Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64.398
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(24): 5203-5219, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37995655

RESUMO

Opioids are used for pain management despite the side effects that contribute to the opioid crisis. The pursuit of non-addictive opioid analgesics remains unattained due to the unresolved intricacies of opioid actions, receptor signaling cascades, and neuronal plasticity. Advancements in structural, molecular, and computational tools illuminate the dynamic interplay between opioids and opioid receptors, as well as the molecular determinants of signaling pathways, which are potentially interlinked with pharmacological responses. Here, we review the molecular basis of opioid receptor signaling with a focus on the structures of opioid receptors bound to endogenous peptides or pharmacological agents. These insights unveil specific interactions that dictate ligand selectivity and likely their distinctive pharmacological profiles. Biochemical analysis further unveils molecular features governing opioid receptor signaling. Simultaneously, the synergy between computational biology and medicinal chemistry continues to expedite the discovery of novel chemotypes with the promise of yielding more efficacious and safer opioid compounds.


Assuntos
Analgésicos Opioides , Receptores Opioides , Transdução de Sinais , Humanos , Analgésicos Opioides/farmacologia , Animais
2.
Cell ; 186(2): 413-427.e17, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36638794

RESUMO

Opioids are effective analgesics, but their use is beset by serious side effects, including addiction and respiratory depression, which contribute to the ongoing opioid crisis. The human opioid system contains four opioid receptors (µOR, δOR, κOR, and NOPR) and a set of related endogenous opioid peptides (EOPs), which show distinct selectivity toward their respective opioid receptors (ORs). Despite being key to the development of safer analgesics, the mechanisms of molecular recognition and selectivity of EOPs to ORs remain unclear. Here, we systematically characterize the binding of EOPs to ORs and present five structures of EOP-OR-Gi complexes, including ß-endorphin- and endomorphin-bound µOR, deltorphin-bound δOR, dynorphin-bound κOR, and nociceptin-bound NOPR. These structures, supported by biochemical results, uncover the specific recognition and selectivity of opioid peptides and the conserved mechanism of opioid receptor activation. These results provide a structural framework to facilitate rational design of safer opioid drugs for pain relief.


Assuntos
Receptores Opioides , Humanos , Analgésicos Opioides/farmacologia , Peptídeos Opioides , Receptores Opioides mu/metabolismo , Receptores Opioides/química
3.
Cell ; 186(3): 591-606.e23, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36669483

RESUMO

Dysregulation of the immune system is a cardinal feature of opioid addiction. Here, we characterize the landscape of peripheral immune cells from patients with opioid use disorder and from healthy controls. Opioid-associated blood exhibited an abnormal distribution of immune cells characterized by a significant expansion of fragile-like regulatory T cells (Tregs), which was positively correlated with the withdrawal score. Analogously, opioid-treated mice also showed enhanced Treg-derived interferon-γ (IFN-γ) expression. IFN-γ signaling reshaped synaptic morphology in nucleus accumbens (NAc) neurons, modulating subsequent withdrawal symptoms. We demonstrate that opioids increase the expression of neuron-derived C-C motif chemokine ligand 2 (Ccl2) and disrupted blood-brain barrier (BBB) integrity through the downregulation of astrocyte-derived fatty-acid-binding protein 7 (Fabp7), which both triggered peripheral Treg infiltration into NAc. Our study demonstrates that opioids drive the expansion of fragile-like Tregs and favor peripheral Treg diapedesis across the BBB, which leads to IFN-γ-mediated synaptic instability and subsequent withdrawal symptoms.


Assuntos
Interferon gama , Transtornos Relacionados ao Uso de Opioides , Síndrome de Abstinência a Substâncias , Linfócitos T Reguladores , Animais , Camundongos , Analgésicos Opioides/administração & dosagem , Interferon gama/metabolismo , Transtornos Relacionados ao Uso de Opioides/metabolismo , Transtornos Relacionados ao Uso de Opioides/patologia
4.
Cell ; 185(23): 4251-4253, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36368303

RESUMO

Different opioid ligands can result in biased µ-opioid signaling, differentially activating signal cascades which produce analgesia, tolerance, or adverse effects. In this issue of Cell, Xu et al. used cryo-EM and computational simulations to understand how different µ-opioid receptor selective-ligands interact with key residues to produce downstream signaling.


Assuntos
Analgésicos Opioides , Dor , Humanos , Analgésicos Opioides/efeitos adversos , Ligantes , Transdução de Sinais , Receptores Opioides mu/metabolismo
5.
Cell ; 185(23): 4361-4375.e19, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36368306

RESUMO

Morphine and fentanyl are among the most used opioid drugs that confer analgesia and unwanted side effects through both G protein and arrestin signaling pathways of µ-opioid receptor (µOR). Here, we report structures of the human µOR-G protein complexes bound to morphine and fentanyl, which uncover key differences in how they bind the receptor. We also report structures of µOR bound to TRV130, PZM21, and SR17018, which reveal preferential interactions of these agonists with TM3 side of the ligand-binding pocket rather than TM6/7 side. In contrast, morphine and fentanyl form dual interactions with both TM3 and TM6/7 regions. Mutations at the TM6/7 interface abolish arrestin recruitment of µOR promoted by morphine and fentanyl. Ligands designed to reduce TM6/7 interactions display preferential G protein signaling. Our results provide crucial insights into fentanyl recognition and signaling of µOR, which may facilitate rational design of next-generation analgesics.


Assuntos
Fentanila , Morfina , Humanos , Analgésicos Opioides/farmacologia , Arrestina/metabolismo , Fentanila/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Morfina/farmacologia , Receptores Opioides mu
6.
Annu Rev Biochem ; 90: 739-761, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33756098

RESUMO

Opioids such as morphine and oxycodone are analgesics frequently prescribed for the treatment of moderate or severe pain. Unfortunately, these medications are associated with exceptionally high abuse potentials and often cause fatal side effects, mainly through the µ-opioid receptor (MOR). Efforts to discover novel, safer, and more efficacious analgesics targeting MOR have encountered challenges. In this review, we summarize alternative strategies and targets that could be used to develop safer nonopioid analgesics. A molecular understanding of G protein-coupled receptor activation and signaling has illuminated not only the complexities of receptor pharmacology but also the potential for pathway-selective agonists and allosteric modulators as safer medications. The availability of structures of pain-related receptors, in combination with high-throughput computational tools, has accelerated the discovery of multitarget ligands with promising pharmacological profiles. Emerging clinical evidence also supports the notion that drugs targeting peripheral opioid receptors have potential as improved analgesic agents.


Assuntos
Analgésicos não Narcóticos/química , Analgésicos não Narcóticos/farmacologia , Receptores Opioides/química , Receptores Opioides/metabolismo , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/farmacologia , Animais , Descoberta de Drogas , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ligantes , Receptores Acoplados a Proteínas G/metabolismo
7.
Cell ; 173(1): 140-152.e15, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29570993

RESUMO

Hunger and pain are two competing signals that individuals must resolve to ensure survival. However, the neural processes that prioritize conflicting survival needs are poorly understood. We discovered that hunger attenuates behavioral responses and affective properties of inflammatory pain without altering acute nociceptive responses. This effect is centrally controlled, as activity in hunger-sensitive agouti-related protein (AgRP)-expressing neurons abrogates inflammatory pain. Systematic analysis of AgRP projection subpopulations revealed that the neural processing of hunger and inflammatory pain converge in the hindbrain parabrachial nucleus (PBN). Strikingly, activity in AgRP → PBN neurons blocked the behavioral response to inflammatory pain as effectively as hunger or analgesics. The anti-nociceptive effect of hunger is mediated by neuropeptide Y (NPY) signaling in the PBN. By investigating the intersection between hunger and pain, we have identified a neural circuit that mediates competing survival needs and uncovered NPY Y1 receptor signaling in the PBN as a target for pain suppression.


Assuntos
Neurônios/metabolismo , Dor/patologia , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Analgésicos Opioides/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Comportamento Animal/efeitos dos fármacos , Dieta , Comportamento Alimentar/efeitos dos fármacos , Formaldeído/toxicidade , Glutamato Descarboxilase/metabolismo , Locomoção/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Morfina/farmacologia , Neurônios/efeitos dos fármacos , Dor/etiologia , Dor/metabolismo , Núcleos Parabraquiais/efeitos dos fármacos , Núcleos Parabraquiais/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Transdução de Sinais
8.
Immunity ; 56(2): 237-239, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792570

RESUMO

Opioid use alters peripheral immune functions via unknown mechanisms. In a recent issue of Cell, Zhu et al. report increased fragile-like regulatory T cells in patients with opioid use disorder and in morphine-treated mice. In mice, Treg cell-derived interferon-γ within the brain promotes withdrawal-associated alterations in synapses.


Assuntos
Síndrome de Abstinência a Substâncias , Linfócitos T Reguladores , Humanos , Camundongos , Animais , Analgésicos Opioides/uso terapêutico , Morfina/efeitos adversos , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Encéfalo
9.
Cell ; 171(5): 989-991, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149613

RESUMO

Effective and safe doses of opiate painkillers, like morphine, can be limited by respiratory depression. Schmid et al. (2017) now present a quantitative method to design ligands and correlate GPCR signaling bias to the dose separation between therapeutic and adverse effects in animals.


Assuntos
Analgésicos Opioides , Transdução de Sinais/efeitos dos fármacos , Animais , Ligantes , Morfina
10.
Cell ; 171(5): 1165-1175.e13, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149605

RESUMO

Biased agonism has been proposed as a means to separate desirable and adverse drug responses downstream of G protein-coupled receptor (GPCR) targets. Herein, we describe structural features of a series of mu-opioid-receptor (MOR)-selective agonists that preferentially activate receptors to couple to G proteins or to recruit ßarrestin proteins. By comparing relative bias for MOR-mediated signaling in each pathway, we demonstrate a strong correlation between the respiratory suppression/antinociception therapeutic window in a series of compounds spanning a wide range of signaling bias. We find that ßarrestin-biased compounds, such as fentanyl, are more likely to induce respiratory suppression at weak analgesic doses, while G protein signaling bias broadens the therapeutic window, allowing for antinociception in the absence of respiratory suppression.


Assuntos
Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/efeitos adversos , Receptores Opioides mu/agonistas , Animais , Fentanila/administração & dosagem , Proteínas de Ligação ao GTP/metabolismo , Camundongos , Morfina/administração & dosagem , Receptores Opioides mu/química , Sistema Respiratório/efeitos dos fármacos , Transdução de Sinais , beta-Arrestinas/metabolismo
11.
CA Cancer J Clin ; 74(3): 286-313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38108561

RESUMO

Pain is one of the most burdensome symptoms in people with cancer, and opioid analgesics are considered the mainstay of cancer pain management. For this review, the authors evaluated the efficacy and toxicities of opioid analgesics compared with placebo, other opioids, nonopioid analgesics, and nonpharmacologic treatments for background cancer pain (continuous and relatively constant pain present at rest), and breakthrough cancer pain (transient exacerbation of pain despite stable and adequately controlled background pain). They found a paucity of placebo-controlled trials for background cancer pain, although tapentadol or codeine may be more efficacious than placebo (moderate-certainty to low-certainty evidence). Nonsteroidal anti-inflammatory drugs including aspirin, piroxicam, diclofenac, ketorolac, and the antidepressant medicine imipramine, may be at least as efficacious as opioids for moderate-to-severe background cancer pain. For breakthrough cancer pain, oral transmucosal, buccal, sublingual, or intranasal fentanyl preparations were identified as more efficacious than placebo but were more commonly associated with toxicities, including constipation and nausea. Despite being recommended worldwide for the treatment of cancer pain, morphine was generally not superior to other opioids, nor did it have a more favorable toxicity profile. The interpretation of study results, however, was complicated by the heterogeneity in the study populations evaluated. Given the limited quality and quantity of research, there is a need to reappraise the clinical utility of opioids in people with cancer pain, particularly those who are not at the end of life, and to further explore the effects of opioids on immune system function and quality of life in these individuals.


Assuntos
Analgésicos Opioides , Dor do Câncer , Humanos , Analgésicos Opioides/uso terapêutico , Analgésicos Opioides/efeitos adversos , Dor do Câncer/tratamento farmacológico , Anti-Inflamatórios não Esteroides/uso terapêutico , Anti-Inflamatórios não Esteroides/administração & dosagem , Dor Nociceptiva/tratamento farmacológico , Neoplasias/complicações , Manejo da Dor/métodos
12.
Nature ; 630(8015): 141-148, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778097

RESUMO

Fentanyl is a powerful painkiller that elicits euphoria and positive reinforcement1. Fentanyl also leads to dependence, defined by the aversive withdrawal syndrome, which fuels negative reinforcement2,3 (that is, individuals retake the drug to avoid withdrawal). Positive and negative reinforcement maintain opioid consumption, which leads to addiction in one-fourth of users, the largest fraction for all addictive drugs4. Among the opioid receptors, µ-opioid receptors have a key role5, yet the induction loci of circuit adaptations that eventually lead to addiction remain unknown. Here we injected mice with fentanyl to acutely inhibit γ-aminobutyric acid-expressing neurons in the ventral tegmental area (VTA), causing disinhibition of dopamine neurons, which eventually increased dopamine in the nucleus accumbens. Knockdown of µ-opioid receptors in VTA abolished dopamine transients and positive reinforcement, but withdrawal remained unchanged. We identified neurons expressing µ-opioid receptors in the central amygdala (CeA) whose activity was enhanced during withdrawal. Knockdown of µ-opioid receptors in CeA eliminated aversive symptoms, suggesting that they mediate negative reinforcement. Thus, optogenetic stimulation caused place aversion, and mice readily learned to press a lever to pause optogenetic stimulation of CeA neurons that express µ-opioid receptors. Our study parses the neuronal populations that trigger positive and negative reinforcement in VTA and CeA, respectively. We lay out the circuit organization to develop interventions for reducing fentanyl addiction and facilitating rehabilitation.


Assuntos
Fentanila , Receptores Opioides mu , Reforço Psicológico , Animais , Feminino , Masculino , Camundongos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/administração & dosagem , Núcleo Central da Amígdala/citologia , Núcleo Central da Amígdala/efeitos dos fármacos , Núcleo Central da Amígdala/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Fentanila/farmacologia , Camundongos Endogâmicos C57BL , Núcleo Accumbens/citologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Transtornos Relacionados ao Uso de Opioides/metabolismo , Transtornos Relacionados ao Uso de Opioides/patologia , Optogenética , Receptores Opioides mu/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/patologia , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
13.
Nature ; 631(8021): 686-693, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961287

RESUMO

The µ-opioid receptor (µOR) is a well-established target for analgesia1, yet conventional opioid receptor agonists cause serious adverse effects, notably addiction and respiratory depression. These factors have contributed to the current opioid overdose epidemic driven by fentanyl2, a highly potent synthetic opioid. µOR negative allosteric modulators (NAMs) may serve as useful tools in preventing opioid overdose deaths, but promising chemical scaffolds remain elusive. Here we screened a large DNA-encoded chemical library against inactive µOR, counter-screening with active, G-protein and agonist-bound receptor to 'steer' hits towards conformationally selective modulators. We discovered a NAM compound with high and selective enrichment to inactive µOR that enhances the affinity of the key opioid overdose reversal molecule, naloxone. The NAM works cooperatively with naloxone to potently block opioid agonist signalling. Using cryogenic electron microscopy, we demonstrate that the NAM accomplishes this effect by binding a site on the extracellular vestibule in direct contact with naloxone while stabilizing a distinct inactive conformation of the extracellular portions of the second and seventh transmembrane helices. The NAM alters orthosteric ligand kinetics in therapeutically desirable ways and works cooperatively with low doses of naloxone to effectively inhibit various morphine-induced and fentanyl-induced behavioural effects in vivo while minimizing withdrawal behaviours. Our results provide detailed structural insights into the mechanism of negative allosteric modulation of the µOR and demonstrate how this can be exploited in vivo.


Assuntos
Analgésicos Opioides , Avaliação Pré-Clínica de Medicamentos , Naloxona , Receptores Opioides mu , Bibliotecas de Moléculas Pequenas , Animais , Humanos , Masculino , Camundongos , Regulação Alostérica/efeitos dos fármacos , Analgésicos Opioides/antagonistas & inibidores , Analgésicos Opioides/farmacologia , Sítios de Ligação/efeitos dos fármacos , Microscopia Crioeletrônica , Fentanila/antagonistas & inibidores , Fentanila/farmacologia , Cinética , Ligantes , Modelos Moleculares , Morfina/antagonistas & inibidores , Morfina/farmacologia , Naloxona/administração & dosagem , Naloxona/química , Naloxona/metabolismo , Naloxona/farmacologia , Antagonistas de Entorpecentes/administração & dosagem , Antagonistas de Entorpecentes/química , Antagonistas de Entorpecentes/metabolismo , Antagonistas de Entorpecentes/farmacologia , Overdose de Opiáceos/tratamento farmacológico , Conformação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Receptores Opioides mu/agonistas , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Células Sf9 , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Camundongos Endogâmicos C57BL
14.
Nature ; 630(8017): 677-685, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839962

RESUMO

All drugs of abuse induce long-lasting changes in synaptic transmission and neural circuit function that underlie substance-use disorders1,2. Another recently appreciated mechanism of neural circuit plasticity is mediated through activity-regulated changes in myelin that can tune circuit function and influence cognitive behaviour3-7. Here we explore the role of myelin plasticity in dopaminergic circuitry and reward learning. We demonstrate that dopaminergic neuronal activity-regulated myelin plasticity is a key modulator of dopaminergic circuit function and opioid reward. Oligodendroglial lineage cells respond to dopaminergic neuronal activity evoked by optogenetic stimulation of dopaminergic neurons, optogenetic inhibition of GABAergic neurons, or administration of morphine. These oligodendroglial changes are evident selectively within the ventral tegmental area but not along the axonal projections in the medial forebrain bundle nor within the target nucleus accumbens. Genetic blockade of oligodendrogenesis dampens dopamine release dynamics in nucleus accumbens and impairs behavioural conditioning to morphine. Taken together, these findings underscore a critical role for oligodendrogenesis in reward learning and identify dopaminergic neuronal activity-regulated myelin plasticity as an important circuit modification that is required for opioid reward.


Assuntos
Analgésicos Opioides , Bainha de Mielina , Vias Neurais , Plasticidade Neuronal , Recompensa , Área Tegmentar Ventral , Animais , Feminino , Masculino , Camundongos , Analgésicos Opioides/farmacologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Morfina/farmacologia , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Optogenética , Área Tegmentar Ventral/fisiologia , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Linhagem da Célula
15.
Nature ; 613(7945): 767-774, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36450356

RESUMO

Mu-opioid receptor (µOR) agonists such as fentanyl have long been used for pain management, but are considered a major public health concern owing to their adverse side effects, including lethal overdose1. Here, in an effort to design safer therapeutic agents, we report an approach targeting a conserved sodium ion-binding site2 found in µOR3 and many other class A G-protein-coupled receptors with bitopic fentanyl derivatives that are functionalized via a linker with a positively charged guanidino group. Cryo-electron microscopy structures of the most potent bitopic ligands in complex with µOR highlight the key interactions between the guanidine of the ligands and the key Asp2.50 residue in the Na+ site. Two bitopics (C5 and C6 guano) maintain nanomolar potency and high efficacy at Gi subtypes and show strongly reduced arrestin recruitment-one (C6 guano) also shows the lowest Gz efficacy among the panel of µOR agonists, including partial and biased morphinan and fentanyl analogues. In mice, C6 guano displayed µOR-dependent antinociception with attenuated adverse effects, supporting the µOR sodium ion-binding site as a potential target for the design of safer analgesics. In general, our study suggests that bitopic ligands that engage the sodium ion-binding pocket in class A G-protein-coupled receptors can be designed to control their efficacy and functional selectivity profiles for Gi, Go and Gz subtypes and arrestins, thus modulating their in vivo pharmacology.


Assuntos
Desenho de Fármacos , Fentanila , Morfinanos , Receptores Opioides mu , Animais , Camundongos , Analgésicos Opioides/química , Analgésicos Opioides/metabolismo , Arrestinas/metabolismo , Microscopia Crioeletrônica , Fentanila/análogos & derivados , Fentanila/química , Fentanila/metabolismo , Ligantes , Morfinanos/química , Morfinanos/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Receptores Opioides mu/ultraestrutura , Sítios de Ligação , Nociceptividade
16.
Nature ; 617(7960): 417-425, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37138078

RESUMO

The κ-opioid receptor (KOR) represents a highly desirable therapeutic target for treating not only pain but also addiction and affective disorders1. However, the development of KOR analgesics has been hindered by the associated hallucinogenic side effects2. The initiation of KOR signalling requires the Gi/o-family proteins including the conventional (Gi1, Gi2, Gi3, GoA and GoB) and nonconventional (Gz and Gg) subtypes. How hallucinogens exert their actions through KOR and how KOR determines G-protein subtype selectivity are not well understood. Here we determined the active-state structures of KOR in a complex with multiple G-protein heterotrimers-Gi1, GoA, Gz and Gg-using cryo-electron microscopy. The KOR-G-protein complexes are bound to hallucinogenic salvinorins or highly selective KOR agonists. Comparisons of these structures reveal molecular determinants critical for KOR-G-protein interactions as well as key elements governing Gi/o-family subtype selectivity and KOR ligand selectivity. Furthermore, the four G-protein subtypes display an intrinsically different binding affinity and allosteric activity on agonist binding at KOR. These results provide insights into the actions of opioids and G-protein-coupling specificity at KOR and establish a foundation to examine the therapeutic potential of pathway-selective agonists of KOR.


Assuntos
Microscopia Crioeletrônica , Proteínas Heterotriméricas de Ligação ao GTP , Ligantes , Receptores Opioides kappa , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Receptores Opioides kappa/química , Receptores Opioides kappa/metabolismo , Receptores Opioides kappa/ultraestrutura , Transdução de Sinais , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/ultraestrutura , Especificidade por Substrato , Regulação Alostérica/efeitos dos fármacos , Alucinógenos/metabolismo , Alucinógenos/farmacologia
17.
Mol Cell ; 81(20): 4165-4175.e6, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34433090

RESUMO

GPCR functional selectivity opens new opportunities for the design of safer drugs. Ligands orchestrate GPCR signaling cascades by modulating the receptor conformational landscape. Our study provides insights into the dynamic mechanism enabling opioid ligands to preferentially activate the G protein over the ß-arrestin pathways through the µ-opioid receptor (µOR). We combine functional assays in living cells, solution NMR spectroscopy, and enhanced-sampling molecular dynamic simulations to identify the specific µOR conformations induced by G protein-biased agonists. In particular, we describe the dynamic and allosteric communications between the ligand-binding pocket and the receptor intracellular domains, through conserved motifs in class A GPCRs. Most strikingly, the biased agonists trigger µOR conformational changes in the intracellular loop 1 and helix 8 domains, which may impair ß-arrestin binding or signaling. The findings may apply to other GPCR families and provide key molecular information that could facilitate the design of biased ligands.


Assuntos
Analgésicos Opioides/farmacologia , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Transdução de Sinais/efeitos dos fármacos , Analgésicos Opioides/química , Animais , Sítios de Ligação , Desenho Assistido por Computador , Desenho de Fármacos , Agonismo Parcial de Drogas , Células HEK293 , Humanos , Ligantes , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Receptores Opioides mu/agonistas , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Células Sf9 , Relação Estrutura-Atividade , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
18.
Annu Rev Neurosci ; 43: 355-374, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32109184

RESUMO

Opioid addiction and overdose are at record levels in the United States. This is driven, in part, by their widespread prescription for the treatment of pain, which also increased opportunity for diversion by sensation-seeking users. Despite considerable research on the neurobiology of addiction, treatment options for opioid abuse remain limited. Mood disorders, particularly depression, are often comorbid with both pain disorders and opioid abuse. The endogenous opioid system, a complex neuromodulatory system, sits at the neurobiological convergence point of these three comorbid disease states. We review evidence for dysregulation of the endogenous opioid system as a mechanism for the development of opioid addiction and/or mood disorder. Specifically, individual differences in opioid system function may underlie differences in vulnerability to opioid addiction and mood disorders. We also review novel research, which promises to provide more detailed understanding of individual differences in endogenous opioid neurobiology and its contribution to opioid addiction susceptibility.


Assuntos
Analgésicos Opioides/uso terapêutico , Dor Crônica/tratamento farmacológico , Depressão/tratamento farmacológico , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Animais , Overdose de Drogas/tratamento farmacológico , Humanos , Medicina de Precisão/métodos
19.
Annu Rev Physiol ; 86: 1-25, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38029388

RESUMO

The harmful side effects of opioid drugs such as respiratory depression, tolerance, dependence, and abuse potential have limited the therapeutic utility of opioids for their entire clinical history. However, no previous attempt to develop effective pain drugs that substantially ameliorate these effects has succeeded, and the current opioid epidemic affirms that they are a greater hindrance to the field of pain management than ever. Recent attempts at new opioid development have sought to reduce these side effects by minimizing engagement of the regulatory protein arrestin-3 at the mu-opioid receptor, but there is significant controversy around this approach. Here, we discuss the ongoing effort to develop safer opioids and its relevant historical context. We propose a new model that reconciles results previously assumed to be in direct conflict to explain how different signaling profiles at the mu-opioid receptor contribute to opioid tolerance and dependence. Our goal is for this framework to inform the search for a new generation of lower liability opioid analgesics.


Assuntos
Analgésicos Opioides , Transdução de Sinais , Humanos , Analgésicos Opioides/efeitos adversos , Tolerância a Medicamentos
20.
Nature ; 598(7882): 646-651, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34646022

RESUMO

µ-Opioid peptide receptor (MOPR) stimulation alters respiration, analgesia and reward behaviour, and can induce substance abuse and overdose1-3. Despite its evident importance, the endogenous mechanisms for MOPR regulation of consummatory behaviour have remained unknown4. Here we report that endogenous MOPR regulation of reward consumption in mice acts through a specific dorsal raphe to nucleus accumbens projection. MOPR-mediated inhibition of raphe terminals is necessary and sufficient to determine consummatory response, while select enkephalin-containing nucleus accumbens ensembles are engaged prior to reward consumption, suggesting that local enkephalin release is the source of the endogenous MOPR ligand. Selective modulation of nucleus accumbens enkephalin neurons and CRISPR-Cas9-mediated disruption of enkephalin substantiate this finding. These results isolate a fundamental endogenous opioid circuit for state-dependent consumptive behaviour and suggest alternative mechanisms for opiate modulation of reward.


Assuntos
Analgésicos Opioides/farmacologia , Núcleo Accumbens/fisiologia , Receptores Opioides mu/fisiologia , Recompensa , Animais , Encefalinas , Feminino , Masculino , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA