Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Nature ; 595(7867): 404-408, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34163073

RESUMO

Congenital myasthenia (CM) is a devastating neuromuscular disease, and mutations in DOK7, an adaptor protein that is crucial for forming and maintaining neuromuscular synapses, are a major cause of CM1,2. The most common disease-causing mutation (DOK71124_1127 dup) truncates DOK7 and leads to the loss of two tyrosine residues that are phosphorylated and recruit CRK proteins, which are important for anchoring acetylcholine receptors at synapses. Here we describe a mouse model of this common form of CM (Dok7CM mice) and a mouse with point mutations in the two tyrosine residues (Dok72YF). We show that Dok7CM mice had severe deficits in neuromuscular synapse formation that caused neonatal lethality. Unexpectedly, these deficits were due to a severe deficiency in phosphorylation and activation of muscle-specific kinase (MUSK) rather than a deficiency in DOK7 tyrosine phosphorylation. We developed agonist antibodies against MUSK and show that these antibodies restored neuromuscular synapse formation and prevented neonatal lethality and late-onset disease in Dok7CM mice. These findings identify an unexpected cause for disease and a potential therapy for both DOK7 CM and other forms of CM caused by mutations in AGRIN, LRP4 or MUSK, and illustrate the potential of targeted therapy to rescue congenital lethality.


Assuntos
Proteínas Musculares/genética , Mutação , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/genética , Envelhecimento , Agrina/genética , Agrina/metabolismo , Animais , Animais Recém-Nascidos , Anticorpos/imunologia , Modelos Animais de Doenças , Feminino , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Masculino , Camundongos , Terapia de Alvo Molecular , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Síndromes Miastênicas Congênitas/imunologia , Fosforilação , Fosfotirosina/genética , Fosfotirosina/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Receptores Proteína Tirosina Quinases/agonistas , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/imunologia , Receptores Proteína Tirosina Quinases/metabolismo , Recidiva , Sinapses/metabolismo
2.
Mol Ther ; 32(7): 2176-2189, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38734896

RESUMO

The disassembly of the neuromuscular junction (NMJ) is an early event in amyotrophic lateral sclerosis (ALS), ultimately leading to motor dysfunction and lethal respiratory paralysis. The hexanucleotide GGGGCC repeat expansion in the C9orf72 gene is the most common genetic mutation, and the dipeptide repeat (DPR) proteins have been shown to cause neurodegeneration. While no drugs can treat ALS patients efficiently, new treatment strategies are urgently needed. Here, we report that a MuSK agonist antibody alleviates poly-PR-induced NMJ deficits in C9orf72-ALS mice. The HB9-PRF/F mice, which express poly-PR proteins in motor neurons, exhibited impaired motor behavior and NMJ deficits. Mechanistically, poly-PR proteins interacted with Agrin to disrupt the interaction between Agrin and Lrp4, leading to attenuated activation of MuSK. Treatment with a MuSK agonist antibody rescued NMJ deficits, and extended the lifespan of C9orf72-ALS mice. Moreover, impaired NMJ transmission was observed in C9orf72-ALS patients. These findings identify the mechanism by which poly-PR proteins attenuate MuSK activation and NMJ transmission, highlighting the potential of promoting MuSK activation with an agonist antibody as a therapeutic strategy to protect NMJ function and prolong the lifespan of ALS patients.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Modelos Animais de Doenças , Junção Neuromuscular , Receptores Proteína Tirosina Quinases , Animais , Junção Neuromuscular/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Humanos , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Longevidade/efeitos dos fármacos , Neurônios Motores/metabolismo , Neurônios Motores/efeitos dos fármacos , Agrina/metabolismo , Agrina/genética , Camundongos Transgênicos , Anticorpos/farmacologia , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética
3.
J Biol Chem ; 299(8): 104962, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356721

RESUMO

Collagen Q (ColQ) is a nonfibrillar collagen that plays a crucial role at the vertebrate neuromuscular junction (NMJ) by anchoring acetylcholinesterase to the synapse. ColQ also functions in signaling, as it regulates acetylcholine receptor clustering and synaptic gene expression, in a manner dependent on muscle-specific kinase (MuSK), a key protein in NMJ formation and maintenance. MuSK forms a complex with low-density lipoprotein receptor-related protein 4 (LRP4), its coreceptor for the proteoglycan agrin at the NMJ. Previous studies suggested that ColQ also interacts with MuSK. However, the molecular mechanisms underlying ColQ functions and ColQ-MuSK interaction have not been fully elucidated. Here, we investigated whether ColQ binds directly to MuSK and/or LRP4 and whether it modulates agrin-mediated MuSK-LRP4 activation. Using coimmunoprecipitation, pull-down, plate-binding assays, and surface plasmon resonance, we show that ColQ binds directly to LRP4 but not to MuSK and that ColQ interacts indirectly with MuSK through LRP4. In addition, we show that the LRP4 N-terminal region, which contains the agrin-binding sites, is also crucial for ColQ binding to LRP4. Moreover, ColQ-LRP4 interaction was reduced in the presence of agrin, suggesting that agrin and ColQ compete for binding to LRP4. Strikingly, we reveal ColQ has two opposing effects on agrin-induced MuSK-LRP4 signaling: it constitutively reduces MuSK phosphorylation levels in agrin-stimulated myotubes but concomitantly increases MuSK accumulation at the muscle cell surface. Our results identify LRP4 as a major receptor of ColQ and provide new insights into mechanisms of ColQ signaling and acetylcholinesterase anchoring at the NMJ.


Assuntos
Acetilcolinesterase , Agrina , Colágeno , Junção Neuromuscular , Humanos , Acetilcolinesterase/metabolismo , Agrina/genética , Agrina/metabolismo , Colágeno/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Junção Neuromuscular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
4.
Mol Cell Proteomics ; 21(4): 100221, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35227894

RESUMO

Muscle-specific receptor tyrosine kinase (MuSK) agonist antibodies were developed 2 decades ago to explore the benefits of receptor activation at the neuromuscular junction. Unlike agrin, the endogenous agonist of MuSK, agonist antibodies function independently of its coreceptor low-density lipoprotein receptor-related protein 4 to delay the onset of muscle denervation in mouse models of ALS. Here, we performed dose-response and time-course experiments on myotubes to systematically compare site-specific phosphorylation downstream of each agonist. Remarkably, both agonists elicited similar intracellular responses at known and newly identified MuSK signaling components. Among these was inducible tyrosine phosphorylation of multiple Rab GTPases that was blocked by MuSK inhibition. Importantly, mutation of this site in Rab10 disrupts association with its effector proteins, molecule interacting with CasL 1/3. Together, these data provide in-depth characterization of MuSK signaling, describe two novel MuSK inhibitors, and expose phosphorylation of Rab GTPases downstream of receptor tyrosine kinase activation in myotubes.


Assuntos
Receptores Proteína Tirosina Quinases , Proteínas rab de Ligação ao GTP , Agrina/genética , Agrina/metabolismo , Animais , Camundongos , Fosforilação , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
5.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108583

RESUMO

Agrin is a heparan sulfate proteoglycan essential for the clustering of acetylcholine receptors at the neuromuscular junction. Neuron-specific isoforms of agrin are generated by alternative inclusion of three exons, called Y, Z8, and Z11 exons, although their processing mechanisms remain elusive. We found, by inspection of splicing cis-elements into the human AGRN gene, that binding sites for polypyrimidine tract binding protein 1 (PTBP1) were extensively enriched around Y and Z exons. PTBP1-silencing enhanced the coordinated inclusion of Y and Z exons in human SH-SY5Y neuronal cells, even though three constitutive exons are flanked by these alternative exons. Deletion analysis using minigenes identified five PTBP1-binding sites with remarkable splicing repression activities around Y and Z exons. Furthermore, artificial tethering experiments indicated that binding of a single PTBP1 molecule to any of these sites represses nearby Y or Z exons as well as the other distal exons. The RRM4 domain of PTBP1, which is required for looping out a target RNA segment, was likely to play a crucial role in the repression. Neuronal differentiation downregulates PTBP1 expression and promotes the coordinated inclusion of Y and Z exons. We propose that the reduction in the PTPB1-RNA network spanning these alternative exons is essential for the generation of the neuron-specific agrin isoforms.


Assuntos
Neuroblastoma , RNA , Humanos , RNA/metabolismo , Agrina/genética , Agrina/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento Alternativo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo
6.
J Cell Sci ; 133(15)2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32591486

RESUMO

Agrin is a crucial factor that induces postsynaptic differentiation at neuromuscular junctions (NMJs), but how secreted agrin is locally deposited in the context of extracellular matrix (ECM) environment and its function in presynaptic differentiation remain largely unclear. Here, we report that the proteolytic activity of neuronal membrane-type 1 matrix metalloproteinase (MT1-MMP; also known as MMP14) facilitates agrin deposition and signaling during presynaptic development at NMJs. Firstly, agrin deposition along axons exhibits a time-dependent increase in cultured neurons that requires MMP-mediated focal ECM degradation. Next, local agrin stimulation induces the clustering of mitochondria and synaptic vesicles, two well-known presynaptic markers, and regulates vesicular trafficking and surface insertion of MT1-MMP. MMP inhibitor or MT1-MMP knockdown suppresses agrin-induced presynaptic differentiation, which can be rescued by treatment with the ectodomain of low-density lipoprotein receptor-related protein 4 (Lrp4). Finally, neuronal MT1-MMP knockdown inhibits agrin deposition and nerve-induced acetylcholine receptor clustering in nerve-muscle co-cultures and affects synaptic structures at Xenopus NMJs in vivo Collectively, our results demonstrate a previously unappreciated role of agrin, as well as dual functions of neuronal MT1-MMP proteolytic activity in orchestrating agrin deposition and signaling, in presynaptic development.


Assuntos
Agrina , Metaloproteinase 14 da Matriz , Agrina/genética , Axônios , Matriz Extracelular , Metaloproteinase 14 da Matriz/genética , Junção Neuromuscular
7.
Acta Neuropathol ; 144(4): 707-731, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948834

RESUMO

Congenital myasthenic syndromes (CMS) are predominantly characterized by muscle weakness and fatigability and can be caused by a variety of mutations in genes required for neuromuscular junction formation and maintenance. Among them, AGRN encodes agrin, an essential synaptic protein secreted by motoneurons. We have identified severe CMS patients with uncharacterized p.R1671Q, p.R1698P and p.L1664P mutations in the LG2 domain of agrin. Overexpression in primary motoneurons cultures in vitro and in chick spinal motoneurons in vivo revealed that the mutations modified agrin trafficking, leading to its accumulation in the soma and/or in the axon. Expression of mutant agrins in cultured cells demonstrated accumulation of agrin in the endoplasmic reticulum associated with induction of unfolded protein response (UPR) and impaired secretion in the culture medium. Interestingly, evaluation of the specific activity of individual agrins on AChR cluster formation indicated that when secreted, mutant agrins retained a normal capacity to trigger the formation of AChR clusters. To confirm agrin accumulation and secretion defect, iPS cells were derived from a patient and differentiated into motoneurons. Patient iPS-derived motoneurons accumulated mutant agrin in the soma and increased XBP1 mRNA splicing, suggesting UPR activation. Moreover, co-cultures of patient iPS-derived motoneurons with myotubes confirmed the deficit in agrin secretion and revealed a reduction in motoneuron survival. Altogether, we report the first mutations in AGRN gene that specifically affect agrin secretion by motoneurons. Interestingly, the three patients carrying these mutations were initially suspected of spinal muscular atrophy (SMA). Therefore, in the presence of patients with a clinical presentation of SMA but without mutation in the SMN1 gene, it can be worth to look for mutations in AGRN.


Assuntos
Agrina , Síndromes Miastênicas Congênitas , Agrina/genética , Humanos , Neurônios Motores/metabolismo , Mutação , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/metabolismo , Junção Neuromuscular/metabolismo
8.
EMBO Rep ; 21(8): e48462, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32558157

RESUMO

At the neuromuscular junction (NMJ), lipoprotein-related receptor 4 (LRP4) mediates agrin-induced MuSK phosphorylation that leads to clustering of acetylcholine receptors (AChRs) in the postsynaptic region of the skeletal muscle. Additionally, the ectodomain of LRP4 is necessary for differentiation of the presynaptic nerve terminal. However, the molecules regulating LRP4 have not been fully elucidated yet. Here, we show that the CT domain of connective tissue growth factor (CTGF/CCN2) directly binds to the third beta-propeller domain of LRP4. CTGF/CCN2 enhances the binding of LRP4 to MuSK and facilitates the localization of LRP4 on the plasma membrane. CTGF/CCN2 enhances agrin-induced MuSK phosphorylation and AChR clustering in cultured myotubes. Ctgf-deficient mouse embryos (Ctgf-/- ) have small AChR clusters and abnormal dispersion of synaptic vesicles along the motor axon. Ultrastructurally, the presynaptic nerve terminals have reduced numbers of active zones and mitochondria. Functionally, Ctgf-/- embryos exhibit impaired NMJ signal transmission. These results indicate that CTGF/CCN2 interacts with LRP4 to facilitate clustering of AChRs at the motor endplate and the maturation of the nerve terminal.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Proteínas Relacionadas a Receptor de LDL , Agrina/genética , Agrina/metabolismo , Animais , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Camundongos , Junção Neuromuscular/metabolismo , Fosforilação
9.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233091

RESUMO

Neuronal agrin, a heparan sulphate proteoglycan secreted by the α-motor neurons, promotes the formation and maintenance of the neuromuscular junction by binding to Lrp4 and activating muscle-specific kinase (MuSK). Neuronal agrin also promotes myogenesis by enhancing differentiation and maturation of myotubes, but its effect on proliferating human myoblasts, which are often considered to be unresponsive to agrin, remains unclear. Using primary human myoblasts, we determined that neuronal agrin induced transient dephosphorylation of ERK1/2, while c-Abl, STAT3, and focal adhesion kinase were unresponsive. Gene silencing of Lrp4 and MuSK markedly reduced the BrdU incorporation, suggesting the functional importance of the Lrp4/MuSK complex for myoblast proliferation. Acute and chronic treatments with neuronal agrin increased the proliferation of human myoblasts in old donors, but they did not affect the proliferation of myoblasts in young donors. The C-terminal fragment of agrin which lacks the Lrp4-binding site and cannot activate MuSK had a similar age-dependent effect, indicating that the age-dependent signalling pathways activated by neuronal agrin involve the Lrp4/MuSK receptor complex as well as an Lrp4/MuSK-independent pathway which remained unknown. Collectively, our results highlight an age-dependent role for neuronal agrin in promoting the proliferation of human myoblasts.


Assuntos
Fatores Etários , Agrina , Proteínas Relacionadas a Receptor de LDL , Agrina/genética , Agrina/metabolismo , Bromodesoxiuridina , Proliferação de Células , Proteína-Tirosina Quinases de Adesão Focal , Proteoglicanas de Heparan Sulfato , Humanos , Proteínas Relacionadas a Receptor de LDL/metabolismo , Neurônios Motores/metabolismo , Mioblastos/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo
10.
Hum Mol Genet ; 28(16): 2648-2658, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30994901

RESUMO

Agrin is a large extracellular matrix protein whose isoforms differ in their tissue distribution and function. Motoneuron-derived y+z+ agrin regulates the formation of the neuromuscular junction (NMJ), while y-z- agrin is widely expressed and has diverse functions. Previously we identified a missense mutation (V1727F) in the second laminin globular (LG2) domain of agrin that causes severe congenital myasthenic syndrome. Here, we define pathogenic effects of the agrin V1727F mutation that account for the profound dysfunction of the NMJ. First, by expressing agrin variants in heterologous cells, we show that the V1727F mutation reduces the secretion of y+z+ agrin compared to wild type, whereas it has no effect on the secretion of y-z- agrin. Second, we find that the V1727F mutation significantly impairs binding of y+z+ agrin to both heparin and the low-density lipoprotein receptor-related protein 4 (LRP4) coreceptor. Third, molecular modeling of the LG2 domain suggests that the V1727F mutation primarily disrupts the y splice insert, and consistent with this we find that it partially occludes the contribution of the y splice insert to agrin binding to heparin and LRP4. Together, these findings identify several pathogenic effects of the V1727F mutation that reduce its expression and ability to bind heparan sulfate proteoglycan and LRP4 coreceptors involved in the muscle-specific kinase signaling pathway. These defects primarily impair the function of neural y+z+ agrin and combine to cause a severe CMS phenotype, whereas y-z- agrin function in other tissues appears preserved.


Assuntos
Agrina/genética , Agrina/metabolismo , Substituição de Aminoácidos , Regulação da Expressão Gênica , Proteoglicanas de Heparan Sulfato/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Mutação , Agrina/química , Alelos , Processamento Alternativo , Linhagem Celular , Proteoglicanas de Heparan Sulfato/química , Humanos , Imuno-Histoquímica , Proteínas Relacionadas a Receptor de LDL/química , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Relação Estrutura-Atividade
11.
Development ; 145(9)2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29678817

RESUMO

The enteric nervous system (ENS) arises from neural crest cells that migrate, proliferate, and differentiate into enteric neurons and glia within the intestinal wall. Many extracellular matrix (ECM) components are present in the embryonic gut, but their role in regulating ENS development is largely unknown. Here, we identify heparan sulfate proteoglycan proteins, including collagen XVIII (Col18) and agrin, as important regulators of enteric neural crest-derived cell (ENCDC) development. In developing avian hindgut, Col18 is expressed at the ENCDC wavefront, while agrin expression occurs later. Both proteins are normally present around enteric ganglia, but are absent in aganglionic gut. Using chick-mouse intestinal chimeras and enteric neurospheres, we show that vagal- and sacral-derived ENCDCs from both species secrete Col18 and agrin. Whereas glia express Col18 and agrin, enteric neurons only express the latter. Functional studies demonstrate that Col18 is permissive whereas agrin is strongly inhibitory to ENCDC migration, consistent with the timing of their expression during ENS development. We conclude that ENCDCs govern their own migration by actively remodeling their microenvironment through secretion of ECM proteins.


Assuntos
Agrina/metabolismo , Proteínas Aviárias/metabolismo , Galinhas/metabolismo , Colágeno/metabolismo , Sistema Digestório , Crista Neural/embriologia , Nicho de Células-Tronco/fisiologia , Agrina/genética , Animais , Proteínas Aviárias/genética , Movimento Celular/fisiologia , Embrião de Galinha , Galinhas/genética , Colágeno/genética , Sistema Digestório/citologia , Sistema Digestório/embriologia , Sistema Digestório/inervação , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Crista Neural/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
12.
Cell Tissue Res ; 386(2): 335-347, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34223979

RESUMO

The extracellular matrix protein Agrin has been detected in chondrocytes and endosteal osteoblasts but its function in osteoblast differentiation has not been investigated yet. Thus, it is possible that Agrin contributes to osteoblast differentiation and, due to Agrin and wingless-related integration site (Wnt) sharing the same receptor, transmembrane low-density lipoprotein receptor-related protein 4 (Lrp4), and the crosstalk between Wnt and bone morphogenetic protein (BMP) signalling, both pathways could be involved in this Agrin-mediated osteoblast differentiation. Confirming this, Agrin and its receptors Lrp4 and α-dystroglycan (Dag1) were expressed during differentiation of osteoblasts from three different sources. Moreover, the disruption of Agrin impaired the expression of its receptors and osteoblast differentiation, and the treatment with recombinant Agrin slightly increase this process. In addition, whilst Agrin knockdown downregulated the expression of genes related to Wnt and BMP signalling pathways, the addition of Agrin had no effect on these genes. Altogether, these data uncover the contribution of Agrin to osteoblast differentiation and suggest that, at least in part, an Agrin-Wnt-BMP circuit is involved in this process. This makes Agrin a candidate as target for developing new therapeutic strategies to treat bone-related diseases and injuries.


Assuntos
Agrina/análise , Osteoblastos/citologia , Células 3T3 , Agrina/genética , Animais , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteogênese
13.
FASEB J ; 34(9): 12009-12023, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32687671

RESUMO

Neuromuscular junctions (NMJs) are peripheral synapses between motoneurons and skeletal muscle fibers that are critical for the control of muscle contraction. Dysfunction of these synapses has been implicated in congenital myasthenic syndrome (CMS). In vertebrates, agrin-LRP4-MuSK signaling plays a critical role in acetylcholine receptor (AChR) clustering and NMJ formation. The adaptor protein DOK7 is the downstream substrate of MuSK and also a cytoplasmic activator of MuSK. The role of DOK7 in the promotion of AChR clustering and the mechanisms involved have been well studied; however, the negative regulation of DOK7 after MuSK activation remains unknown. Anaphase-promoting complex 2 (APC2), the core subunit of APC/C E3 ligase complex, was originally believed to regulate cell-cycle transitions. Here, we show that APC2 is enriched at post-synapse of NMJs in postmitotic myotubes. In response to agrin stimulation, APC2 negatively regulates AChR clustering by promoting the ubiquitination of DOK7 at lysine 243 for its proteolytic degradation, which relies on MuSK kinase activity and the phosphorylation of tyrosine 106 in DOK7. Thus, this study provides a mechanism whereby agrin signaling is negatively regulated as part of vertebrate NMJ homeostasis.


Assuntos
Agrina/metabolismo , Subunidade Apc2 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Proteólise , Transdução de Sinais , Ubiquitinação , Agrina/genética , Animais , Subunidade Apc2 do Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclo Celular , Linhagem Celular , Camundongos , Fibras Musculares Esqueléticas/citologia , Proteínas Musculares/genética
14.
Hum Mol Genet ; 27(8): 1434-1446, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29462312

RESUMO

Congenital myasthenic syndromes (CMS) are a group of rare, inherited disorders characterized by compromised function of the neuromuscular junction, manifesting with fatigable muscle weakness. Mutations in MYO9A were previously identified as causative for CMS but the precise pathomechanism remained to be characterized. On the basis of the role of MYO9A as an actin-based molecular motor and as a negative regulator of RhoA, we hypothesized that loss of MYO9A may affect the neuronal cytoskeleton, leading to impaired intracellular transport. To investigate this, we used MYO9A-depleted NSC-34 cells (mouse motor neuron-derived cells), revealing altered expression of a number of cytoskeletal proteins important for neuron structure and intracellular transport. On the basis of these findings, the effect on protein transport was determined using a vesicular recycling assay which revealed impaired recycling of a neuronal growth factor receptor. In addition, an unbiased approach utilizing proteomic profiling of the secretome revealed a key role for defective intracellular transport affecting proper protein secretion in the pathophysiology of MYO9A-related CMS. This also led to the identification of agrin as being affected by the defective transport. Zebrafish with reduced MYO9A orthologue expression were treated with an artificial agrin compound, ameliorating defects in neurite extension and improving motility. In summary, loss of MYO9A affects the neuronal cytoskeleton and leads to impaired transport of proteins, including agrin, which may provide a new and unexpected treatment option.


Assuntos
Agrina/metabolismo , Neurônios Motores/metabolismo , Debilidade Muscular/genética , Síndromes Miastênicas Congênitas/genética , Miosinas/genética , Fator de Crescimento Neural/genética , Junção Neuromuscular/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/genética , Actinas/metabolismo , Agrina/genética , Amidas , Animais , Movimento Celular , Modelos Animais de Doenças , Embrião não Mamífero , Inibidores Enzimáticos , Regulação da Expressão Gênica , Humanos , Filamentos Intermediários/genética , Filamentos Intermediários/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Neurônios Motores/ultraestrutura , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Síndromes Miastênicas Congênitas/metabolismo , Síndromes Miastênicas Congênitas/patologia , Miosinas/deficiência , Fator de Crescimento Neural/metabolismo , Junção Neuromuscular/ultraestrutura , Transporte Proteico , Piridinas , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Peixe-Zebra , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP
15.
Clin Genet ; 97(4): 634-638, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31730230

RESUMO

We present a case of lethal fetal akinesia deformation sequence (FADS) caused by a frameshift variant in trans with a 148 kbp deletion encompassing 3-36 exons of AGRN. Pathogenic variants in AGRN have been described in families with a form of congenital myasthenic syndrome (CMS), manifesting in the early childhood with variable fatigable muscle weakness. To the best of our knowledge, this is the first case of FADS caused by defects in AGRN gene. FADS has been reported to be caused by pathogenic variants in genes previously associated with CMS including these involved in endplate development and maintenance: MuSK, DOK7, and RAPSN. FADS seems to be the most severe form of CMS. None of the reported in the literature CMS cases associated with AGRN had two null variants, like the case presented herein. This indicates a strong genotype-phenotype correlation.


Assuntos
Agrina/genética , Artrogripose/genética , Genes Letais/genética , Síndromes Miastênicas Congênitas/genética , Adulto , Artrogripose/diagnóstico por imagem , Artrogripose/patologia , Criança , Feminino , Feto/diagnóstico por imagem , Feto/patologia , Humanos , Masculino , Mutação/genética , Síndromes Miastênicas Congênitas/patologia , Linhagem , Gravidez
16.
Hum Mol Genet ; 26(13): 2377-2385, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379354

RESUMO

Spinal muscular atrophy (SMA) is a common and often fatal neuromuscular disorder caused by low levels of the Survival Motor Neuron (SMN) protein. Amongst the earliest detectable consequences of SMN deficiency are profound defects of the neuromuscular junctions (NMJs). In model mice these synapses appear disorganized, fail to mature and are characterized by poorly arborized nerve terminals. Given one role of the SMN protein in orchestrating the assembly of spliceosomal snRNP particles and subsequently regulating the alternative splicing of pre-mRNAs, a plausible link between SMN function and the distal neuromuscular SMA phenotype is an incorrectly spliced transcript or transcripts involved in establishing or maintaining NMJ structure. In this study, we explore the effects of one such transcript-Z+Agrin-known to be a critical organizer of the NMJ. We confirm that low SMN protein reduces motor neuronal levels of Z+Agrin. Repletion of this isoform of Agrin in the motor neurons of SMA model mice increases muscle fiber size, enhances the post-synaptic NMJ area, reduces the abnormal accumulation of intermediate filaments in nerve terminals of the neuromuscular synapse and improves the innervation of muscles. While these effects are independent of changes in SMN levels or increases in motor neuron numbers they nevertheless have a significant effect on the overall disease phenotype, enhancing mean survival in severely affected SMA model mice by ∼40%. We conclude that Agrin is an important target of the SMN protein and that mitigating NMJ defects may be one strategy in treating human spinal muscular atrophy.


Assuntos
Agrina/genética , Junção Neuromuscular/metabolismo , Agrina/metabolismo , Processamento Alternativo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/genética , Proteínas do Tecido Nervoso/genética , Doenças Neuromusculares/genética , Doenças Neuromusculares/metabolismo , Junção Neuromuscular/genética , Isoformas de Proteínas/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Sinapses/metabolismo
17.
J Neurol Neurosurg Psychiatry ; 90(10): 1171-1179, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31167812

RESUMO

BACKGROUND: Inherited peripheral neuropathies (IPNs) represent a broad group of genetically and clinically heterogeneous disorders, including axonal Charcot-Marie-Tooth type 2 (CMT2) and hereditary motor neuropathy (HMN). Approximately 60%-70% of cases with HMN/CMT2 still remain without a genetic diagnosis. Interestingly, mutations in HMN/CMT2 genes may also be responsible for motor neuron disorders or other neuromuscular diseases, suggesting a broad phenotypic spectrum of clinically and genetically related conditions. Thus, it is of paramount importance to identify novel causative variants in HMN/CMT2 patients to better predict clinical outcome and progression. METHODS: We designed a collaborative study for the identification of variants responsible for HMN/CMT2. We collected 15 HMN/CMT2 families with evidence for autosomal recessive inheritance, who had tested negative for mutations in 94 known IPN genes, who underwent whole-exome sequencing (WES) analyses. Candidate genes identified by WES were sequenced in an additional cohort of 167 familial or sporadic HMN/CMT2 patients using next-generation sequencing (NGS) panel analysis. RESULTS: Bioinformatic analyses led to the identification of novel or very rare variants in genes, which have not been previously associated with HMN/CMT2 (ARHGEF28, KBTBD13, AGRN and GNE); in genes previously associated with HMN/CMT2 but in combination with different clinical phenotypes (VRK1 and PNKP), and in the SIGMAR1 gene, which has been linked to HMN/CMT2 in only a few cases. These findings were further validated by Sanger sequencing, segregation analyses and functional studies. CONCLUSIONS: These results demonstrate the broad spectrum of clinical phenotypes that can be associated with a specific disease gene, as well as the complexity of the pathogenesis of neuromuscular disorders.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Atrofia Muscular Espinal/genética , Adulto , Idoso , Agrina/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Biologia Computacional , Enzimas Reparadoras do DNA/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Pessoa de Meia-Idade , Complexos Multienzimáticos/genética , Proteínas Musculares/genética , Atrofia Muscular Espinal/fisiopatologia , Linhagem , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Serina-Treonina Quinases/genética , Receptores sigma/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Sequenciamento do Exoma , Receptor Sigma-1
18.
Am J Pathol ; 187(2): 431-440, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28107841

RESUMO

Agrin is a basement membrane-specific proteoglycan that can regulate orientation of cytoskeleton proteins and improve function of dystrophic skeletal muscle. In skeletal muscle, agrin binds with high affinity to laminin(s) and α-dystroglycan (α-DG), an integral part of the dystrophin-glycoprotein complex. Miniaturized forms of agrin (mAgrin) have been shown to ameliorate disease pathology in a laminin-α2 knockout mouse model of muscular dystrophy, acting as a link between α-DG and laminin(s). Here, we test whether mAgrin might also improve pathologies associated with FKRP-related dystroglycanopathies, another form of muscular dystrophy characterized by weak interactions between muscle and basement membranes. We demonstrate in vitro that mAgrin enhances laminin binding to primary myoblasts and fibroblasts from an FKRP mutant mouse model and that this enhancement is abrogated when mAgrin is in molar excess relative to laminin. However, in vivo delivery of mAgrin via adeno-associated virus (AAV) into FKRP mutant mice was unable to improve dystrophic phenotypes, both histologically and functionally. These results likely reflect insufficient binding of mAgrin to hypoglycosylated α-DG on muscle fibers and possibly abrogation of binding from molar excess of overexpressed AAV-delivered mAgrin. Further exploration of mAgrin modification is necessary to strengthen its binding to other membrane components, including hypoglycosylated α-DG, for potential therapeutic applications.


Assuntos
Agrina/genética , Terapia Genética/métodos , Distrofia Muscular Animal/terapia , Agrina/metabolismo , Animais , Western Blotting , Dependovirus , Imuno-Histoquímica , Laminina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros , Distrofia Muscular Animal/patologia , Fenótipo , Ligação Proteica
19.
Proc Natl Acad Sci U S A ; 111(46): 16556-61, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25368159

RESUMO

The motoneural control of skeletal muscle contraction requires the neuromuscular junction (NMJ), a midmuscle synapse between the motor nerve and myotube. The formation and maintenance of NMJs are orchestrated by the muscle-specific receptor tyrosine kinase (MuSK). Motor neuron-derived agrin activates MuSK via binding to MuSK's coreceptor Lrp4, and genetic defects in agrin underlie a congenital myasthenic syndrome (an NMJ disorder). However, MuSK-dependent postsynaptic differentiation of NMJs occurs in the absence of a motor neuron, indicating a need for nerve/agrin-independent MuSK activation. We previously identified the muscle protein Dok-7 as an essential activator of MuSK. Although NMJ formation requires agrin under physiological conditions, it is dispensable for NMJ formation experimentally in the absence of the neurotransmitter acetylcholine, which inhibits postsynaptic specialization. Thus, it was hypothesized that MuSK needs agrin together with Lrp4 and Dok-7 to achieve sufficient activation to surmount inhibition by acetylcholine. Here, we show that forced expression of Dok-7 in muscle enhanced MuSK activation in mice lacking agrin or Lrp4 and restored midmuscle NMJ formation in agrin-deficient mice, but not in Lrp4-deficient mice, probably due to the loss of Lrp4-dependent presynaptic differentiation. However, these NMJs in agrin-deficient mice rapidly disappeared after birth, and postsynaptic specializations emerged ectopically throughout myotubes whereas exogenous Dok-7-mediated MuSK activation was maintained. These findings demonstrate that the MuSK activator agrin plays another role essential for the postnatal maintenance, but not for embryonic formation, of NMJs and also for the postnatal, but not prenatal, midmuscle localization of postsynaptic specializations, providing physiological and pathophysiological insight into NMJ homeostasis.


Assuntos
Agrina/fisiologia , Junção Neuromuscular/enzimologia , Receptores Proteína Tirosina Quinases/metabolismo , Agrina/deficiência , Agrina/genética , Processamento Alternativo , Animais , Diafragma/embriologia , Diafragma/crescimento & desenvolvimento , Ativação Enzimática , Feminino , Proteínas Relacionadas a Receptor de LDL , Longevidade/genética , Masculino , Camundongos , Camundongos Transgênicos , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/fisiologia , Proteínas Musculares/deficiência , Proteínas Musculares/fisiologia , Junção Neuromuscular/embriologia , Junção Neuromuscular/crescimento & desenvolvimento , Doenças da Junção Neuromuscular/enzimologia , Doenças da Junção Neuromuscular/genética , Doenças da Junção Neuromuscular/fisiopatologia , Fosforilação , Densidade Pós-Sináptica/fisiologia , Processamento de Proteína Pós-Traducional , Receptores Colinérgicos/fisiologia , Receptores de LDL/deficiência , Receptores de LDL/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Teste de Desempenho do Rota-Rod
20.
Ann Rheum Dis ; 75(6): 1228-35, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26290588

RESUMO

OBJECTIVES: Osteoarthritis (OA) is a leading cause of disability for which there is no cure. The identification of molecules supporting cartilage homeostasis and regeneration is therefore a major pursuit in musculoskeletal medicine. Agrin is a heparan sulfate proteoglycan which, through binding to low-density lipoprotein receptor-related protein 4 (LRP4), is required for neuromuscular synapse formation. In other tissues, it connects the cytoskeleton to the basement membrane through binding to α-dystroglycan. Prompted by an unexpected expression pattern, we investigated the role and receptor usage of agrin in cartilage. METHODS: Agrin expression pattern was investigated in human osteoarthritic cartilage and following destabilisation of the medial meniscus in mice. Extracellular matrix (ECM) formation and chondrocyte differentiation was studied in gain and loss of function experiments in vitro in three-dimensional cultures and gain of function in vivo, using an ectopic cartilage formation assay in nude mice. Receptor usage was investigated by disrupting LRP4 and α-dystroglycan by siRNA and blocking antibodies respectively. RESULTS: Agrin was detected in normal cartilage but was progressively lost in OA. In vitro, agrin knockdown resulted in reduced glycosaminoglycan content, downregulation of the cartilage transcription factor SOX9 and other cartilage-specific ECM molecules. Conversely, exogenous agrin supported cartilage differentiation in vitro and ectopic cartilage formation in vivo. In the context of cartilage differentiation, agrin used an unusual receptor repertoire requiring both LRP4 and α-dystroglycan. CONCLUSIONS: We have discovered that agrin strongly promotes chondrocyte differentiation and cartilage formation in vivo. Our results identify agrin as a novel potent anabolic growth factor with strong therapeutic potential in cartilage regeneration.


Assuntos
Agrina/fisiologia , Artrite Experimental/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Distroglicanas/fisiologia , Osteoartrite/metabolismo , Receptores de LDL/fisiologia , Agrina/biossíntese , Agrina/genética , Agrina/farmacologia , Animais , Artrite Experimental/genética , Artrite Experimental/patologia , Cartilagem Articular/patologia , Células Cultivadas , Condrogênese/efeitos dos fármacos , Regulação para Baixo/fisiologia , Técnicas de Silenciamento de Genes , Homeostase/fisiologia , Humanos , Proteínas Relacionadas a Receptor de LDL/fisiologia , Masculino , Camundongos Endogâmicos DBA , Camundongos Knockout , Osteoartrite/genética , Osteoartrite/patologia , Osteogênese/fisiologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Fatores de Transcrição SOX9/biossíntese , Fatores de Transcrição SOX9/genética , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA