) being measured in the coculture composed of Ac. wieringae strain JM and An. neopropionicum, which also produced isovalerate (â¼4 mM), butyrate (â¼1 mM), and isobutyrate (0.3 mM). This coculture was further studied using proteogenomics. As expected, enzymes involved in the Wood-Ljungdahl pathway in Ac. wieringae strain JM, which are responsible for the conversion of CO to ethanol and acetate, were detected; the proteome of An. neopropionicum confirmed the conversion of ethanol to propionate via the acrylate pathway. In addition, proteins related to amino acid metabolism and stress response were highly abundant during cocultivation, which raises the hypothesis that amino acids are exchanged by the two microorganisms, accompanied by isovalerate and isobutyrate production. This highlights the importance of explicitly looking at fortuitous microbial interactions during cocultivation to fully understand coculture behavior. IMPORTANCE Syngas fermentation has great potential for the sustainable production of chemicals from wastes (via prior gasification) and flue gases containing CO/CO2. Research efforts need to be directed toward expanding the product portfolio of gas fermentation, which is currently limited to mainly acetate and ethanol. This study provides the basis for a microbial process to produce propionate from CO using synthetic cocultures composed of acetogenic and propionigenic bacteria and elucidates the metabolic pathways involved. Furthermore, based on proteomics results, we hypothesize that the two bacterial species engage in an interaction that results in amino acid exchange, which subsequently promotes isovalerate and isobutyrate production. These findings provide a new understanding of gas fermentation and a coculturing strategy for expanding the product spectrum of microbial conversion of CO/CO2.
Assuntos
Acetobacterium/metabolismo , Monóxido de Carbono/metabolismo , Deltaproteobacteria/metabolismo , Propionatos/metabolismo , Acetobacterium/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cocultura , Deltaproteobacteria/efeitos dos fármacos , Fermentação , Proteoma/metabolismo , Acetato de Sódio/farmacologiaRESUMO
The price for renewable electricity is rapidly decreasing, and the availability of such energy is expected to increase in the coming years. This is a welcomed outcome considering that mitigation of climate disruption due to the use of fossil carbon is reaching a critical stage. However, the economy will remain dependent on carbon-based chemicals and the problem of electricity storage persists. Therefore, the development of electrosynthetic processes that convert electricity and CO2 into chemicals and energy dense fuels, perhaps even food, would be desirable. Electrochemistry has been applied to the manufacture of many valuable products and at a large industrial scale, but it is difficult to produce multicarbon chemicals from CO2 by chemistry alone. Being that the biological world possesses expertise at the construction of C-C bonds, it is being examined in conjunction with electrochemistry to discover new ways of synthesizing chemicals from electricity and CO2. One approach is microbial electrosynthesis. This Account describes the development of a microbial electrosynthesis system by the authors. A biocathode consisting of a carbon-based electrode and a microbial community produced short chain fatty acids, primarily acetate. The device works by electrolysis of water, but microbes facilitate electron transfer from the cathode while reducing CO2 by the Wood-Ljungdahl pathway possessed by an Acetobacterium sp. While this acetogenic microorganism dominates the microbiome growing on the cathode surface, 13 total species of microbes overall were ecologically selected on the cathode and genomes for each have been assembled. The combined species may contribute to the stability of the microbiome, a common feature of naturally selected microbial communities. The microbial electrosynthesis system was demonstrated to operate continuously at a cathode for more than 2 years and could also be used with intermittent power, thus demonstrating the stability of the microbiome living at the cathode. In addition to the description of reactor design and startup procedures, the possible mechanisms of electron transfer are described in this Account. While mysteries remain to be solved, much evidence indicates that the microbiome may facilitate electron transfer by supplying catalyst(s) external to the bacterial cells and onto the cathode surface. This may be in the form of a hydrogen-producing catalyst that enhances hydrogen generation by an inert carbon-based electrode. Through the enrichment of the electrosynthetic microbiome along with several modifications in reactor design and operation, the productivity and efficiency were improved. In addition to the intrinsic value of the current products, coupling the process with a secondary stage might be used to produce more valuable products from the acetic acid stream such as lipids, biocrude oil, or higher value food supplements. Alternatively, additional work on the mechanism of electron transfer, reactor design/operation, and modification of the microbes through synthetic biology, particularly to enhance carbon efficiency into higher value chemicals, are the needed next steps to advance microbial electrosynthesis so that it may be used to transform renewable electrons and CO2 directly into products and help solve the problem of climate disruption.
Assuntos
Acetobacterium/metabolismo , Dióxido de Carbono/metabolismo , Compostos Orgânicos/metabolismo , Acetobacterium/química , Fontes de Energia Bioelétrica , Dióxido de Carbono/química , Eletricidade , Transporte de Elétrons , Microbiota , Compostos Orgânicos/químicaRESUMO
One of the bottlenecks of the hydrogen production by dark fermentation is the low yields obtained because of the homoacetogenesis persistence, a metabolic pathway where H2 and CO2 are consumed to produce acetate. The central reactions of H2 production and homoacetogenesis are catalyzed by enzyme hydrogenase and the formyltetrahydrofolate synthetase, respectively. In this work, genes encoding for the formyltetrahydrofolate synthetase (fthfs) and hydrogenase (hydA) were used to investigate the diversity of homoacetogens as well as their phylogenetic relationships through quantitative PCR (qPCR) and next-generation amplicon sequencing. A total of 70 samples from 19 different H2-producing bioreactors with different configurations and operating conditions were analyzed. Quantification through qPCR showed that the abundance of fthfs and hydA was strongly associated with the type of substrate, organic loading rate, and H2 production performance. In particular, fthfs sequencing revealed that homoacetogens diversity was low with one or two dominant homoacetogens in each sample. Clostridium carboxivorans was detected in the reactors fed with agave hydrolisates; Acetobacterium woodii dominated in systems fed with glucose; Blautia coccoides and unclassified Sporoanaerobacter species were present in reactors fed with cheese whey; finally, Eubacterium limosum and Selenomonas sp. were co-dominant in reactors fed with glycerol. Altogether, quantification and sequencing analysis revealed that the occurrence of homoacetogenesis could take place due to (1) metabolic changes of H2-producing bacteria towards homoacetogenesis or (2) the displacement of H2-producing bacteria by homoacetogens. Overall, it was demonstrated that the fthfs gene was a suitable marker to investigate homoacetogens in H2-producing reactors. KEY POINTS: ⢠qPCR and sequencing analysis revealed two homoacetogenesis phenomena. ⢠fthfs gene was a suitable marker to investigate homoacetogens in H2 reactors.
Assuntos
Hidrogênio , Acetobacterium , Clostridiales , Eubacterium , FilogeniaRESUMO
In times of global climate change and the fear of dwindling resources, we are facing different considerable challenges such as the replacement of fossil fuel-based energy carriers with the coincident maintenance of the increasing energy supply of our growing world population. Therefore, CO2 capturing and H2 storing solutions are urgently needed. In this study, we demonstrate the production of a functional and biotechnological interesting enzyme complex from acetogenic bacteria, the hydrogen-dependent CO2 reductase (HDCR), in the well-known model organism Escherichia coli. We identified the metabolic bottlenecks of the host organisms for the production of the HDCR enzyme complex. Here we show that the recombinant expression of a heterologous enzyme complex transforms E. coli into a whole-cell biocatalyst for hydrogen-driven CO2 reduction to formate without the need of any external co-factors or endogenous enzymes in the reaction process. This shifts the industrial platform organism E. coli more and more into the focus as biocatalyst for CO2-capturing and H2-storage. KEY POINTS: ⢠A functional HDCR enzyme complex was heterologously produced in E. coli. ⢠The metabolic bottlenecks for HDCR production were identified. ⢠HDCR enabled E. coli cell to capture and store H2 and CO2 in the form of formate.
Assuntos
Acetobacterium , Hidrogênio , Dióxido de Carbono , Deutério , Escherichia coli/genética , FormiatosRESUMO
The Na+-translocating F1FO ATP synthase from Acetobacterium woodii (AwF-ATP synthase) with a subunit stoichiometry of α3:ß3:γ:δ:ε:a:b2:(c2/3)9:c1 represents an evolutionary path between ATP-synthases and vacuolar ATPases, by containing a heteromeric rotor c-ring, composed of subunits c1, c2 and c3, and an extra loop (γ195-211) within the rotary γ subunit. Here, the recombinant AwF-ATP synthase was subjected to negative stain electron microscopy and single particle analysis. The reference free 2D class averages revealed high flexibility of the enzyme, wherein the F1 and FO domains distinctively bended to adopt multiple conformations. Moreover, both the F1 and FO domains tilted relative to each other to a maximum extent of 28° and 30°, respectively. The first 3D reconstruction of the AwF-ATP synthase was determined which accommodates well the modelled structure of the AwF-ATP synthase as well as the γ195-211-loop. Molecular simulations of the enzyme underlined the bending features and flexibility observed in the electron micrographs, and enabled assessment of the dynamics of the extra γ195-211-loop.
Assuntos
Acetobacterium/enzimologia , Proteínas de Bactérias/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/ultraestrutura , Acetobacterium/química , Acetobacterium/ultraestrutura , Proteínas de Bactérias/análise , Imageamento Tridimensional , Microscopia Eletrônica , ATPases Mitocondriais Próton-Translocadoras/análise , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/análise , Proteínas Recombinantes/ultraestruturaRESUMO
Acetogens synthesize acetyl-CoA via CO2 or CO fixation, producing organic compounds. Despite their ecological and industrial importance, their transcriptional and post-transcriptional regulation has not been systematically studied. With completion of the genome sequence of Acetobacterium bakii (4.28-Mb), we measured changes in the transcriptome of this psychrotolerant acetogen in response to temperature variations under autotrophic and heterotrophic growth conditions. Unexpectedly, acetogenesis genes were highly up-regulated at low temperatures under heterotrophic, as well as autotrophic, growth conditions. To mechanistically understand the transcriptional regulation of acetogenesis genes via changes in RNA secondary structures of 5'-untranslated regions (5'-UTR), the primary transcriptome was experimentally determined, and 1379 transcription start sites (TSS) and 1100 5'-UTR were found. Interestingly, acetogenesis genes contained longer 5'-UTR with lower RNA-folding free energy than other genes, revealing that the 5'-UTRs control the RNA abundance of the acetogenesis genes under low temperature conditions. Our findings suggest that post-transcriptional regulation via RNA conformational changes of 5'-UTRs is necessary for cold-adaptive acetogenesis.
Assuntos
Acetobacterium/fisiologia , Adaptação Fisiológica/genética , Conformação de Ácido Nucleico , Transcriptoma/genética , Regiões 5' não Traduzidas/genética , Acetobacterium/genética , Temperatura Baixa , Regulação da Expressão Gênica/genética , Genoma Bacteriano/genética , Genoma Bacteriano/fisiologia , Análise de Sequência de DNARESUMO
The advantage of using acetogens such as Acetobacterium woodii as biocatalysts converting the cheap substrate and greenhouse gas carbon dioxide (CO2) into value-added chemicals comes together with the disadvantage of a low overall ATP gain due to the bioenergetics associated with the Wood-Ljungdahl pathway. Expanding the product spectrum of recombinant A. woodii strains to compounds with high ATP-demanding biosynthesis is therefore challenging. As a least invasive strategy for improved ATP generation, the exploitation of the arginine deiminase pathway (ADI) was examined under native conditions and via using heterologously expressed genes in A. woodii. Several promoters were analyzed for application of different gene expression levels in A. woodii using ß-glucuronidase assays. Heterologous expression of the ADI pathway genes from Clostridium autoethanogenum was controlled using either the constitutive pta-ack promoter from Clostridium ljungdahlii or a tightly regulated tetracycline-inducible promoter Ptet. Unlike constitutive expression, only induced expression of the ADI pathway genes led to a 36% higher maximal OD600 when using arginine (OD600 3.4) as nitrogen source and a 52% lower acetate yield per biomass compared to cells growing with yeast extract as nitrogen source (OD600 2.5). In direct comparison, a 69% higher maximal OD600 and about 60% lower acetate yield per biomass in induced to non-induced recombinant A. woodii cells was noticed when using arginine. Our data suggests the application of the ADI pathway in A. woodii for expanding the product spectrum to compounds with high ATP-demanding biosynthesis.