Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Mol Microbiol ; 105(3): 385-398, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28513100

RESUMO

Bacteriophages recognize and bind to their hosts with the help of receptor-binding proteins (RBPs) that emanate from the phage particle in the form of fibers or tailspikes. RBPs show a great variability in their shapes, sizes, and location on the particle. Some RBPs are known to depolymerize surface polysaccharides of the host while others show no enzymatic activity. Here we report that both RBPs of podovirus G7C - tailspikes gp63.1 and gp66 - are essential for infection of its natural host bacterium E. coli 4s that populates the equine intestinal tract. We characterize the structure and function of gp63.1 and show that unlike any previously described RPB, gp63.1 deacetylates surface polysaccharides of E. coli 4s leaving the backbone of the polysaccharide intact. We demonstrate that gp63.1 and gp66 form a stable complex, in which the N-terminal part of gp66 serves as an attachment site for gp63.1 and anchors the gp63.1-gp66 complex to the G7C tail. The esterase domain of gp63.1 as well as domains mediating the gp63.1-gp66 interaction is widespread among all three families of tailed bacteriophages.


Assuntos
Bacteriófago P22/fisiologia , Esterases/metabolismo , Adsorção/fisiologia , Animais , Bacteriófago P22/química , Bacteriófagos/fisiologia , Cristalografia por Raios X , Escherichia coli/metabolismo , Esterases/genética , Cavalos/microbiologia , Modelos Moleculares , Polissacarídeos Bacterianos/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas da Cauda Viral/metabolismo
2.
Microbiology (Reading) ; 164(10): 1293-1307, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30084765

RESUMO

Salmonella enterica serovar Typhimurium (S. typhimurium) can cause food- and water-borne illness with diverse clinical manifestations. One key factor for S. typhimurium pathogenesis is the alternative sigma factor σE, which is encoded by the rpoE gene and controls the transcription of genes required for outer-membrane integrity in response to alterations in the bacterial envelope. The canonical pathway for σE activation involves proteolysis of the antisigma factor RseA, which is triggered by unfolded outer-membrane porins (OMPs) and lipopolysaccharides (LPS) that have accumulated in the periplasm. This study reports new stress factors that are able to activate σE expression. We demonstrate that UVA radiation induces σE activity in a pathway that is dependent on the stringent response regulator ppGpp. Survival assays revealed that rpoE has a role in the defence against lethal UVA doses that is mediated by functions that are dependent on and independent of the alternative sigma factor RpoS. We also report that the envelope stress generated by phage infection requires a functional rpoE gene for optimal bacterial tolerance and that it is able to induce σE activity in an RseA-dependent fashion. σE activity is also induced by hypo-osmotic shock in the absence of osmoregulated periplasmic glucans (OPGs). It is known that the rpoE gene is not essential in S. typhimurium. However, we report here two cases of the conditional lethality of rpoE mutations in this micro-organism. We demonstrate that rpoE mutations are not tolerated in the absence of OPGs (at low to moderate osmolarity) or LPS O-antigen. The latter case resembles that of the prototypic Escherichia coli strain K12, which neither synthesizes a complete LPS nor tolerates null rpoE mutations.


Assuntos
Regulação Bacteriana da Expressão Gênica , Salmonella typhimurium/fisiologia , Fator sigma/genética , Fator sigma/metabolismo , Estresse Fisiológico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófago P22/fisiologia , Glucanos/metabolismo , Guanosina Tetrafosfato/metabolismo , Viabilidade Microbiana , Mutação , Antígenos O/metabolismo , Pressão Osmótica , Salmonella typhimurium/efeitos da radiação , Salmonella typhimurium/virologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Raios Ultravioleta
3.
J Virol ; 89(18): 9288-98, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26136570

RESUMO

UNLABELLED: We have recently shown in both herpesviruses and phages that packaged viral DNA creates a pressure of tens of atmospheres pushing against the interior capsid wall. For the first time, using differential scanning microcalorimetry, we directly measured the energy powering the release of pressurized DNA from the capsid. Furthermore, using a new calorimetric assay to accurately determine the temperature inducing DNA release, we found a direct influence of internal DNA pressure on the stability of the viral particle. We show that the balance of forces between the DNA pressure and capsid strength, required for DNA retention between rounds of infection, is conserved between evolutionarily diverse bacterial viruses (phages λ and P22), as well as a eukaryotic virus, human herpes simplex 1 (HSV-1). Our data also suggest that the portal vertex in these viruses is the weakest point in the overall capsid structure and presents the Achilles heel of the virus's stability. Comparison between these viral systems shows that viruses with higher DNA packing density (resulting in higher capsid pressure) have inherently stronger capsid structures, preventing spontaneous genome release prior to infection. This force balance is of key importance for viral survival and replication. Investigating the ways to disrupt this balance can lead to development of new mutation-resistant antivirals. IMPORTANCE: A virus can generally be described as a nucleic acid genome contained within a protective protein shell, called the capsid. For many double-stranded DNA viruses, confinement of the large DNA molecule within the small protein capsid results in an energetically stressed DNA state exerting tens of atmospheres of pressures on the inner capsid wall. We show that stability of viral particles (which directly relates to infectivity) is strongly influenced by the state of the packaged genome. Using scanning calorimetry on a bacterial virus (phage λ) as an experimental model system, we investigated the thermodynamics of genome release associated with destabilizing the viral particle. Furthermore, we compare the influence of tight genome confinement on the relative stability for diverse bacterial and eukaryotic viruses. These comparisons reveal an evolutionarily conserved force balance between the capsid stability and the density of the packaged genome.


Assuntos
Bacteriófago P22/fisiologia , Bacteriófago lambda/fisiologia , Capsídeo/metabolismo , DNA Viral/metabolismo , Herpesvirus Humano 1/fisiologia , Montagem de Vírus/fisiologia , Capsídeo/química , DNA Viral/química , Humanos , Pressão , Salmonella enterica/virologia
4.
J Struct Biol ; 189(3): 251-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25613203

RESUMO

While relatively simple biologically, bacteriophages are sophisticated biochemical machines that execute a precise sequence of events during virus assembly, DNA packaging, and ejection. These stages of the viral life cycle require intricate coordination of viral components whose structures are being revealed by single molecule experiments and high resolution (cryo-electron microscopy) reconstructions. For example, during packaging, bacteriophages employ some of the strongest known molecular motors to package DNA against increasing pressure within the viral capsid shell. Located upstream of the motor is an elaborate portal system through which DNA is threaded. A high resolution reconstruction of the portal system for bacteriophage ϕ29 reveals that DNA buckles inside a small cavity under large compressive forces. In this study, we demonstrate that DNA can also buckle in other bacteriophages including T7 and P22. Using a computational rod model for DNA, we demonstrate that a DNA buckle can initiate and grow within the small confines of a cavity under biologically-attainable force levels. The forces of DNA-cavity contact and DNA-DNA electrostatic repulsion ultimately limit cavity filling. Despite conforming to very different cavity geometries, the buckled DNA within T7 and P22 exhibits near equal volumetric energy density (∼1kT/nm(3)) and energetic cost of packaging (∼22kT). We hypothesize that a DNA buckle creates large forces on the cavity interior to signal the conformational changes to end packaging. In addition, a DNA buckle may help retain the genome prior to tail assembly through significantly increased contact area with the portal.


Assuntos
Bacteriófago P22/genética , Bacteriófago T7/genética , DNA Viral/química , Bacteriófago P22/fisiologia , Bacteriófago T7/fisiologia , DNA/química , DNA Viral/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico
5.
J Virol ; 88(10): 5287-97, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24600011

RESUMO

UNLABELLED: Icosahedral virus assembly requires a series of concerted and highly specific protein-protein interactions to produce a proper capsid. In bacteriophage P22, only coat protein (gp5) and scaffolding protein (gp8) are needed to assemble a procapsid-like particle, both in vivo and in vitro. In scaffolding protein's coat binding domain, residue R293 is required for procapsid assembly, while residue K296 is important but not essential. Here, we investigate the interaction of scaffolding protein with acidic residues in the N-arm of coat protein, since this interaction has been shown to be electrostatic. Through site-directed mutagenesis of genes 5 and 8, we show that changing coat protein N-arm residue 14 from aspartic acid to alanine causes a lethal phenotype. Coat protein residue D14 is shown by cross-linking to interact with scaffolding protein residue R293 and, thus, is intimately involved in proper procapsid assembly. To a lesser extent, coat protein N-arm residue E18 is also implicated in the interaction with scaffolding protein and is involved in capsid size determination, since a cysteine mutation at this site generated petite capsids. The final acidic residue in the N-arm that was tested, E15, is shown to only weakly interact with scaffolding protein's coat binding domain. This work supports growing evidence that surface charge density may be the driving force of virus capsid protein interactions. IMPORTANCE: Bacteriophage P22 infects Salmonella enterica serovar Typhimurium and is a model for icosahedral viral capsid assembly. In this system, coat protein interacts with an internal scaffolding protein, triggering the assembly of an intermediate called a procapsid. Previously, we determined that there is a single amino acid in scaffolding protein required for P22 procapsid assembly, although others modulate affinity. Here, we identify partners in coat protein. We show experimentally that relatively weak interactions between coat and scaffolding proteins are capable of driving correctly shaped and sized procapsids and that the lack of these proper protein-protein interfaces leads to aberrant structures. The present work represents an important contribution supporting the hypothesis that virus capsid assembly is governed by seemingly simple interactions. The highly specific nature of the subunit interfaces suggests that these could be good targets for antivirals.


Assuntos
Bacteriófago P22/química , Bacteriófago P22/fisiologia , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Estruturais Virais/metabolismo , Montagem de Vírus , Bacteriófago P22/genética , Proteínas do Capsídeo/genética , Análise Mutacional de DNA , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Eletricidade Estática , Proteínas Estruturais Virais/genética
6.
Mol Microbiol ; 77(6): 1568-82, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20659287

RESUMO

We have investigated determinants of polyhead formation in bacteriophage P22 in order to understand the molecular mechanism by which coat protein assembly goes astray. Polyhead assembly is caused by amino acid substitutions in coat protein at position 170, which is located in the ß-hinge. In vivo scaffolding protein does not correct polyhead assembly by F170A or F170K coat proteins, but does for F170L. All F170 variants bind scaffolding protein more weakly than wild-type as observed by affinity chromatography with scaffolding protein-agarose and scaffolding protein shell re-entry experiments. Electron cryo-microscopy and three-dimensional image reconstructions of F170A and F170K empty procapsid shells showed that there is a decreased flexibility of the coat subunits relative to wild-type. This was confirmed by limited proteolysis and protein sequencing, which showed increased protection of the A-domain. Our data support the conclusion that the decrease in flexibility of the A-domain leads to crowding of the subunits at the centre of the pentons, thereby favouring the hexon configuration during assembly. Thus, correct coat protein interactions with scaffolding protein and maintenance of sufficient coat protein flexibility are crucial for proper P22 assembly. The coat protein ß-hinge region is the major determinant for both features.


Assuntos
Bacteriófago P22/química , Proteínas do Capsídeo/química , Montagem de Vírus , Substituição de Aminoácidos , Bacteriófago P22/genética , Bacteriófago P22/fisiologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/ultraestrutura , Imageamento Tridimensional , Microscopia Eletrônica de Transmissão , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína
7.
Phys Biol ; 7(4): 045004, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21149969

RESUMO

Bacteriophage P22 forms an isometric capsid during normal assembly, yet when the coat protein (CP) is altered at a single site, helical structures (polyheads) also form. The structures of three distinct polyheads obtained from F170L and F170A variants were determined by cryo-reconstruction methods. An understanding of the structures of aberrant assemblies such as polyheads helps to explain how amino acid substitutions affect the CP, and these results can now be put into the context of CP pseudo-atomic models. F170L CP forms two types of polyhead and each has the CP organized as hexons (oligomers of six CPs). These hexons have a skewed structure similar to that in procapsids (precursor capsids formed prior to dsDNA packaging), yet their organization differs completely in polyheads and procapsids. F170A CP forms only one type of polyhead, and though this has hexons organized similarly to hexons in F170L polyheads, the hexons are isometric structures like those found in mature virions. The hexon organization in all three polyheads suggests that nucleation of procapsid assembly occurs via a trimer of CP monomers, and this drives formation of a T = 7, isometric particle. These variants also form procapsids, but they mature quite differently: F170A expands spontaneously at room temperature, whereas F170L requires more energy. The P22 CP structure along with scaffolding protein interactions appear to dictate curvature and geometry in assembled structures and residue 170 significantly influences both assembly and maturation.


Assuntos
Bacteriófago P22/fisiologia , Proteínas do Capsídeo/metabolismo , Montagem de Vírus , Bacteriófago P22/metabolismo , Bacteriófago P22/ultraestrutura , Capsídeo , Proteínas do Capsídeo/química , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Ligação Proteica
8.
Curr Opin Struct Biol ; 17(2): 237-43, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17395453

RESUMO

Several symmetric and asymmetric reconstructions of bacteriophage particles have recently been determined using electron cryo-microscopy and image reconstruction, and X-ray crystal structures of phage particles and particle-associated gene products have also been solved. In the past two years, the asymmetric structures of four different phages, T7, epsilon15, P22 and phi29, were determined at resolutions sufficient to visualize details of the machinery for DNA packaging and delivery, as well as the organization of the double-stranded DNA within the particles. Invariably, the portals, through which DNA enters and leaves the particle, have 12-fold symmetry, occupy a pentavalent site in the capsid and, along with tail machine accessory proteins attached to it, are fixed in a specific orientation relative to the rest of the capsid.


Assuntos
Bacteriófagos/química , Bacteriófagos/fisiologia , Empacotamento do DNA/fisiologia , Fagos Bacilares/química , Fagos Bacilares/fisiologia , Fagos Bacilares/ultraestrutura , Bacteriófago P22/química , Bacteriófago P22/fisiologia , Bacteriófago P22/ultraestrutura , Bacteriófago T4/química , Bacteriófago T4/fisiologia , Bacteriófago T4/ultraestrutura , Bacteriófago T7/química , Bacteriófago T7/fisiologia , Bacteriófago T7/ultraestrutura , Bacteriófagos/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , DNA Viral/química , Imageamento Tridimensional , Modelos Moleculares , Montagem de Vírus
9.
Crit Rev Microbiol ; 35(3): 197-220, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19563302

RESUMO

Recombination plays a significant role in bacteriophage biology. Functions promoting recombination are involved in key stages of phage multiplication and drive phage evolution. Their biological role is reflected by the great variety of phages existing in the environment. This work presents the role of recombination in the phage life cycle and highlights the discrete character of phage-encoded recombination functions (anti-RecBCD activities, 5' --> 3' DNA exonucleases, single-stranded DNA binding proteins, single-stranded DNA annealing proteins, and recombinases). The focus of this review is on phage proteins that initiate genetic exchange. Importance of recombination is reviewed based on the accepted coli-phages T4 and lambda models, the recombination system of phage P22, and the recently characterized recombination functions of Bacillus subtilis phage SPP1 and mycobacteriophage Che9c. Key steps of the molecular mechanisms involving phage recombination functions and their application in molecular engineering are discussed.


Assuntos
Fagos Bacilares/fisiologia , Bacteriófago P22/fisiologia , Bacteriófago T4/fisiologia , Bacteriófago lambda/fisiologia , Micobacteriófagos/fisiologia , Recombinação Genética , Proteínas Virais/fisiologia , Engenharia de Proteínas
10.
Nat Microbiol ; 4(6): 1049-1056, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30886360

RESUMO

For successful infection, bacteriophages must overcome multiple barriers to transport their genome and proteins across the bacterial cell envelope. We use cryo-electron tomography to study the infection initiation of phage P22 in Salmonella enterica serovar Typhimurium, revealing how a channel forms to allow genome translocation into the cytoplasm. Our results show free phages that initially attach obliquely to the cell through interactions between the O antigen and two of the six tailspikes; the tail needle also abuts the cell surface. The virion then orients perpendicularly and the needle penetrates the outer membrane. The needle is released and the internal head protein gp7* is ejected and assembles into an extracellular channel that extends from the gp10 baseplate to the cell surface. A second protein, gp20, is ejected and assembles into a structure that extends the extracellular channel across the outer membrane into the periplasm. Insertion of the third ejected protein, gp16, into the cytoplasmic membrane probably completes the overall trans-envelope channel into the cytoplasm. Construction of a trans-envelope channel is an essential step during infection of Gram-negative bacteria by all short-tailed phages, because such virions cannot directly deliver their genome into the cell cytoplasm.


Assuntos
Bacteriófago P22/fisiologia , Membrana Celular/metabolismo , Membrana Celular/virologia , Tomografia com Microscopia Eletrônica/métodos , Salmonella typhimurium/virologia , Ligação Viral , Internalização do Vírus , Bacteriófago P22/patogenicidade , Bacteriófago P22/ultraestrutura , Membrana Celular/ultraestrutura , Citoplasma/metabolismo , Citoplasma/virologia , DNA Viral , Modelos Moleculares , Antígenos O , Conformação Proteica , Proteínas da Cauda Viral/química , Vírion/metabolismo
11.
Structure ; 14(6): 1073-82, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16730179

RESUMO

The mechanisms by which most double-stranded DNA viruses package and release their genomic DNA are not fully understood. Single particle cryo-electron microscopy and asymmetric 3D reconstruction reveal the organization of the complete bacteriophage P22 virion, including the protein channel through which DNA is first packaged and later ejected. This channel is formed by a dodecamer of portal proteins and sealed by a tail hub consisting of two stacked barrels capped by a protein needle. Six trimeric tailspikes attached around this tail hub are kinked, suggesting a functional hinge that may be used to trigger DNA release. Inside the capsid, the portal's central channel is plugged by densities interpreted as pilot/injection proteins. A short rod-like density near these proteins may be the terminal segment of the dsDNA genome. The coaxially packed DNA genome is encapsidated by the icosahedral shell. This complete structure unifies various biochemical, genetic, and crystallographic data of its components from the past several decades.


Assuntos
Bacteriófago P22/química , Bacteriófago P22/fisiologia , Capsídeo/química , Empacotamento do DNA , DNA Viral/metabolismo , Bacteriófago P22/genética , Microscopia Crioeletrônica , Proteínas Virais/química
12.
J Mol Biol ; 359(4): 1097-106, 2006 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16697406

RESUMO

Assembly of the hundreds of subunits required to form an icosahedral virus must proceed with exquisite fidelity, and is a paradigm for the self-organization of complex macromolecular structures. However, the mechanism for capsid assembly is not completely understood for any virus. Here we have investigated the in vitro assembly of phage P22 procapsids using a quantitative model specifically developed to analyze assembly of spherical viruses. Phage P22 procapsids are the product of the co-assembly of 420 molecules of coat protein and approximately 100-300 molecules of scaffolding protein. Scaffolding protein serves as an assembly chaperone and is not part of the final mature capsid, but is essential for proper procapsid assembly. Here we show that scaffolding protein also affects the thermodynamics of assembly, and for the first time this quantitative analysis has been performed on a virus composed of more than one type of protein subunit. Purified coat and scaffolding proteins were mixed in varying ratios in vitro to form procapsids. The reactions were allowed to reach equilibrium and the proportion of the input protein assembled into procapsids or remaining as free subunits was determined by size exclusion chromatography and SDS-PAGE. The results were used to calculate the free energy contributions for individual coat and scaffolding proteins. Each coat protein subunit was found to contribute -7.2(+/-0.1)kcal/mol and each scaffolding protein -6.1(+/-0.2)kcal/mol to the stability of the procapsid. Because each protein interacts with two or more neighbors, the pair-wise energies are even less. The weak protein interactions observed in the assembly of procapsids are likely important in the control of nucleation, since an increase in affinity between coat and scaffolding proteins can lead to kinetic traps caused by the formation of too many nuclei. In addition, we find that adjusting the molar ratio of scaffolding to coat protein can alter the assembly product. When the scaffolding protein concentration is low relative to coat protein, there is a correspondingly low yield of proper procapsids. When the relative concentration is very high, too many nuclei form, leading to kinetically trapped assembly intermediates.


Assuntos
Bacteriófago P22/fisiologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Capsídeo/química , Montagem de Vírus , Bacteriófago P22/química , Capsídeo/metabolismo , Eletroforese em Gel de Poliacrilamida , Subunidades Proteicas , Termodinâmica
13.
Cell Stress Chaperones ; 12(1): 20-32, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17441504

RESUMO

Phage P22 wild-type (WT) coat protein does not require GroEL/S to fold but temperature-sensitive-folding (tsf) coat proteins need the chaperone complex for correct folding. WT coat protein and all variants absolutely require P22 scaffolding protein, an assembly chaperone, to assemble into precursor structures termed procapsids. Previously, we showed that a global suppressor (su) substitution, T1661, which rescues several tsf coat protein variants, functioned by inducing GroEL/S. This led to an increased formation of tsf:T1661 coat protein:GroEL complexes compared with the tsf parents. The increased concentration of complexes resulted in more assembly-competent coat proteins because of a shift in the chaperone-driven kinetic partitioning between aggregation-prone intermediates toward correct folding and assembly. We have now investigated the folding and assembly of coat protein variants that carry a different global su substitution, F170L. By monitoring levels of phage production in the presence of a dysfunctional GroEL we found that tsf:F170L proteins demonstrate a less stringent requirement for GroEL. Tsf:F170L proteins also did not cause induction of the chaperones. Circular dichroism and tryptophan fluorescence indicate that the native state of the tsf: F170L coat proteins is restored to WT-like values. In addition, native acrylamide gel electrophoresis shows a stabilized native state for tsf:F170L coat proteins. The F170L su substitution also increases procapsid production compared with their tsf parents. We propose that the F170L su substitution has a decreased requirement for the chaperones GroEL and GroES as a result of restoring the tsf coat proteins to a WT-like state. Our data also suggest that GroEL/S can be induced by increasing the population of unfolding intermediates.


Assuntos
Proteínas do Capsídeo/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Escherichia coli/metabolismo , Dobramento de Proteína , Substituição de Aminoácidos , Bacteriófago P22/fisiologia , Proteínas do Capsídeo/química , Leucina/genética , Modelos Biológicos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fenilalanina/genética , Estrutura Secundária de Proteína , Especificidade por Substrato , Supressão Genética/genética , Temperatura , Termodinâmica , Montagem de Vírus
14.
Biomol NMR Assign ; 11(1): 35-38, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27798771

RESUMO

The P22 bacteriophage group is a subgroup of the λ phage supercluster, comprised of the three major sequence types Sf6, P22, and CUS-3, based on their capsid proteins. Our goal is to investigate the extent to which structure-function relationships are conserved for the viral coat proteins and I-domains in this subgroup. Sf6 is a phage that infects the human pathogen Shigella flexneri. The coat protein of Sf6 assembles into a procapsid, which further undergoes maturation during DNA packaging into an infectious virion. The Sf6 coat protein contains a genetically inserted domain, termed the I-domain, similar to the ones present in the P22 and CUS-3 coat proteins. Based on the P22 example, I-domains play important functional roles in capsid assembly, stability, viability, and size-determination. Here we report the 1H, 15N, and 13C chemical shift assignments for the I-domain of the Sf6 phage coat protein. Chemical shift-based secondary structure prediction and hydrogen-bond patterns from a long-range HNCO experiment indicate that the Sf6 I-domain adopts a 6-stranded ß-barrel fold like those of P22 and CUS-3 but with important differences, including the absence of the D-loop that is critical for capsid assembly and the addition of a novel disordered loop region.


Assuntos
Bacteriófago P22/fisiologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Ressonância Magnética Nuclear Biomolecular , Sequência de Aminoácidos , Domínios Proteicos
15.
Virology ; 505: 127-138, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28242514

RESUMO

The portal vertex in dsDNA bacteriophage serves as the site for genome encapsidation and release. In several of these viruses, efficient termination of DNA packaging has been shown to be dependent on the density of packaged DNA. The portal protein has been implicated as being part of the sensor that regulates packaging termination through DNA-dependent conformational changes during packaging. The mechanism by which DNA induces these conformational changes remains unknown. In this study, we explore how point mutants in the portal core can result in changes in genome packaging density in P22. Mutations in the portal core that subtly alter the structure or dynamics of the protein result in an increase in the amount of DNA packaged. The magnitude of the change is amino acid and location specific. Our findings suggest a mechanism wherein compression of the portal core is an essential aspect of signal transmission during packaging.


Assuntos
Bacteriófago P22/genética , Proteínas do Capsídeo/metabolismo , Empacotamento do DNA/genética , DNA Viral/genética , Salmonella/genética , Montagem de Vírus/fisiologia , Bacteriófago P22/fisiologia , Conformação de Ácido Nucleico , Transdução de Sinais/genética
16.
Sci Adv ; 3(7): e1700423, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28782023

RESUMO

Most double-stranded DNA viruses package genetic material into empty precursor capsids (or procapsids) through a dodecameric portal protein complex that occupies 1 of the 12 vertices of the icosahedral lattice. Inhibiting incorporation of the portal complex prevents the formation of infectious virions, making this step an excellent target for antiviral drugs. The mechanism by which a sole portal assembly is selectively incorporated at the special vertex is unclear. We recently showed that, as part of the DNA packaging process for bacteriophage P22, the dodecameric procapsid portal changes conformation to a mature virion state. We report that preformed dodecameric rings of P22 portal protein, as opposed to portal monomers, incorporate into nascent procapsids, with preference for the procapsid portal conformation. Finally, a novel role for P22 scaffolding protein in triggering portal ring formation from portal monomers is elucidated and validated by incorporating de novo assembled portal rings into procapsids.


Assuntos
Bacteriófago P22/fisiologia , Proteínas do Capsídeo/metabolismo , Multimerização Proteica , Montagem de Vírus , Proteínas do Capsídeo/química , Modelos Moleculares , Conformação Proteica , Análise Espectral , Proteínas Virais/química , Proteínas Virais/metabolismo
17.
Nat Commun ; 8: 14310, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134243

RESUMO

Tailed bacteriophages and herpesviruses assemble infectious particles via an empty precursor capsid (or 'procapsid') built by multiple copies of coat and scaffolding protein and by one dodecameric portal protein. Genome packaging triggers rearrangement of the coat protein and release of scaffolding protein, resulting in dramatic procapsid lattice expansion. Here, we provide structural evidence that the portal protein of the bacteriophage P22 exists in two distinct dodecameric conformations: an asymmetric assembly in the procapsid (PC-portal) that is competent for high affinity binding to the large terminase packaging protein, and a symmetric ring in the mature virion (MV-portal) that has negligible affinity for the packaging motor. Modelling studies indicate the structure of PC-portal is incompatible with DNA coaxially spooled around the portal vertex, suggesting that newly packaged DNA triggers the switch from PC- to MV-conformation. Thus, we propose the signal for termination of 'Headful Packaging' is a DNA-dependent symmetrization of portal protein.


Assuntos
Bacteriófago P22/fisiologia , Proteínas do Capsídeo/química , Capsídeo/fisiologia , DNA Viral/fisiologia , Montagem de Vírus/fisiologia , Bacteriófago P22/ultraestrutura , Capsídeo/ultraestrutura , Proteínas do Capsídeo/fisiologia , Proteínas do Capsídeo/ultraestrutura , Cristalografia por Raios X , Empacotamento do DNA/fisiologia , DNA Viral/ultraestrutura , Endodesoxirribonucleases/metabolismo , Genoma Viral/fisiologia , Microscopia Eletrônica , Simulação de Acoplamento Molecular , Multimerização Proteica/fisiologia , Estrutura Quaternária de Proteína/fisiologia
18.
J Mol Biol ; 268(3): 655-65, 1997 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-9171289

RESUMO

The scaffolding protein of Salmonella typhimurium bacteriophage P22 is a 33.6 kDa protein required both in vivo and in vitro for the polymerization of the viral coat protein into closed T = 7 icosahedral procapsids. In vitro assembly reaction kinetics have previously been found to vary between second and third order with respect to scaffolding protein concentration, suggesting that dimers and/or higher-order oligomers may be the active species in assembly. Analytical ultracentrifugation experiments suggest that scaffolding protein undergoes a rapidly-reversible monomer/dimer/tetramer equilibrium, with higher association constants at 4 degrees C than at 20 degrees C. Under conditions in which in vitro assembly reactions are carried out (30 to 1000 microg/ml scaffolding protein, 20 degrees C), monomers are the predominant species, but the concentration of dimers is significant. A mutant scaffolding protein, R74C/L177I, which forms disulfide-linked dimers, catalyzed procapsid assembly at a higher rate than did the wild-type scaffolding protein; preincubation in dithiothreitol had little effect on the wild-type protein, but greatly reduced the activity of the mutant. These findings suggest that dimers and/or higher-order oligomers of scaffolding protein are active species in the assembly of P22.


Assuntos
Bacteriófago P22/química , Capsídeo/química , Conformação Proteica , Bacteriófago P22/fisiologia , Capsídeo/biossíntese , Cinética , Peso Molecular , Polímeros , Salmonella typhimurium/virologia , Ultracentrifugação , Montagem de Vírus/fisiologia
19.
J Mol Biol ; 297(5): 1195-202, 2000 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-10764583

RESUMO

Scaffolding proteins are required for high fidelity assembly of most high T number dsDNA viruses such as the large bacteriophages, and the herpesvirus family. They function by transiently binding and positioning the coat protein subunits during capsid assembly. In both bacteriophage P22 and the herpesviruses the extreme scaffold C terminus is highly charged, is predicted to be an amphipathic alpha-helix, and is sufficient to bind the coat protein, suggesting a common mode of action. NMR studies show that the coat protein-binding domain of P22 scaffolding protein exhibits a helix-loop-helix motif stabilized by a hydrophobic core. One face of the motif is characterized by a high density of positive charges that could interact with the coat protein through electrostatic interactions. Results from previous studies with a truncation fragment and the observed salt sensitivity of the assembly process are explained by the NMR structure.


Assuntos
Bacteriófago P22/química , Capsídeo/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/metabolismo , Sequência de Aminoácidos , Bacteriófago P22/fisiologia , Sequências Hélice-Alça-Hélice , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Eletricidade Estática , Ultracentrifugação , Montagem de Vírus
20.
J Mol Biol ; 306(3): 389-96, 2001 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-11178899

RESUMO

The dynamics of proteins within large cellular assemblies are important in the molecular transformations that are required for macromolecular synthesis, transport, and metabolism. The capsid expansion (maturation) accompanying DNA packaging in the dsDNA bacteriophage P22 represents an experimentally accessible case of such a transformation. A novel method, based on hydrogen-deuterium exchange was devised to investigate the dynamics of capsid expansion. Mass spectrometric detection of deuterium incorporation allows for a sensitive and quantitative determination of hydrogen-deuterium exchange dynamics irrespective of the size of the assembly. Partial digestion of the exchanged protein with pepsin allows for region-specific assignment of the exchange. Procapsids and mature capsids were probed under native and slightly denaturing conditions. These experiments revealed regions that exhibit different degrees of flexibility in the procapsid and in the mature capsid. In addition, exchange and deuterium trapping during the process of expansion itself was observed and allowed for the identification of segments of the protein subunit that become buried or stabilized as a result of expansion. This approach may help to identify residues participating in macromolecular transformations and uncover novel patterns and hierarchies of interactions that determine functional movements within molecular machines.


Assuntos
Bacteriófago P22/química , Capsídeo/química , Capsídeo/metabolismo , Deutério/metabolismo , Dobramento de Proteína , Montagem de Vírus , Sequência de Aminoácidos , Bacteriófago P22/fisiologia , Sítios de Ligação , Capsídeo/genética , Modelos Moleculares , Dados de Sequência Molecular , Pepsina A/metabolismo , Estrutura Quaternária de Proteína , Subunidades Proteicas , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA