Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Appl Toxicol ; 44(7): 1005-1013, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38462915

RESUMO

Acute pancreatitis represents an inflammatory disease featuring pancreatic necrosis and inflammation. Inflammatory injury of pancreatic acinar cells (PACs) is critically involved in the initiation and progression of acute pancreatitis. Pyroptosis, a new kind of programmed cell death concomitant with a low-grade inflammatory reaction, plays a function in acute pancreatitis pathology. It is unclear whether saikosaponin d (SSd), a pharmacologically active natural product, could protect PACs by regulating pyroptosis. Here, we established a PAC injury model in vitro using cerulein to treat AR42J cells. SSd restored viability and proliferation and lowered the release of pancreatic enzymes and inflammatory interleukins in cerulein-treated AR42J cells. Cerulein-induced pyroptosis was evidenced by typical ultrastructural changes and NLRP3/caspase-1 activation in AR42J cells, but SSd attenuated cerulein-induced pyroptosis and inhibited NLRP3/caspase-1 pathway. Mechanically, SSd reduced mitochondrial damage and mtDNA release, and blocked cGAS-STING signaling in AR42J cells treated with cerulein, contributing to the inhibition of NLRP3-mediated pyroptosis. Furthermore, SSd abolished cerulein-elevated oxidative stress in AR42J cells, leading to the mitigation of mitochondrial damage and inhibition of cGAS-STING signaling and pyroptosis. In conclusion, SSd protected PACs against cerulein-induced pyroptosis by alleviating mitochondrial damage and inhibiting the cGAS-STING pathway, and it could be a therapeutic candidate for acute pancreatitis.


Assuntos
Células Acinares , Ceruletídeo , Mitocôndrias , Ácido Oleanólico , Piroptose , Saponinas , Transdução de Sinais , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Saponinas/farmacologia , Piroptose/efeitos dos fármacos , Ceruletídeo/toxicidade , Animais , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Linhagem Celular , Pancreatite/induzido quimicamente , Pancreatite/prevenção & controle , Pancreatite/tratamento farmacológico , Pancreatite/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Substâncias Protetoras/farmacologia
2.
Discov Med ; 36(185): 1162-1168, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38926102

RESUMO

BACKGROUND: Atypical acinar cell foci (AACF) seen in pancreatic cancer are fatal and have been studied with some causative agents. However, for the first time, the effect of acetylsalicylic acid with nitric oxide (NO-ASA) on AACF was examined in this study. Although NO-ASA has very successful inhibitory effects against some types of cancer, it has not been investigated whether they can exert their inhibition effects on AACFs. METHODS: For experimental purposes, 21 14-day-old male Wistar albino rats were used. Azaserine (30 mg/kg) was dissolved in 0.9% NaCl solution and injected intraperitoneally (i.p.) into 14 rats, except for the Control group (Cont) rats, for three weeks. Rats that were injected with azaserine once a week for three weeks and those that did not receive treatment were divided into experimental groups. 15 days after the end of the azaserine injection protocol, NO-ASA was applied to azaserine with NO-ASA (Az+NO-ASA) group rats three consecutive times with an interval of 15 days by gavage. At the end of the 5-month period, pancreatic tissue was dissected and weighed. Pancreas preparations prepared from histological sections were examined for AACF burden and analyzed via a video image analyzer. One-way analysis of variance (ANOVA) non-parametric statistical analyses were performed to test whether there was a difference between the averages of the experimental and Control groups. RESULTS: AACF burden in both groups injected with azaserine was found to be statistically significant in all categories compared to that of the Control group (p < 0.05). The average Calculated Estimated average AACF volume (mm3) values, the Calculated estimated average AACF diameter (µm), the Estimated average number of AACF per unit volume, AACF rate as a % of Calculated Organ Volume were higher in the AzCont group rats than in the Az+NO-ASA group, when compared, and there was an important level statistical difference between the groups (p < 0.05). It was determined that for all parameters AACFs load in Az+NO-ASA group rats were significantly reduced compared to that of AzCont group rats (p < 0.05). CONCLUSIONS: We observed that, as a result of the NO-ASA application, the experimental AACF focus ratio created by azaserine injection was significantly inhibited. The inhibitory effect of AACFs in Az+NO-ASA group rats may have resulted from the significant and independent chemopreventive and/or chemotherapeutic activity of NO-ASA against exocrine pancreatic AACF foci.


Assuntos
Células Acinares , Aspirina , Óxido Nítrico , Pâncreas Exócrino , Neoplasias Pancreáticas , Ratos Wistar , Animais , Masculino , Aspirina/farmacologia , Aspirina/uso terapêutico , Aspirina/administração & dosagem , Óxido Nítrico/metabolismo , Ratos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Células Acinares/efeitos dos fármacos , Células Acinares/patologia , Células Acinares/metabolismo , Pâncreas Exócrino/efeitos dos fármacos , Pâncreas Exócrino/patologia
3.
Biochem Pharmacol ; 225: 116279, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740221

RESUMO

Berberine, a natural isoquinoline alkaloid, exhibits a variety of pharmacological effects, but the pharmacological targets and mechanisms remain elusive. Here, we report a novel finding that berberine inhibits acetylcholine (ACh)-induced intracellular Ca2+ oscillations, mediated through an inhibition of the muscarinic subtype 3 (M3) receptor. Patch-clamp recordings and confocal Ca2+ imaging were applied to acute dissociated pancreatic acinar cells prepared from CD1 mice to examine the effects of berberine on ACh-induced Ca2+ oscillations. Whole-cell patch-clamp recordings showed that berberine (from 0.1 to 10 µM) reduced ACh-induced Ca2+ oscillations in a concentration-dependent manner, and this inhibition also depended on ACh concentrations. The inhibitory effect of berberine neither occurred in intracellular targets nor extracellular cholecystokinin (CCK) receptors, chloride (Cl-) channels, and store-operated Ca2+ channels. Together, the results demonstrate that berberine directly inhibits the muscarinic M3 receptors, further confirmed by evidence of the interaction between berberine and M3 receptors in pancreatic acinar cells.


Assuntos
Células Acinares , Berberina , Sinalização do Cálcio , Receptor Muscarínico M3 , Animais , Berberina/farmacologia , Receptor Muscarínico M3/metabolismo , Receptor Muscarínico M3/antagonistas & inibidores , Camundongos , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Masculino , Acetilcolina/metabolismo , Cálcio/metabolismo , Relação Dose-Resposta a Droga
4.
ACS Nano ; 18(29): 19283-19302, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38990194

RESUMO

Developing strategies to target injured pancreatic acinar cells (PACs) in conjunction with primary pathophysiology-specific pharmacological therapy presents a challenge in the management of acute pancreatitis (AP). We designed and synthesized a trypsin-cleavable organosilica precursor bridged by arginine-based amide bonds, leveraging trypsin's ability to selectively identify guanidino groups on arginine via Asp189 at the active S1 pocket and cleave the carboxy-terminal (C-terminal) amide bond via catalytic triads. The precursors were incorporated into the framework of mesoporous silica nanoparticles (MSNs) for encapsulating the membrane-permeable Ca2+ chelator BAPTA-AM with a high loading content (∼43.9%). Mesenchymal stem cell membrane coating and surface modification with PAC-targeting ligands endow MSNs with inflammation recruitment and precise PAC-targeting abilities, resulting in the highest distribution at 3 h in the pancreas with 4.7-fold more accumulation than that of naked MSNs. The outcomes transpired as follows: After bioinspired MSNs' skeleton biodegradation by prematurely and massively activated trypsin, BAPTA-AM was on-demand released in injured PACs, thereby effectively eliminating intracellular calcium overload (reduced Ca2+ level by 81.3%), restoring cellular redox status, blocking inflammatory cascades, and inhibiting cell necrosis by impeding the IκBα/NF-κB/TNF-α/IL-6 and CaMK-II/p-RIP3/p-MLKL/caspase-8,9 signaling pathways. In AP mice, a single dose of the formulation significantly restored pancreatic function (lipase and amylase reduced more by 60%) and improved the survival rate from 50 to 91.6%. The formulation offers a potentially effective strategy for clinical translation in AP treatment.


Assuntos
Pancreatite , Tripsina , Animais , Pancreatite/tratamento farmacológico , Pancreatite/patologia , Pancreatite/metabolismo , Tripsina/metabolismo , Tripsina/química , Camundongos , Porosidade , Nanomedicina , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Nanopartículas/química , Dióxido de Silício/química , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Masculino , Humanos , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Camundongos Endogâmicos C57BL
5.
Naunyn Schmiedebergs Arch Pharmacol ; 397(8): 5989-5999, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38376541

RESUMO

Ferroptosis, characterized by lipid peroxidation, plays a significant role in the pathogenesis of acute pancreatitis (AP). While sterol O-acyltransferase 2 (Soat2) is known for its crucial regulatory role in cholesterol homeostasis, its involvement in the development of AP remains unreported. We conducted this study to identify the pivotal role of Soat2 in AP using transcriptomic databases. Subsequently, we confirmed its alterations through both in vitro and in vivo experimental models. Furthermore, we performed intervention with the Soat2 inhibitor avasimibe to evaluate pancreatic tissue pathology and serum enzymatic levels and observe inflammatory cell infiltration through immunohistochemistry. Additionally, changes in indicators related to ferroptosis were also observed. The results showed that in the AP mouse model, the protein and mRNA levels of Soat2 were significantly increased. Following avasimibe administration, there was a decrease in serum amylase levels, reduction in pancreatic tissue pathological damage, and attenuation of inflammatory cell infiltration. Furthermore, avasimibe administration resulted in downregulation of ferroptosis-related indicators. In conclusion, our findings suggest that the Soat2 inhibitor avasimibe protects against AP in mice through inhibition of the ferroptosis.


Assuntos
Células Acinares , Ferroptose , Pancreatite , Esterol O-Aciltransferase , Animais , Ferroptose/efeitos dos fármacos , Pancreatite/tratamento farmacológico , Pancreatite/patologia , Pancreatite/metabolismo , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Masculino , Camundongos , Esterol O-Aciltransferase/antagonistas & inibidores , Esterol O-Aciltransferase/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Pâncreas/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Humanos
6.
ACS Nano ; 18(18): 11778-11803, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38652869

RESUMO

Severe acute pancreatitis (AP) is a life-threatening pancreatic inflammatory disease with a high mortality rate (∼40%). Existing pharmaceutical therapies in development or in clinical trials showed insufficient treatment efficacy due to their single molecular therapeutic target, poor water solubility, short half-life, limited pancreas-targeting specificity, etc. Herein, acid-responsive hollow mesoporous Prussian blue nanoparticles wrapped with neutrophil membranes and surface modified with the N,N-dimethyl-1,3-propanediamine moiety were developed for codelivering membrane-permeable calcium chelator BAPTA-AM (BA) and trypsin activity inhibitor gabexate mesylate (Ga). In the AP mouse model, the formulation exhibited efficient recruitment at the inflammatory endothelium, trans-endothelial migration, and precise acinar cell targeting, resulting in rapid pancreatic localization and higher accumulation. A single low dose of the formulation (BA: 200 µg kg-1, Ga: 0.75 mg kg-1) significantly reduced pancreas function indicators to close to normal levels at 24 h, effectively restored the cell redox status, reduced apoptotic cell proportion, and blocked the systemic inflammatory amplified cascade, resulting in a dramatic increase in the survival rate from 58.3 to even 100%. Mechanistically, the formulation inhibited endoplasmic reticulum stress (IRE1/XBP1 and ATF4/CHOP axis) and restored impaired autophagy (Beclin-1/p62/LC3 axis), thereby preserving dying acinar cells and restoring the cellular "health status". This formulation provides an upstream therapeutic strategy with clinical translation prospects for AP management through synergistic ion homeostasis regulation and pancreatic autodigestion inhibition.


Assuntos
Células Acinares , Cálcio , Homeostase , Nanomedicina , Pancreatite , Animais , Pancreatite/tratamento farmacológico , Pancreatite/patologia , Pancreatite/metabolismo , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Camundongos , Homeostase/efeitos dos fármacos , Cálcio/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/metabolismo , Nanopartículas/química , Pâncreas/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Humanos
7.
ACS Nano ; 18(21): 13885-13898, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38757565

RESUMO

Severe acute pancreatitis (SAP), characterized by pancreatic acinar cell death, currently lacks effective targeted therapies. Ellagic acid (EA), rich in pomegranate, shows promising anti-inflammatory and antioxidant effects in SAP treatment. However, the roles of other forms of EA, such as plant extracellular vesicles (EVs) extracted from pomegranate, and Urolithin A (UA), converted from EA through gut microbiota metabolism in vivo, have not been definitively elucidated. Our research aimed to compare the effects of pomegranate-derived EVs (P-EVs) and UA in the treatment of SAP to screen an effective formulation and to explore its mechanisms in protecting acinar cells in SAP. By comparing the protective effects of P-EVs and UA on injured acinar cells, UA showed superior therapeutic effects than P-EVs. Subsequently, we further discussed the mechanism of UA in alleviating SAP inflammation. In vivo animal experiments found that UA could not only improve the inflammatory environment of pancreatic tissue and peripheral blood circulation in SAP mice but also revealed that the mechanism of UA in improving SAP might be related to mitochondria and endoplasmic reticulum (ER) through the results including pancreatic tissue transcriptomics and transmission electron microscopy. Further research found that UA could regulate ER-mitochondrial calcium channels and reduce pancreatic tissue necroptosis. In vitro experiments of mouse pancreatic organoids and acinar cells also confirmed that UA could improve pancreatic inflammation by regulating the ER-mitochondrial calcium channel and necroptosis pathway proteins. This study not only explored the therapeutic effect of plant EVs on SAP but also revealed that UA could alleviate SAP by regulating ER-mitochondrial calcium channel and reducing acinar cell necroptosis, providing insights into the pathogenesis and potential treatment of SAP.


Assuntos
Cumarínicos , Retículo Endoplasmático , Mitocôndrias , Pancreatite , Animais , Cumarínicos/farmacologia , Cumarínicos/química , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Pancreatite/patologia , Camundongos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Canais de Cálcio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Punica granatum/química , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química
8.
Toxicol Sci ; 199(1): 120-131, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38407484

RESUMO

The effect of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a persistent environmental pollutant commonly used as a flame retardant in various consumer products, on pancreatitis has not been clearly elucidated, although it has been reported to be toxic to the liver, nervous system, and reproductive system. Acute pancreatitis (AP) and chronic pancreatitis (CP) models were induced in this study by intraperitoneal injection of caerulein. The aim was to investigate the impact of BDE-47 on pancreatitis by exposing the animals to acute (1 week) or chronic (8 weeks) doses of BDE-47 (30 mg/kg in the low-concentration group and 100 mg/kg in the high-concentration group). Additionally, BDE-47 was utilized to stimulate mouse bone marrow-derived macrophages, pancreatic primary stellate cells, and acinar cells in order to investigate the impact of BDE-47 on pancreatitis. In vivo experiments conducted on mice revealed that chronic exposure to BDE-47, rather than acute exposure, exacerbated the histopathological damage of AP and CP, leading to elevated fibrosis in pancreatic tissue and increased infiltration of inflammatory cells in the pancreas. In vitro experiments showed that BDE-47 can promote the expression of the inflammatory cytokines Tnf-α and Il-6 in M1 macrophages, as well as promote acinar cell apoptosis through the activation of the PERK and JNK pathways via endoplasmic reticulum stress. The findings of this study imply chronic exposure to BDE-47 may exacerbate the progression of both AP and CP by inducing acinar cell apoptosis and dysregulating inflammatory responses.


Assuntos
Células Acinares , Apoptose , Éteres Difenil Halogenados , Pancreatite Crônica , Pancreatite , Animais , Éteres Difenil Halogenados/toxicidade , Apoptose/efeitos dos fármacos , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/patologia , Células Acinares/efeitos dos fármacos , Células Acinares/patologia , Células Acinares/metabolismo , Masculino , Pancreatite/induzido quimicamente , Pancreatite/patologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos , Ceruletídeo/toxicidade , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Inflamação/induzido quimicamente , Inflamação/patologia , Células Estreladas do Pâncreas/efeitos dos fármacos , Células Estreladas do Pâncreas/patologia , Células Estreladas do Pâncreas/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retardadores de Chama/toxicidade , Células Cultivadas
9.
Biomolecules ; 14(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38927047

RESUMO

Acute pancreatitis (AP) entails pancreatic inflammation, tissue damage and dysregulated enzyme secretion, including pancreatic lipase (PL). The role of irisin, an anti-inflammatory and anti-apoptotic cytokine, in AP and exocrine pancreatic stress is unclear. We have previously shown that irisin regulates PL through the PPARγ-PGC1α-FNDC5 pathway. In this study, we investigated irisin and irisin's pathway on AP in in vitro (AR42J-B13) and ex vivo (rat primary acinar) models using molecular, biochemical and immunohistochemistry methodology. Pancreatitis induction (cerulein (cer)) resulted in a significant up-regulation of the PPARγ-PGC1α-FNDC5 axis, PL expression and secretion and endoplasmic reticulum (ER) stress unfolded protein response (UPR) signal-transduction markers (CHOP, XBP-1 and ATF6). Irisin addition in the cer-pancreatitis state resulted in a significant down-regulation of the PPARγ-PGC1α-FNDC5 axis, PPARγ nucleus-translocation and inflammatory state (TNFα and IL-6) in parallel to diminished PL expression and secretion (in vitro and ex vivo models). Irisin addition up-regulated the expression of pro-survival UPR markers (ATF6 and XBP-1) and reduced UPR pro-apoptotic markers (CHOP) under cer-pancreatitis and induced ER stress (tunicamycin), consequently increasing cells viability. Irisin's pro-survival effect under cer-pancreatitis state was abolished under PPARγ inhibition. Our findings suggest irisin as a potential therapeutic option for AP via its ability to up-regulate pro-survival UPR signals and activate the PPARγ-PGC1α-FNDC5 pathway.


Assuntos
Células Acinares , Sobrevivência Celular , Fibronectinas , PPAR gama , Pancreatite , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transdução de Sinais , Resposta a Proteínas não Dobradas , Fibronectinas/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Pancreatite/metabolismo , Pancreatite/patologia , Pancreatite/tratamento farmacológico , PPAR gama/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Ratos , Sobrevivência Celular/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/efeitos dos fármacos , Células Acinares/patologia , Transdução de Sinais/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ceruletídeo , Masculino , Linhagem Celular , Lipase/metabolismo
10.
Front Immunol ; 15: 1418703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044831

RESUMO

Introduction: Salivary gland dysfunction, often resulting from salivary gland obstruction-induced inflammation, is a prevalent condition. Corticosteroid, known for its anti-inflammatory and immunomodulatory properties, is commonly prescribed in clinics. This study investigates the therapeutic implications and potential side effects of dexamethasone on obstructive sialadenitis recovery using duct ligation mice and salivary gland organoid models. Methods: Functional and pathological changes were assessed after administering dexamethasone to the duct following deligation 2 weeks after maintaining ligation of the mouse submandibular duct. Additionally, lipopolysaccharide- and tumor necrosis factor-induced salivary gland organoid inflammation models were established to investigate the effects and underlying mechanisms of action of dexamethasone. Results: Dexamethasone administration facilitated SG function restoration, by increasing salivary gland weight and saliva volume while reducing saliva lag time. Histological evaluation revealed, reduced acinar cell atrophy and fibrosis with dexamethasone treatment. Additionally, dexamethasone suppressed pro-inflammatory cytokines IL-1ß and TNF expression. In a model of inflammation in salivary gland organoids induced by inflammatory substances, dexamethasone restored acinar markers such as AQP5 gene expression levels, while inhibiting pro-inflammatory cytokines TNF and IL6, as well as chemokines CCL2, CXCL5, and CXCL12 induction. Macrophages cultured in inflammatory substance-treated media from salivary gland organoid cultures exhibited pro-inflammatory polarization. However, treatment with dexamethasone shifted them towards an anti-inflammatory phenotype by reducing M1 markers (Tnf, Il6, Il1b, and Cd86) and elevating M2 markers (Ym1, Il10, Cd163, and Klf4). However, high-dose or prolonged dexamethasone treatment induced acino-ductal metaplasia and had side effects in both in vivo and in vitro models. Conclusions: Our findings suggest the effectiveness of corticosteroids in treating obstructive sialadenitis-induced salivary gland dysfunction by regulating pro-inflammatory cytokines.


Assuntos
Dexametasona , Fator 4 Semelhante a Kruppel , Sialadenite , Animais , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Dexametasona/administração & dosagem , Camundongos , Sialadenite/tratamento farmacológico , Sialadenite/patologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Organoides/efeitos dos fármacos , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Glândulas Salivares/efeitos dos fármacos , Glândulas Salivares/patologia , Glândulas Salivares/metabolismo , Glândulas Salivares/imunologia , Aquaporina 5/metabolismo , Aquaporina 5/genética , Masculino , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Humanos
11.
Pancreas ; 53(8): e662-e669, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696385

RESUMO

OBJECTIVES: Amino acids play an essential role in protein synthesis, metabolism, and survival of pancreatic acini. Adequate nutritional support is important for acute pancreatitis treatment. However, high concentrations of arginine and lysine may induce acute pancreatitis. The study aimed to identify the most suitable l -amino acids as safe energy sources for pancreatic acinar cells. MATERIALS AND METHODS: Pancreatic acini were isolated from male Wistar rats. Effects of amino acids (0.1-20 mM) on uncoupled respiration of isolated acini were studied with a Clark electrode. Cell death was evaluated with fluorescent microscopy and DNA gel electrophoresis. RESULTS: Among the tested amino acids, glutamate, glutamine, alanine, lysine, and aspartate were able to stimulate the uncoupled respiration rate of isolated pancreatic acini, whereas arginine, histidine, and asparagine were not. Lysine, arginine, and glutamine (20 mM) caused complete loss of plasma membrane integrity of acinar cells after 24 hours of incubation. Glutamine also caused early (2-4 hours) cell swelling and blebbing. Aspartate, asparagine, and glutamate only moderately decreased the number of viable cells, whereas alanine and histidine were not toxic. DNA fragmentation assay and microscopic analysis of nuclei showed no evidence of apoptosis in cells treated with amino acids. CONCLUSIONS: Alanine and glutamate are safe and effective energy sources for mitochondria of pancreatic acinar cells.


Assuntos
Células Acinares , Aminoácidos , Ratos Wistar , Animais , Masculino , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Células Acinares/metabolismo , Células Acinares/efeitos dos fármacos , Ratos , Pâncreas/metabolismo , Pâncreas/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Glutamina/metabolismo , Glutamina/farmacologia , Arginina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Ácido Glutâmico/toxicidade , Ácido Glutâmico/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Histidina/farmacologia
12.
Biol. Res ; 50: 11, 2017. graf
Artigo em Inglês | LILACS | ID: biblio-838967

RESUMO

BACKGROUND: Cimicifuga racemosa is one of the herbs used for the treatment of climacteric syndrome, and it has been cited as an alternative therapy to estrogen. Apart from hectic fevers, dyspareunia and so on, dry mouth also increase significantly after menopause. It has not yet been reported whether C. racemosa has any impact on the sublingual gland, which may relate to dry mouth. In an attempt to determine this, we have compared the effects of estrogen and C. racemosa on the sublingual gland of ovariectomized rats. RESULTS: HE staining showed that the acinar cell area had contracted and that the intercellular spaces were broadened in the OVX (ovariectomized rats) group, while treatment with estradiol (E2) and iCR (isopropanolic extract of C. racemosa) improved these lesions. Transmission electron microscopy showed that rough endoplasmic reticulum expansion in mucous and serous acinar epithelial cells and apoptotic cells was more commonly seen in the OVX group than in the SHAM (sham-operated rats) group. Mitochondria and plasma membrane infolding lesions in the striated ducts were also observed. These lesions were alleviated by both treatments. It is of note that, in the OVX + iCR group, the volume of mitochondria in the striated duct was larger than in other groups. Immunohistochemical staining showed that the ratio of caspase-3 positive cells was significantly increased in the acinar cells of the OVX group compared with the SHAM group (p < 0.05); and the MA (mean absorbance) of caspase-3 in the striated ducts also increased (p < 0.05). Estradiol decreased the ratio of caspase-3 positive cells and the MA of caspase-3 in striated ducts significantly (p < 0.05). ICR also reduced the ratio of caspase-3 positive cells and the MA in the striated ducts (p < 0.05), but the reduction of the MA in striated ducts was inferior to that of the OVX + E2 group (p < 0.05). CONCLUSION: Both estradiol and iCR can inhibit subcellular structural damage, and down-regulate the expression of caspase-3 caused by ovariectomy, but their effects were not identical, suggesting that both drugs confer a protective effect on the sublingual gland of ovariectomized rats, but that the specific location and mechanism of action producing these effects were different.


Assuntos
Animais , Feminino , Ratos , Glândula Sublingual/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ovariectomia , Estradiol/farmacologia , Estrogênios/farmacologia , Fatores de Tempo , Xerostomia/prevenção & controle , Climatério/efeitos dos fármacos , Imuno-Histoquímica , Regulação para Baixo , Terapia de Reposição de Estrogênios/métodos , Reprodutibilidade dos Testes , Resultado do Tratamento , Ratos Sprague-Dawley , Apoptose/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Caspase 3/análise , Caspase 3/efeitos dos fármacos , Células Acinares/efeitos dos fármacos
13.
Arq. bras. oftalmol ; 79(2): 105-110, Mar.-Apr. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-782803

RESUMO

ABSTRACT Purpose: The goal of the present study was to establish a protocol for primary culture of lacrimal gland acinar cells (LGACs) and to assess the effect of adding insulin to the culture media. Methods: LGACs were isolated and cultured from lacrimal glands of Wistar male rats. The study outcomes included cell number, viability, and peroxidase release over time and in response to three concentrations of insulin (0.5, 5.0, and 50.0 μg/mL). Results: In LGAC primary culture, cells started to form clusters by day 3. There was a time-response pattern of peroxidase release, which rose by day 6, in response to carbachol. Culture viability lasted for 12 days. An insulin concentration of 5.0 μg/mL in the culture medium resulted in higher viability and secretory capacity. Conclusions: The present method simplifies the isolation and culture of LGACs. The data confirmed the relevance of adding insulin to maintain LGACs in culture.


RESUMO Objetivo: O objetivo do estudo foi estabelecer um protocolo de cultura primária para o isolamento de células acinares da glândula lacrimal (CAGL) e avaliar a relevância de insulina no meio de cultura. Métodos: CAGL foram isoladas e cultivadas a partir das glândulas lacrimais de ratos Wistar machos. Os parâmetros analisados foram: o número de células, viabilidade e secreção da peroxidase ao longo do tempo e em resposta a três concentrações de insulina (0,5; 5,0 e 50,0 μg/ml). Resultados: Na cultura primária de CAGL as células passaram a se agrupar por volta do dia 3. A secreção de peroxidase em resposta ao carbacol aumentou no dia 6. O período de cultura viável foi limitado à 12 dias. Insulina à 5,0 μg/ml no meio de cultura resultou em viabilidade e capacidade secretora maior. Conclusão: o estudo descreveu um método para simplificar o isolamento e cultivo de CAGL. Os dados apresentados confirmam a importância da insulina na manutenção da cultura de CAGL.


Assuntos
Animais , Masculino , Células Acinares/citologia , Cultura Primária de Células/normas , Insulina/farmacologia , Aparelho Lacrimal/citologia , Carbacol/metabolismo , Contagem de Células/métodos , Separação Celular/métodos , Ratos Wistar , Peroxidase/metabolismo , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Insulina/metabolismo , Aparelho Lacrimal/metabolismo
14.
Acta cir. bras ; 30(6): 382-387, 06/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-749646

RESUMO

PURPOSE: To investigate the structural and functional changes induced by corticosterone (CORT) in the ventral prostrate (VP) of rats in order to study chronic stress effects in the prepubertal phase. METHODS: Wistar rats received daily saline or CORT injections during the pubertal period from the 5th to 25th day of postnatal life. The animals were distributed into four groups: 1 - Control (n=5); 2 - Control 99mTc-P (n=5); 3 - Treated with CORT (n=14); 4 - Treated with CORT and 99mTc-P (n=10). All rats were sacrificed at two months of age. Technical tissue uptakes of 99mTc-P were used to evaluate the functional and stereological methods for morphological analysis. RESULTS: Acini distribution in the group treated with CORT differed significantly (p<0.0001) from the control. The control group's epithelial average height (10.01±0.24 microns) was statistically significant (p<0.0001) from rats treated with CORT (19.27±0.73microns). The collagen distribution was lower in the treated group (2.79%) when compared to control (3.97%). The radioactivity percentage in the groups marked with 99mTc-P (%Ati/g) did not demonstrate a statistically significant difference (p=0.285897). CONCLUSION: Chronic administration of corticosterone in prepubertal rats causes changes in their acinar structure and their ventral prostate stroma, indicating possible deleterious effects of this hormone. .


Assuntos
Animais , Feminino , Masculino , Anti-Inflamatórios/efeitos adversos , Corticosterona/efeitos adversos , Próstata/efeitos dos fármacos , Estresse Psicológico/metabolismo , Fatores Etários , Células Acinares/efeitos dos fármacos , Colágeno/análise , Tamanho do Órgão/efeitos dos fármacos , Próstata , Ratos Wistar , Desenvolvimento Sexual , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA