Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0297193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38277366

RESUMO

Despite the variety of pathogens that are transmitted via the airborne route, few data are available on factors that influence the tenacity of airborne pathogens. In order to better understand and thus control airborne infections, knowledge of these factors is important. In this study, three agents, S. aureus, G. stearothermophilus spores and the MS2 bacteriophage, were aerosolized at relative humidities (RH) varying between 30% and 70%. Air samples were then analyzed to determine the concentration of the agents. S. aureus was found to have significantly lower survival rate in the aerosol at RH above 60%. It showed the lowest recovery rates of the three agents, ranging from 0.13% at approximately 70% RH to 4.39% at 30% RH. G. stearothermophilus spores showed the highest tenacity with recovery rates ranging from 41.85% to 61.73% with little effect of RH. For the MS2 bacteriophage, a significantly lower tenacity in the aerosol was observed with a recovery rate of 4.24% for intermediate RH of approximately 50%. The results of this study confirm the significant influence of the RH on the tenacity of airborne microorganisms depending on the specific agent. These data show that the behavior of microorganism in bioaerosols is varies under different environmental conditions.


Assuntos
Esporos Bacterianos , Staphylococcus aureus , Umidade , Microbiologia do Ar , Aerossóis/farmacologia
2.
ACS Chem Neurosci ; 15(7): 1484-1500, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38483468

RESUMO

Although cigarette aerosol exposure is associated with various adverse health issues, its impact on Parkinson's disease (PD) remains elusive. Here, we investigated the effect of cigarette aerosol extract (CAE) on SH-SY5Y cells for the first time, both with and without α-synuclein (α-Syn) overexpression. We found that α-Syn aggravates CAE-induced cell death, oxidative stress, and mitochondrial dysfunction. Fluorescence cross-correlation spectroscopy (FCCS) revealed a dual distribution of α-Syn within the cells, with homogeneous regions indicative of monomeric α-Syn and punctated regions, suggesting the formation of oligomers. Moreover, we observed colocalization of α-Syn oligomers with lysosomes along with a reduction in autophagy activity. These findings suggest that α-Syn overexpression exacerbates CAE-induced intracellular cytotoxicity, mitochondrial dysfunction, and autophagy dysregulation, leading to elevated cell mortality. Our findings provide new insights into the pathogenic mechanisms linking exposure to cigarette aerosols with neurodegenerative diseases.


Assuntos
Doenças Mitocondriais , Neuroblastoma , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Sobrevivência Celular , Aerossóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA