Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 608
Filtrar
1.
Cell ; 170(1): 48-60.e11, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666122

RESUMO

Type I CRISPR systems feature a sequential dsDNA target searching and degradation process, by crRNA-displaying Cascade and nuclease-helicase fusion enzyme Cas3, respectively. Here we present two cryo-EM snapshots of the Thermobifida fusca type I-E Cascade: (1) unwinding 11 bp of dsDNA at the seed-sequence region to scout for sequence complementarity, and (2) further unwinding of the entire protospacer to form a full R-loop. These structures provide the much-needed temporal and spatial resolution to resolve key mechanistic steps leading to Cas3 recruitment. In the early steps, PAM recognition causes severe DNA bending, leading to spontaneous DNA unwinding to form a seed-bubble. The full R-loop formation triggers conformational changes in Cascade, licensing Cas3 to bind. The same process also generates a bulge in the non-target DNA strand, enabling its handover to Cas3 for cleavage. The combination of both negative and positive checkpoints ensures stringent yet efficient target degradation in type I CRISPR-Cas systems.


Assuntos
Actinobacteria/genética , Actinobacteria/ultraestrutura , Sistemas CRISPR-Cas , Hibridização de Ácido Nucleico , Actinobacteria/química , Actinobacteria/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Sequência de Bases , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/ultraestrutura , Microscopia Crioeletrônica , Modelos Moleculares , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/metabolismo
2.
Nature ; 578(7796): 582-587, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32051588

RESUMO

Addressing the ongoing antibiotic crisis requires the discovery of compounds with novel mechanisms of action that are capable of treating drug-resistant infections1. Many antibiotics are sourced from specialized metabolites produced by bacteria, particularly those of the Actinomycetes family2. Although actinomycete extracts have traditionally been screened using activity-based platforms, this approach has become unfavourable owing to the frequent rediscovery of known compounds. Genome sequencing of actinomycetes reveals an untapped reservoir of biosynthetic gene clusters, but prioritization is required to predict which gene clusters may yield promising new chemical matter2. Here we make use of the phylogeny of biosynthetic genes along with the lack of known resistance determinants to predict divergent members of the glycopeptide family of antibiotics that are likely to possess new biological activities. Using these predictions, we uncovered two members of a new functional class of glycopeptide antibiotics-the known glycopeptide antibiotic complestatin and a newly discovered compound we call corbomycin-that have a novel mode of action. We show that by binding to peptidoglycan, complestatin and corbomycin block the action of autolysins-essential peptidoglycan hydrolases that are required for remodelling of the cell wall during growth. Corbomycin and complestatin have low levels of resistance development and are effective in reducing bacterial burden in a mouse model of skin MRSA infection.


Assuntos
Antibacterianos , Descoberta de Drogas , Peptídeos Cíclicos , Peptidoglicano/efeitos dos fármacos , Peptidoglicano/metabolismo , Actinobacteria/química , Actinobacteria/genética , Actinobacteria/metabolismo , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Vias Biossintéticas/genética , Parede Celular/metabolismo , Clorofenóis/química , Clorofenóis/metabolismo , Clorofenóis/farmacologia , Modelos Animais de Doenças , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Feminino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Família Multigênica , N-Acetil-Muramil-L-Alanina Amidase/antagonistas & inibidores , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Filogenia , Pele/microbiologia , Infecções Estafilocócicas/microbiologia
3.
Nature ; 576(7786): 321-325, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597161

RESUMO

Host infection by pathogenic mycobacteria, such as Mycobacterium tuberculosis, is facilitated by virulence factors that are secreted by type VII secretion systems1. A molecular understanding of the type VII secretion mechanism has been hampered owing to a lack of three-dimensional structures of the fully assembled secretion apparatus. Here we report the cryo-electron microscopy structure of a membrane-embedded core complex of the ESX-3/type VII secretion system from Mycobacterium smegmatis. The core of the ESX-3 secretion machine consists of four protein components-EccB3, EccC3, EccD3 and EccE3, in a 1:1:2:1 stoichiometry-which form two identical protomers. The EccC3 coupling protein comprises a flexible array of four ATPase domains, which are linked to the membrane through a stalk domain. The domain of unknown function (DUF) adjacent to the stalk is identified as an ATPase domain that is essential for secretion. EccB3 is predominantly periplasmatic, but a small segment crosses the membrane and contacts the stalk domain. This suggests that conformational changes in the stalk domain-triggered by substrate binding at the distal end of EccC3 and subsequent ATP hydrolysis in the DUF-could be coupled to substrate secretion to the periplasm. Our results reveal that the architecture of type VII secretion systems differs markedly from that of other known secretion machines2, and provide a structural understanding of these systems that will be useful for the design of antimicrobial strategies that target bacterial virulence.


Assuntos
Microscopia Crioeletrônica , Mycobacterium smegmatis/química , Sistemas de Secreção Tipo VII/química , Sistemas de Secreção Tipo VII/ultraestrutura , Actinobacteria/química , Actinobacteria/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/ultraestrutura , Domínios Proteicos , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Relação Estrutura-Atividade , Thermomonospora , Sistemas de Secreção Tipo VII/isolamento & purificação
4.
Microb Pathog ; 192: 106702, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38825090

RESUMO

The soil bacterium DP1B was isolated from a marine sediment collected off the coast of Randayan Island, Kalimantan Barat, Indonesia and identified based on 16S rDNA as Nocardiopsis alba. The bacterium was cultivated in seven different media (A1, ISP1, ISP2, ISP4, PDB, PC-1, and SCB) with three different solvents [distilled water, 5 % NaCl solution, artificial seawater (ASW)] combinations, shaken at 200 rpm, 30 °C, for 7 days. The culture broths were extracted with ethyl acetate and each extract was tested for its antimicrobial activity and brine shrimp lethality, and the chemical diversity was assessed using thin-layer chromatography (TLC), gas chromatography (GC), and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). The result showed that almost all extracts showed antibacterial but not antifungal activity, whereas their brine shrimp toxicity levels vary from high to low. The best medium/solvent combinations for antibacterial activity and toxicity were PC-1 (in either distilled water, 5% NaCl solution, or ASW) and SCB in ASW. Different chemical diversity profiles were observed on TLC, GC-MS, and LC-MS/MS. Extracts from the PC-1 cultures seem to contain a significant number of cyclic dipeptides, whereas those from the SCB cultures contain sesquiterpenes, indicating that media and solvent compositions can affect the secondary metabolite profiles of DP1B. In addition, untargeted metabolomic analyses using LC-MS/MS showed many molecular ions that did not match with those in the Global Natural Products Social Molecular Networking (GNPS) database, suggesting that DP1B has great potential as a source of new natural products.


Assuntos
Antibacterianos , Artemia , Sedimentos Geológicos , RNA Ribossômico 16S , Animais , Artemia/efeitos dos fármacos , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia , Cromatografia Líquida , Metabolômica , Meios de Cultura/química , Indonésia , Espectrometria de Massas em Tandem , Actinobacteria/metabolismo , Actinobacteria/química , Actinobacteria/genética , Actinobacteria/classificação , Testes de Sensibilidade Microbiana , Água do Mar/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Metaboloma , Cromatografia em Camada Fina , Filogenia , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Antifúngicos/isolamento & purificação , Antifúngicos/química
5.
Bioorg Chem ; 150: 107572, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901281

RESUMO

The fast spread of antibiotic resistance results in the requirement for a constant introduction of new candidates. Pentangular polyphenols, a growing family of actinomycetes-derived aromatic type II polyketides, have attracted considerable attention due to their intriguing polycyclic systems and potent antimicrobial activity. Among them, benastatins, anthrabenzoxocinones (ABXs), and fredericamycins, display unique variations in their polycyclic frameworks, yet concurrently share structural commonalities within their substitutions. The present review summarizes advances in the isolation, spectroscopic characteristics, biosynthesis, and biological activities of pentangular polyphenols benastatins (1-16), ABXs (17-39), and fredericamycins (40-42) from actinomycetes. The information presented here thus prompts researchers to further explore and discover additional congeners within these three small classes of pentangular polyphenols.


Assuntos
Antibacterianos , Humanos , Actinobacteria/metabolismo , Actinobacteria/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/biossíntese , Antibacterianos/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Polifenóis/farmacologia , Polifenóis/química , Relação Estrutura-Atividade , Isoquinolinas/química , Isoquinolinas/farmacologia
6.
Mar Drugs ; 22(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38921579

RESUMO

Bioprospecting the secondary metabolism of underexplored Actinomycetota taxa is a prolific route to uncover novel chemistry. In this work, we report the isolation, structure elucidation, and bioactivity screening of cellulamides A and B (1 and 2), two novel linear peptides obtained from the culture of the macroalga-associated Cellulosimicrobium funkei CT-R177. The host of this microorganism, the Chlorophyta Codium tomentosum, was collected in the northern Portuguese coast and, in the scope of a bioprospecting study focused on its associated actinobacterial community, strain CT-R177 was isolated, taxonomically identified, and screened for the production of antimicrobial and anticancer compounds. Dereplication of a crude extract of this strain using LC-HRMS(/MS) analysis unveiled a putative novel natural product, cellulamide A (1), that was isolated following mass spectrometry-guided fractionation. An additional analog, cellulamide B (2) was obtained during the chromatographic process and chemically characterized. The chemical structures of the novel linear peptides, including their absolute configurations, were elucidated using a combination of HRMS, 1D/2D NMR spectroscopy, and Marfey's analysis. Cellulamide A (1) was subjected to a set of bioactivity screenings, but no significant biological activity was observed. The cellulamides represent the first family of natural products reported from the Actinomycetota genus Cellulosimicrobium, showcasing not only the potential of less-explored taxa but also of host-associated marine strains for novel chemistry discovery.


Assuntos
Peptídeos , Humanos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/isolamento & purificação , Actinobacteria/química , Actinobacteria/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Organismos Aquáticos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Linhagem Celular Tumoral , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação
7.
Mar Drugs ; 22(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667794

RESUMO

An ethyl acetate extract of a marine actinomycete strain, Nocardiopsis mentallicus SCSIO 53858, isolated from a deep-sea sediment sample in the South China Sea, exhibited anti-quorum-sensing (QS) activity against Chromobacterium violaceum CV026. Guided by the anti-QS activity, a novel active compound was isolated and purified from the extract and was identified as 2,3-dimethoxycinnamic acid (2,3-DCA) through spectral data analysis. At a concentration of 150 µg/mL, 2,3-DCA exhibited robust inhibitory effects on three QS-regulated traits of C. violaceum CV026: violacein production, swarming motility, and biofilm formation, with inhibition rates of 73.9%, 65.9%, and 37.8%, respectively. The quantitative reverse transcription polymerase chain reaction results indicated that 2,3-DCA can disrupt the QS system in C. violaceum CV026 by effectively suppressing the expression of QS-related genes, including cviR, vioA, vioB, and vioE. Molecular docking analysis revealed that 2,3-DCA hinders the QS system by competitively binding to the same binding pocket on the CviR receptor as the natural signal molecule N-hexanoyl-L-homoserine lactone. Collectively, these findings suggest that 2,3-DCA exhibits promising potential as an inhibitor of QS systems, providing a potential solution to the emerging problem of bacterial resistance.


Assuntos
Antibacterianos , Chromobacterium , Indóis , Simulação de Acoplamento Molecular , Percepção de Quorum , Percepção de Quorum/efeitos dos fármacos , Chromobacterium/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/química , Actinobacteria/química , Cinamatos/farmacologia , Cinamatos/isolamento & purificação , Cinamatos/química , Biofilmes/efeitos dos fármacos , Sedimentos Geológicos/microbiologia , Organismos Aquáticos , China
8.
Chem Biodivers ; 21(3): e202301617, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38193652

RESUMO

In the current study, the actinomycetes associated with the red sea-derived soft coral Sarcophyton glaucum were investigated in terms of biological and chemical diversity. Four different media, M1, ISP2, Marine Agar (MA), and Actinomycete isolation agar (AIA) were used for the isolation of three strains of actinomycetes that were identified as Streptomyces sp. UR 25, Micromonospora sp. UR32 and Saccharomonospora sp. UR 19. LC-HRMS analysis was used to investigate the chemical diversity of the isolated actinobacteria. The LC-HRMS data were statistically processed using MetaboAnalyst 5.0 viz to differentiate the extract groups and determine the optimal growth culturing conditions. Multivariate data statistical analysis revealed that the Micromonospora sp. extract cultured on (MA) medium is the most distinctive extract in terms of chemical composition. While, the Streptomyces sp. UR 25 extracts are differ significantly from Micromonospora sp. UR32 and Saccharomonospora sp. UR 19. Biological investigation using in vitro cytotoxic assay for actinobacteria extracts revealed the prominent potentiality of the Streptomyces sp. UR 25 cultured on oligotrophic medium against human hepatoma (HepG2), human breast adenocarcinoma (MCF-7) and human colon adenocarcinoma (CACO2) cell lines (IC50 =3.3, 4.2 and 6.8 µg/mL, respectively). SwissTarget Prediction speculated that among the identified compounds, 16-deethyl, indanomycin (8) could have reasonable affinity on HDM2 active site. In this respect, molecular docking study was performed for compound (8) to reveal a substantial affinity on HDM2 active site. In addition, molecular dynamics simulations were carried out at 200 ns for the most active compound (8) compared to the co-crystallized inhibitor DIZ giving deeper information regarding their thermodynamic and dynamic properties as well.


Assuntos
Actinobacteria , Adenocarcinoma , Antozoários , Antineoplásicos , Neoplasias do Colo , Streptomyces , Animais , Humanos , Actinobacteria/química , Oceano Índico , Actinomyces , Ágar/metabolismo , Células CACO-2 , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo
9.
BMC Microbiol ; 23(1): 396, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087203

RESUMO

Malaria is a persistent illness that is still a public health issue. On the other hand, marine organisms are considered a rich source of anti­infective drugs and other medically significant compounds. Herein, we reported the isolation of the actinomycete associated with the Red Sea sponge Callyspongia siphonella. Using "one strain many compounds" (OSMAC) approach, a suitable strain was identified and then sub-cultured in three different media (M1, ISP2 and OLIGO). The extracts were evaluated for their in-vitro antimalarial activity against Plasmodium falciparum strain and subsequently analyzed by Liquid chromatography coupled with high-resolution mass spectrometry (LC-HR-MS). In addition, MetaboAnalyst 5.0 was used to statistically analyze the LC-MS data. Finally, Molecular docking was carried out for the dereplicated metabolites against lysyl-tRNA synthetase (PfKRS1). The phylogenetic study of the 16S rRNA sequence of the actinomycete isolate revealed its affiliation to Streptomyces genus. Antimalarial screening revealed that ISP2 media is the most active against Plasmodium falciparum strain. Based on LC-HR-MS based metabolomics and multivariate analyses, the static cultures of the media, ISP2 (ISP2-S) and M1 (M1-S), are the optimal media for metabolites production. OPLS-DA suggested that quinone derivatives are abundant in the extracts with the highest antimalarial activity. Fifteen compounds were identified where eight of these metabolites were correlated to the observed antimalarial activity of the active extracts. According to molecular docking experiments, saframycin Y3 and juglomycin E showed the greatest binding energy scores (-6.2 and -5.13) to lysyl-tRNA synthetase (PfKRS1), respectively. Using metabolomics and molecular docking investigation, the quinones, saframycin Y3 (5) and juglomycin E (1) were identified as promising antimalarial therapeutic candidates. Our approach can be used as a first evaluation stage in natural product drug development, facilitating the separation of chosen metabolites, particularly biologically active ones.


Assuntos
Actinobacteria , Antimaláricos , Callyspongia , Lisina-tRNA Ligase , Animais , Antimaláricos/farmacologia , Actinobacteria/genética , Actinobacteria/química , Callyspongia/química , Actinomyces/genética , Oceano Índico , Filogenia , RNA Ribossômico 16S/genética , Simulação de Acoplamento Molecular , Lisina-tRNA Ligase/genética , Plasmodium falciparum
10.
Mar Drugs ; 21(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37888471

RESUMO

Bacterial resistance to different antimicrobial agents is growing with alarming speed, especially when bacterial cells are living in biofilm. Hybrid nanoparticles, synthesized through the green method, hold promise as a potential solution to this challenge. In this study, 66 actinomycete strains were isolated from three distinct marine sources: marine sediment, the algae Codium bursa, and the marine sponge Chondrosia reniformis. From the entirety of the isolated strains, one strain, S26, identified as Saccharopolyspora erythrea, was selected based on its taxonomic position and significant antimicrobial activity. Using the biomass of the selected marine Actinobacteria, the green synthesis of eco-friendly silver carbonate nanoparticles (BioAg2CO3NPs) is reported for the first time in this pioneering study. The BioAg2CO3NPs were characterized using different spectroscopic and microscopic analyses; the synthesized BioAg2CO3NPs primarily exhibit a triangular shape, with an approximate size of 100 nm. Biological activity evaluation indicated that the BioAg2CO3NPs exhibited good antimicrobial activity against all tested microorganisms and were able to remove 58% of the biofilm formed by the Klebsiella pneumoniae kp6 strain.


Assuntos
Actinobacteria , Anti-Infecciosos , Nanopartículas Metálicas , Actinobacteria/química , Antibacterianos/química , Nanopartículas Metálicas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Bactérias , Biofilmes , Testes de Sensibilidade Microbiana
11.
Proc Natl Acad Sci U S A ; 117(49): 31166-31176, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229520

RESUMO

Multiple resistance and pH adaptation (Mrp) complexes are sophisticated cation/proton exchangers found in a vast variety of alkaliphilic and/or halophilic microorganisms, and are critical for their survival in highly challenging environments. This family of antiporters is likely to represent the ancestor of cation pumps found in many redox-driven transporter complexes, including the complex I of the respiratory chain. Here, we present the three-dimensional structure of the Mrp complex from a Dietzia sp. strain solved at 3.0-Å resolution using the single-particle cryoelectron microscopy method. Our structure-based mutagenesis and functional analyses suggest that the substrate translocation pathways for the driving substance protons and the substrate sodium ions are separated in two modules and that symmetry-restrained conformational change underlies the functional cycle of the transporter. Our findings shed light on mechanisms of redox-driven primary active transporters, and explain how driving substances of different electric charges may drive similar transport processes.


Assuntos
Actinobacteria/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Conformação Proteica , Trocadores de Sódio-Hidrogênio/ultraestrutura , Actinobacteria/química , Transporte Biológico , Microscopia Crioeletrônica , Cristalografia por Raios X , Complexo I de Transporte de Elétrons/ultraestrutura , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Complexos Multiproteicos/química , Oxirredução , Bombas de Próton/química , Bombas de Próton/genética , Bombas de Próton/ultraestrutura , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/genética
12.
Proc Natl Acad Sci U S A ; 117(38): 23802-23806, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32868430

RESUMO

The bacterial pathogen Pseudomonas tolaasii severely damages white button mushrooms by secretion of the pore-forming toxin tolaasin, the main virulence factor of brown blotch disease. Yet, fungus-associated helper bacteria of the genus Mycetocola (Mycetocola tolaasinivorans and Mycetocola lacteus) may protect their host by an unknown detoxification mechanism. By a combination of metabolic profiling, imaging mass spectrometry, structure elucidation, and bioassays, we found that the helper bacteria inactivate tolaasin by linearizing the lipocyclopeptide. Furthermore, we found that Mycetocola spp. impair the dissemination of the pathogen by cleavage of the lactone ring of pseudodesmin. The role of pseudodesmin as a major swarming factor was corroborated by identification and inactivation of the corresponding biosynthetic gene cluster. Activity-guided fractionation of the Mycetocola proteome, matrix-assisted laser desorption/ionization (MALDI) analyses, and heterologous enzyme production identified the lactonase responsible for toxin cleavage. We revealed an antivirulence strategy in the context of a tripartite interaction that has high ecological and agricultural relevance.


Assuntos
Actinobacteria , Agaricus , Proteínas de Bactérias , Depsipeptídeos , Pseudomonas , Fatores de Virulência , Actinobacteria/química , Actinobacteria/enzimologia , Actinobacteria/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Depsipeptídeos/química , Depsipeptídeos/metabolismo , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Proteoma , Pseudomonas/química , Pseudomonas/patogenicidade , Fatores de Virulência/química , Fatores de Virulência/metabolismo
13.
J Biol Chem ; 297(5): 101017, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34582890

RESUMO

Heme, a near ubiquitous cofactor, is synthesized by most organisms. The essential step of insertion of iron into the porphyrin macrocycle is mediated by the enzyme ferrochelatase. Several ferrochelatases have been characterized, and it has been experimentally shown that a fraction of them contain [2Fe-2S] clusters. It has been suggested that all metazoan ferrochelatases have such clusters, but among bacteria, these clusters have been most commonly identified in Actinobacteria and a few other bacteria. Despite this, the function of the [2Fe-2S] cluster remains undefined. With the large number of sequenced genomes currently available, we comprehensively assessed the distribution of putative [2Fe-2S] clusters throughout the ferrochelatase protein family. We discovered that while rare within the bacterial ferrochelatase family, this cluster is prevalent in a subset of phyla. Of note is that genomic data show that the cluster is not common in Actinobacteria, as is currently thought based on the small number of actinobacterial ferrochelatases experimentally examined. With available physiological data for each genome included, we identified a correlation between the presence of the microbial cluster and aerobic metabolism. Additionally, our analysis suggests that Firmicute ferrochelatases are the most ancient and evolutionarily preceded the Alphaproteobacterial precursor to eukaryotic mitochondria. These findings shed light on distribution and evolution of the [2Fe-2S] cluster in ferrochelatases and will aid in determining the function of the cluster in heme synthesis.


Assuntos
Actinobacteria , Proteínas de Bactérias , Ferroquelatase , Ferro/química , Enxofre/química , Actinobacteria/química , Actinobacteria/genética , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ferroquelatase/química , Ferroquelatase/genética , Heme/química , Heme/genética
14.
Mar Drugs ; 20(8)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36005541

RESUMO

Four actinomycete strains isolated from the coral Acropora austera and coral sand samples from the South China Sea, were found to produce a series of halogenated compounds baring similar ultraviolet absorption based on the analysis of HPLC and LC-MS. The production titers of halogenated compounds from Streptomyces diacarni SCSIO 64983 exceeded those of other similar strains leading us to focus on SCSIO 64983. Four new thiocarbazomycins A-B (1-2), chlocarbazomycin E (3), and brocarbazomycin A (4), together with three known chlocarbazomycins A-C (5-7) containing a carbazole core were identified, and their structures were determined using a combination of spectroscopic analysis including HRESIMS, 1D and 2D NMR. Structurally speaking, compounds 1 and 2 have the rare sulfur-containing carbazole nuclei, and 3 and 4 contain Cl and Br atoms, respectively. Although these compounds have not yet been found to have obvious biological activity, their discovery highlights the role of molecular libraries in subsequent drug discovery campaigns.


Assuntos
Actinobacteria , Antozoários , Actinobacteria/química , Actinomyces , Animais , Carbazóis , Recifes de Corais , Areia
15.
Mar Drugs ; 20(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35736177

RESUMO

Actinomycetes are currently one of the major sources of bioactive secondary metabolites used for medicine development. Accumulating evidence has shown that Nocardiopsis, a key class of actinomycetes, has the ability to produce novel bioactive natural products. This review covers the sources, distribution, bioactivities, biosynthesis, and structural characteristics of compounds isolated from Nocardiopsis in the period between March 2018 and 2021. Our results reveal that 67% of Nocardiopsis-derived natural products are reported for the first time, and 73% of them are isolated from marine Nocardiopsis. The chemical structures of the Nocardiopsis-derived compounds have diverse skeletons, concentrating on the categories of polyketides, peptides, terphenyls, and alkaloids. Almost 50% of the natural products isolated from Nocardiopsis have been discovered to display various bioactivities. These results fully demonstrate the great potential of the genus Nocardiopsis to produce novel bioactive secondary metabolites that may serve as a structural foundation for the development of novel drugs.


Assuntos
Actinobacteria , Alcaloides , Produtos Biológicos , Policetídeos , Actinobacteria/química , Alcaloides/metabolismo , Produtos Biológicos/química , Nocardiopsis , Policetídeos/química
16.
Chem Biodivers ; 19(4): e202200037, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35294106

RESUMO

With the aim of finding new marine-derived skincare promoters, an assay-guided approach was employed to discover tyrosinase-modulating compounds from marine actinomycete. Here we describe a new 2,5-piperazinedione, named georgenione A (1), together with two previously described compounds, 5-(4'-hydroxybenzyl)hydantoin (2) and cyclo(Trp-Gly) (3), produced by actinomycete Georgenia sp. 40DY180, isolated from deep-sea sediments collected in the Pacific Ocean. Their structures were elucidated by a combination of spectroscopic analyses including 1D and 2D NMR and high-resolution mass spectrometric data. 5-(4'-hydroxybenzyl)hydantoin (2) displayed in vitro potent anti-tyrosinase activity with IC50 value of 36 µM, comparable to the commercially used positive control kojic acid (IC50 =46 µM) and arbutin (IC50 =100 µM). Compounds 1-3 were firstly reported from marine actinomycete Georgenia sp.


Assuntos
Actinobacteria , Hidantoínas , Actinobacteria/química , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Metabolismo Secundário
17.
Molecules ; 27(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36364011

RESUMO

Bacteria belonging to the phylum Actinobacteria are a very good source of antibiotics, and indeed dominate the current clinical antibiotic space. This paper reports Mutactimycin AP, a new compound belonging to an anthracycline-type family of antibiotics, isolated from a Saccharothrix sp. This actinobacterial strain was isolated from the rhizosphere of lupine plants growing in the extreme hyper-arid Atacama Desert. Structural characterization was carried out using electrospray ionization-mass spectrometry (ESI-MS) and NMR spectroscopy in combination with molecular modelling. The compound was tested against the ESKAPE pathogens, where it showed activity against MRSA and five strains associated with bovine mastitis, where it showed activity against Enterococcus pseudoavium and Staphylycoccus Aureus subsp. Aureus.


Assuntos
Actinobacteria , Actinomycetales , Bovinos , Animais , Feminino , Actinobacteria/química , Microbiologia do Solo , Bactérias , Antibacterianos/farmacologia , Clima Desértico
18.
Molecules ; 28(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36615212

RESUMO

A strain of marine actinomycetes was isolated from an intertidal zone and identified as Streptomyces cinereoruber. Through the fermentation of this strain, a compound with fungicidal activity was extracted and purified. Using mass spectrometry (MS) and nuclear magnetic resonance (NMR) data, the metabolite was determined to be an aurone. The toxicity of the aurone toward four kinds of tumor cells-SH-SY5Y, HepG2, A549, and HeLa cells-was verified by the MTT method, delivering IC50 values of 41.81, 47.19, 63.95, and 51.92 µg/mL, respectively. Greenhouse bioassay showed that the aurone exhibited a high fungicidal activity against powder mildew (Botrytis cinerea), cucurbits powder mildew (Sphaerotheca fuliginea (Schlecht ex Ff.) Poll), and rice blast (Pyricularia oryzae).


Assuntos
Actinobacteria , Botrytis , Fungicidas Industriais , Humanos , Actinobacteria/química , Botrytis/efeitos dos fármacos , Fungicidas Industriais/química , Fungicidas Industriais/isolamento & purificação , Fungicidas Industriais/farmacologia , Células HeLa , Pós
19.
Molecules ; 27(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35268843

RESUMO

The COVID-19 pandemic has led to the search for new molecules with antiviral activity against SARS-CoV-2. The entry of the virus into the cell is one of the main targets for inhibiting SARS-CoV-2 infection. Natural products are an important source of new therapeutic alternatives against diseases. Pseudotyped viruses allow the study of SARS-CoV-2 viral entry inhibitors, and due to their simplicity, they allow the screening of a large number of antiviral candidates in Biosafety Level 2 facilities. We used pseudotyped HIV-1 with the D614G SARS-CoV-2 spike glycoprotein to test its ability to infect ACE2-expressing HEK 293T cells in the presence of diverse natural products, including 21 plant extracts, 7 essential oils, and 13 compounds from plants and fungi. The 50% cytotoxic concentration (CC50) was evaluated using the resazurin method. From these analyses, we determined the inhibitory activity of the extract of Stachytarpheta cayennensis, which had a half-maximal inhibitory concentration (IC50) of 91.65 µg/mL, a CC50 of 693.5 µg/mL, and a selectivity index (SI) of 7.57, indicating its potential use as an inhibitor of SARS-CoV-2 entry. Moreover, our work indicates the usefulness of the pseudotyped-virus system in the screening of SARS-CoV-2 entry inhibitors.


Assuntos
Antivirais/farmacologia , Produtos Biológicos/química , Internalização do Vírus/efeitos dos fármacos , Actinobacteria/química , Actinobacteria/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/química , Antivirais/metabolismo , Antivirais/uso terapêutico , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , COVID-19/virologia , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19
20.
Proteins ; 89(5): 502-511, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33340163

RESUMO

The cutinase-like enzyme from the thermophile Saccharomonospora viridis AHK190, Cut190, is a good candidate to depolymerize polyethylene terephthalate (PET) efficiently. We previously developed a mutant of Cut190 (S226P/R228S), which we designated as Cut190* that has both increased activity and stability and solved its crystal structure. Recently, we showed that mutation of D250C/E296C on one of the Ca2+ -binding sites resulted in a higher thermal stability while retaining its polyesterase activity. In this study, we solved the crystal structures of Cut190* mutants, Q138A/D250C-E296C/Q123H/N202H, designated as Cut190*SS, and its inactive S176A mutant, Cut190*SS_S176A, at high resolution. The overall structures were similar to those of Cut190* and Cut190*S176A reported previously. As expected, Cys250 and Cys296 were closely located to form a disulfide bond, which would assuredly contribute to increase the stability. Isothermal titration calorimetry experiments and 3D Reference Interaction Site Model calculations showed that the metal-binding properties of the Cut190*SS series were different from those of the Cut190* series. However, our results show that binding of Ca2+ to the weak binding site, site 1, would be retained, enabling Cut190*SS to keep its ability to use Ca2+ to accelerate the conformational change from the closed (inactive) to the open (active) form. While increasing the thermal stability, Cut190*SS could still express its enzymatic function. Even after incubation at 70°C, which corresponds to the glass transition temperature of PET, the enzyme retained its activity well, implying a high applicability for industrial PET depolymerization using Cut190*SS.


Assuntos
Actinobacteria/química , Proteínas de Bactérias/química , Cálcio/química , Hidrolases de Éster Carboxílico/química , Poluentes Ambientais/química , Polietilenotereftalatos/química , Actinobacteria/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Poluentes Ambientais/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Temperatura Alta , Hidrólise , Modelos Moleculares , Mutação , Polietilenotereftalatos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA