Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Cell ; 180(4): 717-728.e19, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32084341

RESUMO

Consumption of glucosinolates, pro-drug-like metabolites abundant in Brassica vegetables, has been associated with decreased risk of certain cancers. Gut microbiota have the ability to metabolize glucosinolates, generating chemopreventive isothiocyanates. Here, we identify a genetic and biochemical basis for activation of glucosinolates to isothiocyanates by Bacteroides thetaiotaomicron, a prominent gut commensal species. Using a genome-wide transposon insertion screen, we identified an operon required for glucosinolate metabolism in B. thetaiotaomicron. Expression of BT2159-BT2156 in a non-metabolizing relative, Bacteroides fragilis, resulted in gain of glucosinolate metabolism. We show that isothiocyanate formation requires the action of BT2158 and either BT2156 or BT2157 in vitro. Monocolonization of mice with mutant BtΔ2157 showed reduced isothiocyanate production in the gastrointestinal tract. These data provide insight into the mechanisms by which a common gut bacterium processes an important dietary nutrient.


Assuntos
Bacteroides thetaiotaomicron/metabolismo , Carboidratos da Dieta/metabolismo , Glucosinolatos/metabolismo , Intestinos/microbiologia , Animais , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/patogenicidade , Regulação Bacteriana da Expressão Gênica , Humanos , Masculino , Camundongos , Óperon , Simbiose
2.
Proc Natl Acad Sci U S A ; 121(10): e2321910121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422018

RESUMO

Bacteroidota are abundant members of the human gut microbiota that shape the enteric landscape by modulating host immunity and degrading dietary- and host-derived glycans. These processes are mediated in part by Outer Membrane Vesicles (OMVs). Here, we developed a high-throughput screen to identify genes required for OMV biogenesis and its regulation in Bacteroides thetaiotaomicron (Bt). We identified a family of Dual membrane-spanning anti-sigma factors (Dma) that control OMV biogenesis. We conducted molecular and multiomic analyses to demonstrate that deletion of Dma1, the founding member of the Dma family, modulates OMV production by controlling the activity of the ECF21 family sigma factor, Das1, and its downstream regulon. Dma1 has a previously uncharacterized domain organization that enables Dma1 to span both the inner and outer membrane of Bt. Phylogenetic analyses reveal that this common feature of the Dma family is restricted to the phylum Bacteroidota. This study provides mechanistic insights into the regulation of OMV biogenesis in human gut bacteria.


Assuntos
Bacteroides thetaiotaomicron , Humanos , Bacteroides thetaiotaomicron/genética , Fator sigma , Filogenia
3.
Proc Natl Acad Sci U S A ; 121(6): e2311323121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38294941

RESUMO

Microbiota-centric interventions are limited by our incomplete understanding of the gene functions of many of its constituent species. This applies in particular to small RNAs (sRNAs), which are emerging as important regulators in microbiota species yet tend to be missed by traditional functional genomics approaches. Here, we establish CRISPR interference (CRISPRi) in the abundant microbiota member Bacteroides thetaiotaomicron for genome-wide sRNA screens. By assessing the abundance of different protospacer-adjacent motifs, we identify the Prevotella bryantii B14 Cas12a as a suitable nuclease for CRISPR screens in these bacteria and generate an inducible Cas12a expression system. Using a luciferase reporter strain, we infer guide design rules and use this knowledge to assemble a computational pipeline for automated gRNA design. By subjecting the resulting guide library to a phenotypic screen, we uncover the sRNA BatR to increase susceptibility to bile salts through the regulation of genes involved in Bacteroides cell surface structure. Our study lays the groundwork for unlocking the genetic potential of these major human gut mutualists and, more generally, for identifying hidden functions of bacterial sRNAs.


Assuntos
Bacteroides thetaiotaomicron , Pequeno RNA não Traduzido , Humanos , Bacteroides thetaiotaomicron/genética , RNA Guia de Sistemas CRISPR-Cas , Bile , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética
4.
Proc Natl Acad Sci U S A ; 120(39): e2311422120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37733741

RESUMO

Understanding how members of the human gut microbiota prioritize nutrient resources is one component of a larger effort to decipher the mechanisms defining microbial community robustness and resiliency in health and disease. This knowledge is foundational for development of microbiota-directed therapeutics. To model how bacteria prioritize glycans in the gut, germfree mice were colonized with 13 human gut bacterial strains, including seven saccharolytic Bacteroidaceae species. Animals were fed a Western diet supplemented with pea fiber. After community assembly, an inducible CRISPR-based system was used to selectively and temporarily reduce the absolute abundance of Bacteroides thetaiotaomicron or B. cellulosilyticus by 10- to 60-fold. Each knockdown resulted in specific, reproducible increases in the abundances of other Bacteroidaceae and dynamic alterations in their expression of genes involved in glycan utilization. Emergence of these "alternate consumers" was associated with preservation of community saccharolytic activity. Using an inducible system for CRISPR base editing in vitro, we disrupted translation of transporters critical for utilizing dietary polysaccharides in Phocaeicola vulgatus, a B. cellulosilyticus knockdown-responsive taxon. In vitro and in vivo tests of the resulting P. vulgatus mutants allowed us to further characterize mechanisms associated with its increased fitness after knockdown. In principle, the approach described can be applied to study utilization of a range of nutrients and to preclinical efforts designed to develop therapeutic strategies for precision manipulation of microbial communities.


Assuntos
Bacteroides thetaiotaomicron , Bacteroides , Humanos , Animais , Camundongos , Bacteroides/genética , Polissacarídeos , Bacteroides thetaiotaomicron/genética , Bioensaio , Dieta Ocidental
5.
Nature ; 570(7762): 462-467, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31158845

RESUMO

Individuals vary widely in their responses to medicinal drugs, which can be dangerous and expensive owing to treatment delays and adverse effects. Although increasing evidence implicates the gut microbiome in this variability, the molecular mechanisms involved remain largely unknown. Here we show, by measuring the ability of 76 human gut bacteria from diverse clades to metabolize 271 orally administered drugs, that many drugs are chemically modified by microorganisms. We combined high-throughput genetic analyses with mass spectrometry to systematically identify microbial gene products that metabolize drugs. These microbiome-encoded enzymes can directly and substantially affect intestinal and systemic drug metabolism in mice, and can explain the drug-metabolizing activities of human gut bacteria and communities on the basis of their genomic contents. These causal links between the gene content and metabolic activities of the microbiota connect interpersonal variability in microbiomes to interpersonal differences in drug metabolism, which has implications for medical therapy and drug development across multiple disease indications.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Microbioma Gastrointestinal/genética , Preparações Farmacêuticas/metabolismo , Animais , Bactérias/classificação , Bactérias/enzimologia , Bacteroides thetaiotaomicron/enzimologia , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/metabolismo , Diltiazem/metabolismo , Feminino , Microbioma Gastrointestinal/fisiologia , Genoma Bacteriano/genética , Vida Livre de Germes , Humanos , Masculino , Camundongos , Preparações Farmacêuticas/administração & dosagem , Especificidade por Substrato
6.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35145026

RESUMO

Bacteroides thetaiotaomicron is a gut symbiont that inhabits the mucus layer and adheres to and metabolizes food particles, contributing to gut physiology and maturation. Although adhesion and biofilm formation could be key features for B. thetaiotaomicron stress resistance and gut colonization, little is known about the determinants of B. thetaiotaomicron biofilm formation. We previously showed that the B. thetaiotaomicron reference strain VPI-5482 is a poor in vitro biofilm former. Here, we demonstrated that bile, a gut-relevant environmental cue, triggers the formation of biofilm in many B. thetaiotaomicron isolates and common gut Bacteroidales species. We determined that bile-dependent biofilm formation involves the production of the DNase BT3563 or its homologs, degrading extracellular DNA (eDNA) in several B. thetaiotaomicron strains. Our study therefore shows that, although biofilm matrix eDNA provides a biofilm-promoting scaffold in many studied Firmicutes and Proteobacteria, BT3563-mediated eDNA degradation is required to form B. thetaiotaomicron biofilm in the presence of bile.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides thetaiotaomicron/enzimologia , Bile/metabolismo , Biofilmes/crescimento & desenvolvimento , Desoxirribonucleases/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Bactérias/genética , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/fisiologia , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Desoxirribonucleases/genética , Regulação Enzimológica da Expressão Gênica/fisiologia
7.
Mol Microbiol ; 117(1): 67-85, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34379855

RESUMO

Bacteria employ noncoding RNA molecules for a wide range of biological processes, including scaffolding large molecular complexes, catalyzing chemical reactions, defending against phages, and controlling gene expression. Secondary structures, binding partners, and molecular mechanisms have been determined for numerous small noncoding RNAs (sRNAs) in model aerobic bacteria. However, technical hurdles have largely prevented analogous analyses in the anaerobic gut microbiota. While experimental techniques are being developed to investigate the sRNAs of gut commensals, computational tools and comparative genomics can provide immediate functional insight. Here, using Bacteroides thetaiotaomicron as a representative microbiota member, we illustrate how comparative genomics improves our understanding of RNA biology in an understudied gut bacterium. We investigate putative RNA-binding proteins and predict a Bacteroides cold-shock protein homolog to have an RNA-related function. We apply an in silico protocol incorporating both sequence and structural analysis to determine the consensus structures and conservation of nine Bacteroides noncoding RNA families. Using structure probing, we validate and refine these predictions and deposit them in the Rfam database. Through synteny analyses, we illustrate how genomic coconservation can serve as a predictor of sRNA function. Altogether, this work showcases the power of RNA informatics for investigating the RNA biology of anaerobic microbiota members.


Assuntos
Bacteroides thetaiotaomicron/genética , Bacteroides/genética , Microbioma Gastrointestinal , Regulação Bacteriana da Expressão Gênica , Genômica , Pequeno RNA não Traduzido/metabolismo , Proteínas de Bactérias , Bacteroides/metabolismo , Bacteroides thetaiotaomicron/metabolismo , Biologia Computacional , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sintenia
8.
BMC Biol ; 20(1): 285, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36527020

RESUMO

BACKGROUND: Ordered transposon-insertion collections, in which specific transposon-insertion mutants are stored as monocultures in a genome-scale collection, represent a promising tool for genetic dissection of human gut microbiota members. However, publicly available collections are scarce and the construction methodology remains in early stages of development. RESULTS: Here, we describe the assembly of a genome-scale ordered collection of transposon-insertion mutants in the model gut anaerobe Bacteroides thetaiotaomicron VPI-5482 that we created as a resource for the research community. We used flow cytometry to sort single cells from a pooled library, located mutants within this initial progenitor collection by applying a pooling strategy with barcode sequencing, and re-arrayed specific mutants to create a condensed collection with single-insertion strains covering >2500 genes. To demonstrate the potential of the condensed collection for phenotypic screening, we analyzed growth dynamics and cell morphology. We identified both growth defects and altered cell shape in mutants disrupting sphingolipid synthesis and thiamine scavenging. Finally, we analyzed the process of assembling the B. theta condensed collection to identify inefficiencies that limited coverage. We demonstrate as part of this analysis that the process of assembling an ordered collection can be accurately modeled using barcode sequencing data. CONCLUSION: We expect that utilization of this ordered collection will accelerate research into B. theta physiology and that lessons learned while assembling the collection will inform future efforts to assemble ordered mutant collections for an increasing number of gut microbiota members.


Assuntos
Bacteroides thetaiotaomicron , Humanos , Mutagênese Insercional , Bacteroides thetaiotaomicron/genética , Elementos de DNA Transponíveis , Biblioteca Gênica , Genoma Bacteriano
9.
J Lipid Res ; 63(7): 100236, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35667415

RESUMO

Bacterial sphingolipid synthesis is important for the fitness of gut commensal bacteria with an implied potential for regulating mammalian host physiology. Multiple steps in bacterial sphingolipid synthesis pathways have been characterized previously, with the first step of de novo sphingolipid synthesis being well conserved between bacteria and eukaryotes. In mammals, the subsequent step of de novo sphingolipid synthesis is catalyzed by 3-ketosphinganine reductase, but the protein responsible for this activity in bacteria has remained elusive. In this study, we analyzed the 3-ketosphinganine reductase activity of several candidate proteins in Bacteroides thetaiotaomicron chosen based on sequence similarity to the yeast 3-ketosphinganine reductase gene. We further developed a metabolomics-based 3-ketosphinganine reductase activity assay, which revealed that a gene at the locus BT_0972 encodes a protein capable of converting 3-ketosphinganine to sphinganine. Taken together, these results provide greater insight into pathways for bacterial sphingolipid synthesis that can aid in future efforts to understand how microbial sphingolipid synthesis modulates host-microbe interactions.


Assuntos
Bacteroides thetaiotaomicron , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/metabolismo , Mamíferos/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo
10.
Biochem Biophys Res Commun ; 614: 213-218, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35623108

RESUMO

Why oxygen ceases the growth of strictly anaerobic bacteria is a longstanding question, yet the answer remains unclear. Studies have confirmed that the dehydratase-fumarase containing an iron-sulfur cluster ([4Fe-4S]) is inactivated upon exposure to oxygen in the intestinal obligate anaerobe, Bacteroides thetaiotaomicron (B. thetaiotaomicron); this blocks fumarate respiration, which is the essential energy-producing pathway in anaerobes. Here, we substituted the [4Fe-4S]-dependent fumarase in B. thetaiotaomicron with an iron-free isozyme from E. coli (Ec-FumC). Results show that Ec-FumC successfully performed the catalytic function of fumarase in B. thetaiotaomicron, as the fum-mutant strain that expressed Ec-FumC exhibited succinate-producing ability under anaerobic growth conditions. Ec-FumC is oxygen-resistant and remains active to produce fumarate upon aeration; however, B. thetaiotaomicron mutant that expressed Ec-FumC did not convert fumarate to succinate during air exposure. Biochemical assays of inverted membrane vesicles from wild-type B. thetaiotaomicron confirmed that the electron flux from NADH to fumarate was less efficient in the presence of air as compared to that without oxygen. Our findings suggest that the anaerobic fumarate respiration might be paralyzed due to electron dissipations upon aeration of the obligate anaerobe.


Assuntos
Bacteroides thetaiotaomicron , Bactérias Anaeróbias/metabolismo , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/metabolismo , Elétrons , Escherichia coli/metabolismo , Fumarato Hidratase/genética , Fumaratos , Ferro/metabolismo , Oxigênio/metabolismo , Respiração , Ácido Succínico
11.
J Bacteriol ; 203(21): e0038321, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34370557

RESUMO

The last two decades have seen numerous studies connecting physiological behaviors in Bacteroides-including polysaccharide degradation and capsule production-with elements of global regulation, but a complete model is still elusive. A new study by Adams et al. in this issue of the Journal of Bacteriology reveals another layer of regulation by describing a novel family of RNA-binding proteins in Bacteroides thetaiotaomicron that modify expression of genes involved in carbohydrate utilization and capsule expression, among others (A. N. D. Adams, M. S. Azam, Z. A. Costliow, X. Ma, et al., J Bacteriol 203:e00217-21, 2021, https://doi.org/10.1128/JB.00217-21).


Assuntos
Bacteroides thetaiotaomicron , Bacteroides , Bacteroides/genética , Bacteroides thetaiotaomicron/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Polissacarídeos , RNA
12.
J Bacteriol ; 203(21): e0021721, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34251866

RESUMO

Human gut microbiome composition is constantly changing, and diet is a major driver of these changes. Gut microbial species that persist in mammalian hosts for long periods of time must possess mechanisms for sensing and adapting to nutrient shifts to avoid being outcompeted. Global regulatory mechanisms mediated by RNA-binding proteins (RBPs) that govern responses to nutrient shifts have been characterized in Proteobacteria and Firmicutes but remain undiscovered in the Bacteroidetes. Here, we report the identification of RBPs that are broadly distributed across the Bacteroidetes, with many genomes encoding multiple copies. Genes encoding these RBPs are highly expressed in many Bacteroides species. A purified RBP, RbpB, from Bacteroides thetaiotaomicron binds to single-stranded RNA in vitro with an affinity similar to other characterized regulatory RBPs. B. thetaiotaomicron mutants lacking RBPs show dramatic shifts in expression of polysaccharide utilization and capsular polysaccharide loci, suggesting that these RBPs may act as global regulators of polysaccharide metabolism. A B. thetaiotaomicron ΔrbpB mutant shows a growth defect on dietary sugars belonging to the raffinose family of oligosaccharides (RFOs). The ΔrbpB mutant had reduced expression of BT1871, encoding a predicted RFO-degrading melibiase, compared to the wild-type strain. Mutation of BT1871 confirmed that the enzyme it encodes is essential for growth on melibiose and promotes growth on the RFOs raffinose and stachyose. Our data reveal that RbpB is required for optimal expression of BT1871 and other polysaccharide-related genes, suggesting that we have identified an important new family of global regulatory proteins in the Bacteroidetes. IMPORTANCE The human colon houses hundreds of bacterial species, including many belonging to the genus Bacteroides, that aid in breaking down our food to keep us healthy. Bacteroides have many genes responsible for breaking down different dietary carbohydrates, and complex regulatory mechanisms ensure that specific genes are only expressed when the right carbohydrates are available. In this study, we discovered that Bacteroides use a family of RNA-binding proteins as global regulators to coordinate expression of carbohydrate utilization genes. The ability to turn different carbohydrate utilization genes on and off in response to changing nutrient conditions is critical for Bacteroides to live successfully in the gut, and thus the new regulators we have identified may be important for life in the host.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides thetaiotaomicron/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Polissacarídeos Bacterianos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Bactérias/genética , Bacteroides thetaiotaomicron/genética , Humanos , Proteínas de Ligação a RNA/genética
13.
Microbiology (Reading) ; 167(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34224345

RESUMO

Capsular polysaccharides (CPSs) protect bacteria from host and environmental factors. Many bacteria can express different CPSs and these CPSs are phase variable. For example, Bacteroides thetaiotaomicron (B. theta) is a prominent member of the human gut microbiome and expresses eight different capsular polysaccharides. Bacteria, including B. theta, have been shown to change their CPSs to adapt to various niches such as immune, bacteriophage, and antibiotic perturbations. However, there are limited tools to study CPSs and fundamental questions regarding phase variance, including if gut bacteria can express more than one capsule at the same time, remain unanswered. To better understand the roles of different CPSs, we generated a B. theta CPS1-specific antibody and a flow cytometry assay to detect CPS expression in individual bacteria in the gut microbiota. Using these novel tools, we report for the first time that bacteria can simultaneously express multiple CPSs. We also observed that nutrients such as glucose and salts had no effect on CPS expression. The ability to express multiple CPSs at the same time may provide bacteria with an adaptive advantage to thrive amid changing host and environmental conditions, especially in the intestine.


Assuntos
Cápsulas Bacterianas/metabolismo , Bacteroides thetaiotaomicron/metabolismo , Polissacarídeos Bacterianos/biossíntese , Cápsulas Bacterianas/genética , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/crescimento & desenvolvimento , Microbioma Gastrointestinal , Humanos
14.
Proc Natl Acad Sci U S A ; 115(14): E3266-E3275, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29559534

RESUMO

It has been unclear whether superoxide and/or hydrogen peroxide play important roles in the phenomenon of obligate anaerobiosis. This question was explored using Bacteroides thetaiotaomicron, a major fermentative bacterium in the human gastrointestinal tract. Aeration inactivated two enzyme families-[4Fe-4S] dehydratases and nonredox mononuclear iron enzymes-whose homologs, in contrast, remain active in aerobic Escherichia coli Inactivation-rate measurements of one such enzyme, B. thetaiotaomicron fumarase, showed that it is no more intrinsically sensitive to oxidants than is an E. coli fumarase. Indeed, when the E. coli enzymes were expressed in B. thetaiotaomicron, they no longer could tolerate aeration; conversely, the B. thetaiotaomicron enzymes maintained full activity when expressed in aerobic E. coli Thus, the aerobic inactivation of the B. thetaiotaomicron enzymes is a feature of their intracellular environment rather than of the enzymes themselves. B. thetaiotaomicron possesses superoxide dismutase and peroxidases, and it can repair damaged enzymes. However, measurements confirmed that the rate of reactive oxygen species production inside aerated B. thetaiotaomicron is far higher than in E. coli Analysis of the damaged enzymes recovered from aerated B. thetaiotaomicron suggested that they had been inactivated by superoxide rather than by hydrogen peroxide. Accordingly, overproduction of superoxide dismutase substantially protected the enzymes from aeration. We conclude that when this anaerobe encounters oxygen, its internal superoxide levels rise high enough to inactivate key catabolic and biosynthetic enzymes. Superoxide thus comprises a major element of the oxygen sensitivity of this anaerobe. The extent to which molecular oxygen exerts additional direct effects remains to be determined.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides thetaiotaomicron/metabolismo , Escherichia coli/metabolismo , Oxigênio/metabolismo , Superóxidos/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Bacteroides thetaiotaomicron/genética , Escherichia coli/genética , Estresse Oxidativo
15.
J Biol Chem ; 294(19): 7711-7721, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30877196

RESUMO

The metabolism of carbohydrate polymers drives microbial diversity in the human gut microbiome. The selection pressures in this environment have spurred the evolution of a complex reservoir of microbial genes encoding carbohydrate-active enzymes (CAZymes). Previously, we have shown that the human gut bacterium Bacteroides thetaiotaomicron (Bt) can depolymerize the most structurally complex glycan, the plant pectin rhamnogalacturonan II (RGII), commonly found in the human diet. Previous investigation of the RGII-degrading apparatus in Bt identified BT0997 as a new CAZyme family, classified as glycoside hydrolase 138 (GH138). The mechanism of substrate recognition by GH138, however, remains unclear. Here, using synthetic substrates and biochemical assays, we show that BT0997 targets the d-galacturonic acid-α-1,2-l-rhamnose linkage in chain A of RGII and that it absolutely requires the presence of a second d-galacturonic acid side chain (linked ß-1,3 to l-rhamnose) for activity. NMR analysis revealed that BT0997 operates through a double displacement retaining mechanism. We also report the crystal structure of a BT0997 homolog, BPA0997 from Bacteroides paurosaccharolyticus, in complex with ligands at 1.6 Å resolution. The structure disclosed that the enzyme comprises four domains, including a catalytic TIM (α/ß)8 barrel. Characterization of several BT0997 variants identified Glu-294 and Glu-361 as the catalytic acid/base and nucleophile, respectively, and we observed a chloride ion close to the active site. The three-dimensional structure and bioinformatic analysis revealed that two arginines, Arg-332 and Arg-521, are key specificity determinants of BT0997 in targeting d-galacturonic acid residues. In summary, our study reports the first structural and mechanistic analyses of GH138 enzymes.


Assuntos
Proteínas de Bactérias/química , Bacteroides thetaiotaomicron/enzimologia , Glicosídeo Hidrolases/química , Ácidos Hexurônicos/química , Proteínas de Bactérias/genética , Bacteroides thetaiotaomicron/genética , Domínio Catalítico , Cristalografia por Raios X , Glicosídeo Hidrolases/genética , Relação Estrutura-Atividade , Especificidade por Substrato
16.
Nucleic Acids Res ; 46(D1): D516-D521, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30053267

RESUMO

Carbohydrate-active enzyme (CAZymes) are not only the most important enzymes for bioenergy and agricultural industries, but also very important for human health, in that human gut microbiota encode hundreds of CAZyme genes in their genomes for degrading various dietary and host carbohydrates. We have built an online database dbCAN-seq (http://cys.bios.niu.edu/dbCAN_seq) to provide pre-computed CAZyme sequence and annotation data for 5,349 bacterial genomes. Compared to the other CAZyme resources, dbCAN-seq has the following new features: (i) a convenient download page to allow batch download of all the sequence and annotation data; (ii) an annotation page for every CAZyme to provide the most comprehensive annotation data; (iii) a metadata page to organize the bacterial genomes according to species metadata such as disease, habitat, oxygen requirement, temperature, metabolism; (iv) a very fast tool to identify physically linked CAZyme gene clusters (CGCs) and (v) a powerful search function to allow fast and efficient data query. With these unique utilities, dbCAN-seq will become a valuable web resource for CAZyme research, with a focus complementary to dbCAN (automated CAZyme annotation server) and CAZy (CAZyme family classification and reference database).


Assuntos
Aspergillus oryzae/genética , Proteínas de Bactérias/genética , Bacteroides thetaiotaomicron/genética , Carboidratos/química , Bases de Dados Genéticas , Escherichia coli/genética , Genoma Bacteriano , Arabidopsis/microbiologia , Aspergillus oryzae/enzimologia , Proteínas de Bactérias/metabolismo , Bacteroides thetaiotaomicron/enzimologia , Sequência de Bases , Biotransformação/genética , Escherichia coli/enzimologia , Microbioma Gastrointestinal/genética , Humanos , Internet , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Família Multigênica , Software
17.
Proc Natl Acad Sci U S A ; 114(19): 4936-4941, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28396425

RESUMO

The human gut microbiota use complex carbohydrates as major nutrients. The requirement for an efficient glycan degrading systems exerts a major selection pressure on this microbial community. Thus, we propose that these bacteria represent a substantial resource for discovering novel carbohydrate active enzymes. To test this hypothesis, we focused on enzymes that hydrolyze rhamnosidic bonds, as cleavage of these linkages is chemically challenging and there is a paucity of information on l-rhamnosidases. Here we screened the activity of enzymes derived from the human gut microbiota bacterium Bacteroides thetaiotaomicron, which are up-regulated in response to rhamnose-containing glycans. We identified an α-l-rhamnosidase, BT3686, which is the founding member of a glycoside hydrolase (GH) family, GH145. In contrast to other rhamnosidases, BT3686 cleaved l-Rha-α1,4-d-GlcA linkages through a retaining double-displacement mechanism. The crystal structure of BT3686 showed that the enzyme displayed a type A seven-bladed ß-propeller fold. Mutagenesis and crystallographic studies, including the structure of BT3686 in complex with the reaction product GlcA, revealed a location for the active site among ß-propeller enzymes cited on the posterior surface of the rhamnosidase. In contrast to the vast majority of GH, the catalytic apparatus of BT3686 does not comprise a pair of carboxylic acid residues but, uniquely, a single histidine functions as the only discernable catalytic amino acid. Intriguingly, the histidine, His48, is not invariant in GH145; however, when engineered into structural homologs lacking the imidazole residue, α-l-rhamnosidase activity was established. The potential contribution of His48 to the catalytic activity of BT3686 is discussed.


Assuntos
Proteínas de Bactérias/química , Bacteroides thetaiotaomicron/enzimologia , Glicosídeo Hidrolases/química , Proteínas de Bactérias/genética , Bacteroides thetaiotaomicron/genética , Cristalografia por Raios X , Glicosídeo Hidrolases/genética , Humanos , Mutagênese
18.
J Bacteriol ; 201(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30782639

RESUMO

Removal of one acyl chain from bacterial lipid A by deacylase activity is a mechanism used by many pathogenic bacteria to evade the host's Toll-like receptor 4 (TLR4)-mediated innate immune response. In Porphyromonas gingivalis, a periodontal pathogen, lipid A deacylase activity converts a majority of the initially synthesized penta-acylated lipid A, a TLR4 agonist, to tetra-acylated structures, which effectively evade TLR4 sensing by being either inert or antagonistic at TLR4. In this paper, we report successful identification of the gene that encodes the P. gingivalis lipid A deacylase enzyme. This gene, PGN_1123 in P. gingivalis 33277, is highly conserved within P. gingivalis, and putative orthologs are phylogenetically restricted to the Bacteroidetes phylum. Lipid A of ΔPGN_1123 mutants is penta-acylated and devoid of tetra-acylated structures, and the mutant strain provokes a strong TLR4-mediated proinflammatory response, in contrast to the negligible response elicited by wild-type P. gingivalis Heterologous expression of PGN_1123 in Bacteroides thetaiotaomicron promoted lipid A deacylation, confirming that PGN_1123 encodes the lipid A deacylase enzyme.IMPORTANCE Periodontitis, commonly referred to as gum disease, is a chronic inflammatory condition that affects a large proportion of the population. Porphyromonas gingivalis is a bacterium closely associated with periodontitis, although how and if it is a cause for the disease are not known. It has a formidable capacity to dampen the host's innate immune response, enabling its persistence in diseased sites and triggering microbial dysbiosis in animal models of infection. P. gingivalis is particularly adept at evading the host's TLR4-mediated innate immune response by modifying the structure of lipid A, the TLR4 ligand. In this paper, we report identification of the gene encoding lipid A deacylase, a key enzyme that modifies lipid A to TLR4-evasive structures.


Assuntos
Proteínas de Bactérias/genética , Hidrolases de Éster Carboxílico/genética , Regulação Bacteriana da Expressão Gênica , Evasão da Resposta Imune/genética , Lipídeo A/química , Porphyromonas gingivalis/genética , Receptor 4 Toll-Like/genética , Carga Bacteriana , Proteínas de Bactérias/metabolismo , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Linhagem Celular , Sequência Conservada , Células HEK293 , Humanos , Lipídeo A/imunologia , Monócitos/imunologia , Monócitos/microbiologia , Porphyromonas gingivalis/metabolismo , Receptor 4 Toll-Like/imunologia
19.
Mol Microbiol ; 108(5): 551-566, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29528148

RESUMO

The Bacteroides thetaiotaomicron starch utilization system (Sus) is a model system for nutrient acquisition by gut Bacteroidetes, a dominant phylum of gut bacteria. The Sus includes SusCDEFG, which assemble on the cell surface to capture, degrade and import starch. While SusD is an essential starch-binding protein, the precise role(s) of the partially homologous starch-binding proteins SusE and SusF has remained elusive. We previously reported that a non-binding version of SusD (SusD*) supports growth on starch when other members of the multi-protein complex are present. Here we demonstrate that SusE supports SusD* growth on maltooligosaccharides, and determine the domains of SusE essential for this function. Furthermore, we demonstrate that SusE does not need to bind starch to support growth in the presence of SusD*, suggesting that the assembly of SusCDE is most important for maltooligosaccharide uptake in this context. However, starch binding by proteins SusDEF directs the uptake of maltooligosaccharides of specific lengths, suggesting that these proteins equip the cell to scavenge a range of starch fragments. These data demonstrate that the assembly of core Sus proteins SusCDE is secondary to their glycan binding roles, but glycan binding by Sus proteins may fine tune the selection of glycans from the environment.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacteroides thetaiotaomicron/fisiologia , Amido/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Bacteroides thetaiotaomicron/genética , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Clin Exp Immunol ; 196(3): 287-304, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30985006

RESUMO

Plague caused by the Gram-negative bacterium, Yersinia pestis, is still endemic in parts of the world today. Protection against pneumonic plague is essential to prevent the development and spread of epidemics. Despite this, there are currently no licensed plague vaccines in the western world. Here we describe the means of delivering biologically active plague vaccine antigens directly to mucosal sites of plague infection using highly stable microvesicles (outer membrane vesicles; OMVs) that are naturally produced by the abundant and harmless human commensal gut bacterium Bacteroides thetaiotaomicron (Bt). Bt was engineered to express major plague protective antigens in its OMVs, specifically Fraction 1 (F1) in the outer membrane and LcrV (V antigen) in the lumen, for targeted delivery to the gastrointestinal (GI) and respiratory tracts in a non-human primate (NHP) host. Our key findings were that Bt OMVs stably expresses F1 and V plague antigens, particularly the V antigen, in the correct, immunogenic form. When delivered intranasally V-OMVs elicited substantive and specific immune and antibody responses, both in the serum [immunoglobulin (Ig)G] and in the upper and lower respiratory tract (IgA); this included the generation of serum antibodies able to kill plague bacteria. Our results also showed that Bt OMV-based vaccines had many desirable characteristics, including: biosafety and an absence of any adverse effects, pathology or gross alteration of resident microbial communities (microbiotas); high stability and thermo-tolerance; needle-free delivery; intrinsic adjuvanticity; the ability to stimulate both humoral and cell-mediated immune responses; and targeting of primary sites of plague infection.


Assuntos
Antígenos de Bactérias/metabolismo , Membrana Externa Bacteriana/metabolismo , Bacteroides thetaiotaomicron/metabolismo , Vacina contra a Peste/imunologia , Peste/imunologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Vesículas Transportadoras/imunologia , Yersinia pestis/fisiologia , Administração Intranasal , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Bacteroides thetaiotaomicron/genética , Bioengenharia , Morte Celular , Células Cultivadas , Microbioma Gastrointestinal/genética , Humanos , Imunidade Celular , Imunidade Humoral , Imunoglobulina A/metabolismo , Imunoglobulina G/sangue , Macaca , Peste/prevenção & controle , Vacina contra a Peste/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Vesículas Transportadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA