Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 591
Filtrar
1.
Cell ; 185(16): 2848-2849, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931017

RESUMO

Immune checkpoint blockade is effective in treating many human cancers. In this issue of Cell, Luoma et al. show that tissue-resident memory T cells in head and neck cancers rapidly respond to immune checkpoint blockade, and they identify specific CD8+ T cells in pretreatment blood that predict pathologic tumor regression.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias de Cabeça e Pescoço , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico , Células T de Memória , Microambiente Tumoral
2.
Cell ; 185(5): 847-859.e11, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35139340

RESUMO

We address whether T cell responses induced by different vaccine platforms (mRNA-1273, BNT162b2, Ad26.COV2.S, and NVX-CoV2373) cross-recognize early SARS-CoV-2 variants. T cell responses to early variants were preserved across vaccine platforms. By contrast, significant overall decreases were observed for memory B cells and neutralizing antibodies. In subjects ∼6 months post-vaccination, 90% (CD4+) and 87% (CD8+) of memory T cell responses were preserved against variants on average by AIM assay, and 84% (CD4+) and 85% (CD8+) preserved against Omicron. Omicron RBD memory B cell recognition was substantially reduced to 42% compared with other variants. T cell epitope repertoire analysis revealed a median of 11 and 10 spike epitopes recognized by CD4+ and CD8+ T cells, with average preservation > 80% for Omicron. Functional preservation of the majority of T cell responses may play an important role as a second-level defense against diverse variants.


Assuntos
Vacinas contra COVID-19/imunologia , Células B de Memória/imunologia , Células T de Memória/imunologia , SARS-CoV-2/imunologia , Ad26COVS1/administração & dosagem , Ad26COVS1/imunologia , Vacina BNT162/administração & dosagem , Vacina BNT162/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , COVID-19/patologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Epitopos/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Células B de Memória/metabolismo , Células T de Memória/metabolismo , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação
3.
Nat Immunol ; 25(2): 294-306, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38238608

RESUMO

Antigen-experienced CD8+ T cells form effector and central memory T cells (TEM and TCM cells, respectively); however, the mechanism(s) controlling their lineage plasticity remains incompletely understood. Here we show that the transcription cofactor Tle3 critically regulates TEM and TCM cell fates and lineage stability through dynamic redistribution in antigen-responding CD8+ T cell genome. Genetic ablation of Tle3 promoted CD8+ TCM cell formation at the expense of CD8+ TEM cells. Lineage tracing showed that Tle3-deficient CD8+ TEM cells underwent accelerated conversion into CD8+ TCM cells while retaining robust recall capacity. Tle3 acted as a coactivator for Tbet to increase chromatin opening at CD8+ TEM cell-characteristic sites and to activate CD8+ TEM cell signature gene transcription, while engaging Runx3 and Tcf1 to limit CD8+ TCM cell-characteristic molecular features. Thus, Tle3 integrated functions of multiple transcription factors to guard lineage fidelity of CD8+ TEM cells, and manipulation of Tle3 activity could favor CD8+ TCM cell production.


Assuntos
Linfócitos T CD8-Positivos , Células T de Memória , Fatores de Transcrição/genética , Diferenciação Celular , Memória Imunológica/genética
4.
Nat Immunol ; 25(3): 418-431, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225437

RESUMO

After a century of using the Bacillus Calmette-Guérin (BCG) vaccine, our understanding of its ability to provide protection against homologous (Mycobacterium tuberculosis) or heterologous (for example, influenza virus) infections remains limited. Here we show that systemic (intravenous) BCG vaccination provides significant protection against subsequent influenza A virus infection in mice. We further demonstrate that the BCG-mediated cross-protection against influenza A virus is largely due to the enrichment of conventional CD4+ effector CX3CR1hi memory αß T cells in the circulation and lung parenchyma. Importantly, pulmonary CX3CR1hi T cells limit early viral infection in an antigen-independent manner via potent interferon-γ production, which subsequently enhances long-term antimicrobial activity of alveolar macrophages. These results offer insight into the unknown mechanism by which BCG has persistently displayed broad protection against non-tuberculosis infections via cross-talk between adaptive and innate memory responses.


Assuntos
Vacina BCG , Vírus da Influenza A , Infecções por Orthomyxoviridae , Animais , Camundongos , Administração Intravenosa , Vacina BCG/imunologia , Células T de Memória , Imunidade Treinada , Vacinação , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle
5.
Nat Immunol ; 25(2): 268-281, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38195702

RESUMO

Melanoma cells, deriving from neuroectodermal melanocytes, may exploit the nervous system's immune privilege for growth. Here we show that nerve growth factor (NGF) has both melanoma cell intrinsic and extrinsic immunosuppressive functions. Autocrine NGF engages tropomyosin receptor kinase A (TrkA) on melanoma cells to desensitize interferon γ signaling, leading to T and natural killer cell exclusion. In effector T cells that upregulate surface TrkA expression upon T cell receptor activation, paracrine NGF dampens T cell receptor signaling and effector function. Inhibiting NGF, either through genetic modification or with the tropomyosin receptor kinase inhibitor larotrectinib, renders melanomas susceptible to immune checkpoint blockade therapy and fosters long-term immunity by activating memory T cells with low affinity. These results identify the NGF-TrkA axis as an important suppressor of anti-tumor immunity and suggest larotrectinib might be repurposed for immune sensitization. Moreover, by enlisting low-affinity T cells, anti-NGF reduces acquired resistance to immune checkpoint blockade and prevents melanoma recurrence.


Assuntos
Melanoma , Receptor de Fator de Crescimento Neural , Humanos , Receptor de Fator de Crescimento Neural/genética , Receptor de Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Tropomiosina , Melanoma/terapia , Receptor trkA/genética , Receptor trkA/metabolismo , Citoproteção , Inibidores de Checkpoint Imunológico , Células T de Memória , Terapia de Imunossupressão , Imunoterapia , Receptores de Antígenos de Linfócitos T
6.
Nat Immunol ; 24(6): 903-914, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37156885

RESUMO

Specialized subpopulations of CD4+ T cells survey major histocompatibility complex class II-peptide complexes to control phagosomal infections, help B cells, regulate tissue homeostasis and repair or perform immune regulation. Memory CD4+ T cells are positioned throughout the body and not only protect the tissues from reinfection and cancer, but also participate in allergy, autoimmunity, graft rejection and chronic inflammation. Here we provide updates on our understanding of the longevity, functional heterogeneity, differentiation, plasticity, migration and human immunodeficiency virus reservoirs as well as key technological advances that are facilitating the characterization of memory CD4+ T cell biology.


Assuntos
Linfócitos T CD4-Positivos , Células T de Memória , Humanos , Memória Imunológica
7.
Nat Immunol ; 24(2): 309-319, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36658238

RESUMO

T lymphocytes migrate to barrier sites after exposure to pathogens, providing localized immunity and long-term protection. Here, we obtained blood and tissues from human organ donors to examine T cells across major barrier sites (skin, lung, jejunum), associated lymph nodes, lymphoid organs (spleen, bone marrow), and in circulation. By integrating single-cell protein and transcriptome profiling, we demonstrate that human barrier sites contain tissue-resident memory T (TRM) cells that exhibit site-adapted profiles for residency, homing and function distinct from circulating memory T cells. Incorporating T cell receptor and transcriptome analysis, we show that circulating memory T cells are highly expanded, display extensive overlap between sites and exhibit effector and cytolytic functional profiles, while TRM clones exhibit site-specific expansions and distinct functional capacities. Together, our findings indicate that circulating T cells are more disseminated and differentiated, while TRM cells exhibit tissue-specific adaptation and clonal segregation, suggesting that strategies to promote barrier immunity require tissue targeting.


Assuntos
Memória Imunológica , Células T de Memória , Humanos , Linfonodos , Células Clonais , Diferenciação Celular , Linfócitos T CD8-Positivos
8.
Nat Immunol ; 24(9): 1487-1498, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474653

RESUMO

Malaria is caused by Plasmodium species transmitted by Anopheles mosquitoes. Following a mosquito bite, Plasmodium sporozoites migrate from skin to liver, where extensive replication occurs, emerging later as merozoites that can infect red blood cells and cause symptoms of disease. As liver tissue-resident memory T cells (Trm cells) have recently been shown to control liver-stage infections, we embarked on a messenger RNA (mRNA)-based vaccine strategy to induce liver Trm cells to prevent malaria. Although a standard mRNA vaccine was unable to generate liver Trm or protect against challenge with Plasmodium berghei sporozoites in mice, addition of an agonist that recruits T cell help from type I natural killer T cells under mRNA-vaccination conditions resulted in significant generation of liver Trm cells and effective protection. Moreover, whereas previous exposure of mice to blood-stage infection impaired traditional vaccines based on attenuated sporozoites, mRNA vaccination was unaffected, underlining the potential for such a rational mRNA-based strategy in malaria-endemic regions.


Assuntos
Vacinas Antimaláricas , Malária , Animais , Camundongos , Células T de Memória , Malária/prevenção & controle , Fígado , Plasmodium berghei/genética , Linfócitos T CD8-Positivos
9.
Nat Immunol ; 24(7): 1076-1086, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37349380

RESUMO

Our current knowledge of human memory CD8+ T cells is derived largely from studies of the intravascular space. However, emerging data are starting to challenge some of the dogmas based on this work, suggesting that a conceptual revision may be necessary. In this review, we provide a brief history of the field and summarize the biology of circulating and tissue-resident memory CD8+ T cells, which are ultimately responsible for effective immune surveillance. We also incorporate recent findings into a biologically integrated model of human memory CD8+ T cell differentiation. Finally, we address how future innovative human studies could improve our understanding of anatomically localized CD8+ T cells to inform the development of more effective immunotherapies and vaccines, the need for which has been emphasized by the global struggle to contain severe acute respiratory syndrome coronavirus 2.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , Ativação Linfocitária , Células T de Memória , Memória Imunológica
10.
Nat Immunol ; 23(1): 33-39, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848871

RESUMO

The first ever US Food and Drug Administration-approved messenger RNA vaccines are highly protective against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1-3. However, the contribution of each dose to the generation of antibodies against SARS-CoV-2 spike (S) protein and the degree of protection against novel variants warrant further study. Here, we investigated the B cell response to the BNT162b2 vaccine by integrating B cell repertoire analysis with single-cell transcriptomics pre- and post-vaccination. The first vaccine dose elicits a recall response of IgA+ plasmablasts targeting the S subunit S2. Three weeks after the first dose, we observed an influx of minimally mutated IgG+ memory B cells that targeted the receptor binding domain on the S subunit S1 and likely developed from the naive B cell pool. This response was strongly boosted by the second dose and delivers potently neutralizing antibodies against SARS-CoV-2 and several of its variants.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Vacina BNT162/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/prevenção & controle , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Células T de Memória/imunologia , Domínios Proteicos/imunologia , Eficácia de Vacinas
11.
Nat Immunol ; 23(1): 23-32, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937933

RESUMO

Systemic immune cell dynamics during coronavirus disease 2019 (COVID-19) are extensively documented, but these are less well studied in the (upper) respiratory tract, where severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates1-6. Here, we characterized nasal and systemic immune cells in individuals with COVID-19 who were hospitalized or convalescent and compared the immune cells to those seen in healthy donors. We observed increased nasal granulocytes, monocytes, CD11c+ natural killer (NK) cells and CD4+ T effector cells during acute COVID-19. The mucosal proinflammatory populations positively associated with peripheral blood human leukocyte antigen (HLA)-DRlow monocytes, CD38+PD1+CD4+ T effector (Teff) cells and plasmablasts. However, there was no general lymphopenia in nasal mucosa, unlike in peripheral blood. Moreover, nasal neutrophils negatively associated with oxygen saturation levels in blood. Following convalescence, nasal immune cells mostly normalized, except for CD127+ granulocytes and CD38+CD8+ tissue-resident memory T cells (TRM). SARS-CoV-2-specific CD8+ T cells persisted at least 2 months after viral clearance in the nasal mucosa, indicating that COVID-19 has both transient and long-term effects on upper respiratory tract immune responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Nasofaringe/imunologia , Nariz/citologia , Mucosa Respiratória/imunologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/patologia , Granulócitos/imunologia , Antígenos HLA-DR/metabolismo , Humanos , Células Matadoras Naturais/imunologia , Células T de Memória/imunologia , Monócitos/imunologia , Nasofaringe/citologia , Nasofaringe/virologia , Neutrófilos/imunologia , Nariz/imunologia , Nariz/virologia , Estudos Prospectivos , Mucosa Respiratória/citologia , Mucosa Respiratória/virologia
12.
Immunity ; 57(2): 271-286.e13, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301652

RESUMO

The immune system encodes information about the severity of a pathogenic threat in the quantity and type of memory cells it forms. This encoding emerges from lymphocyte decisions to maintain or lose self-renewal and memory potential during a challenge. By tracking CD8+ T cells at the single-cell and clonal lineage level using time-resolved transcriptomics, quantitative live imaging, and an acute infection model, we find that T cells will maintain or lose memory potential early after antigen recognition. However, following pathogen clearance, T cells may regain memory potential if initially lost. Mechanistically, this flexibility is implemented by a stochastic cis-epigenetic switch that tunably and reversibly silences the memory regulator, TCF1, in response to stimulation. Mathematical modeling shows how this flexibility allows memory T cell numbers to scale robustly with pathogen virulence and immune response magnitudes. We propose that flexibility and stochasticity in cellular decisions ensure optimal immune responses against diverse threats.


Assuntos
Linfócitos T CD8-Positivos , Células T de Memória , Epigênese Genética , Células Clonais , Memória Imunológica , Diferenciação Celular
13.
Immunity ; 56(7): 1439-1442, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37437536

RESUMO

Memory T cells comprise circulating and tissue-resident subsets. In this issue of Immunity, Evrard et al. generate an imputed high-dimensional, single-cell protein expression atlas of memory CD8+ T cells, providing insights into stable differentiation markers and organ-specific expression patterns.


Assuntos
Migrantes , Humanos , Linfócitos T CD8-Positivos , Células T de Memória
14.
Immunity ; 56(7): 1664-1680.e9, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37392736

RESUMO

Memory CD8+ T cells can be broadly divided into circulating (TCIRCM) and tissue-resident memory T (TRM) populations. Despite well-defined migratory and transcriptional differences, the phenotypic and functional delineation of TCIRCM and TRM cells, particularly across tissues, remains elusive. Here, we utilized an antibody screening platform and machine learning prediction pipeline (InfinityFlow) to profile >200 proteins in TCIRCM and TRM cells in solid organs and barrier locations. High-dimensional analyses revealed unappreciated heterogeneity within TCIRCM and TRM cell lineages across nine different organs after either local or systemic murine infection models. Additionally, we demonstrated the relative effectiveness of strategies allowing for the selective ablation of TCIRCM or TRM populations across organs and identified CD55, KLRG1, CXCR6, and CD38 as stable markers for characterizing memory T cell function during inflammation. Together, these data and analytical framework provide an in-depth resource for memory T cell classification in both steady-state and inflammatory conditions.


Assuntos
Linfócitos T CD8-Positivos , Células T de Memória , Camundongos , Animais , Linhagem da Célula , Memória Imunológica
15.
Immunity ; 56(1): 207-223.e8, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36580919

RESUMO

Tissue-resident memory CD8+ T (TRM) cells are a subset of memory T cells that play a critical role in limiting early pathogen spread and controlling infection. TRM cells exhibit differences across tissues, but their potential heterogeneity among distinct anatomic compartments within the small intestine and colon has not been well recognized. Here, by analyzing TRM cells from the lamina propria and epithelial compartments of the small intestine and colon, we showed that intestinal TRM cells exhibited distinctive patterns of cytokine and granzyme expression along with substantial transcriptional, epigenetic, and functional heterogeneity. The T-box transcription factor Eomes, which represses TRM cell formation in some tissues, exhibited unexpected context-specific regulatory roles in supporting the maintenance of established TRM cells in the small intestine, but not in the colon. Taken together, these data provide previously unappreciated insights into the heterogeneity and differential requirements for the formation vs. maintenance of intestinal TRM cells.


Assuntos
Linfócitos T CD8-Positivos , Células T de Memória , Linfócitos T CD8-Positivos/metabolismo , Memória Imunológica , Intestino Delgado , Colo
16.
Immunity ; 56(8): 1894-1909.e5, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37421943

RESUMO

Infancy and childhood are critical life stages for generating immune memory to protect against pathogens; however, the timing, location, and pathways for memory development in humans remain elusive. Here, we investigated T cells in mucosal sites, lymphoid tissues, and blood from 96 pediatric donors aged 0-10 years using phenotypic, functional, and transcriptomic profiling. Our results revealed that memory T cells preferentially localized in the intestines and lungs during infancy and accumulated more rapidly in mucosal sites compared with blood and lymphoid organs, consistent with site-specific antigen exposure. Early life mucosal memory T cells exhibit distinct functional capacities and stem-like transcriptional profiles. In later childhood, they progressively adopt proinflammatory functions and tissue-resident signatures, coincident with increased T cell receptor (TCR) clonal expansion in mucosal and lymphoid sites. Together, our findings identify staged development of memory T cells targeted to tissues during the formative years, informing how we might promote and monitor immunity in children.


Assuntos
Tecido Linfoide , Células T de Memória , Criança , Humanos , Lactente , Linfócitos T CD8-Positivos , Memória Imunológica , Tecido Linfoide/metabolismo , Mucosa , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Recém-Nascido , Pré-Escolar
17.
Immunity ; 56(12): 2836-2854.e9, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37963457

RESUMO

Extensive, large-scale single-cell profiling of healthy human blood at different ages is one of the critical pending tasks required to establish a framework for the systematic understanding of human aging. Here, using single-cell RNA/T cell receptor (TCR)/BCR-seq with protein feature barcoding, we profiled 317 samples from 166 healthy individuals aged 25-85 years old. From this, we generated a dataset from ∼2 million cells that described 55 subpopulations of blood immune cells. Twelve subpopulations changed with age, including the accumulation of GZMK+CD8+ T cells and HLA-DR+CD4+ T cells. In contrast to other T cell memory subsets, transcriptionally distinct NKG2C+GZMB-CD8+ T cells counterintuitively decreased with age. Furthermore, we found a concerted age-associated increase in type 2/interleukin (IL)4-expressing memory subpopulations across CD4+ and CD8+ T cell compartments (CCR4+CD8+ Tcm and Th2 CD4+ Tmem), suggesting a systematic functional shift in immune homeostasis with age. Our work provides novel insights into healthy human aging and a comprehensive annotated resource.


Assuntos
Linfócitos T CD8-Positivos , Células T de Memória , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Subpopulações de Linfócitos T , Envelhecimento , Receptores de Antígenos de Linfócitos T/metabolismo , Granzimas/metabolismo
18.
Immunity ; 55(1): 98-114.e5, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34932944

RESUMO

Elevated gene expression of the costimulatory receptor Icos is a hallmark of CD8+ tissue-resident memory (Trm) T cells. Here, we examined the contribution of ICOS in Trm cell differentiation. Upon transfer into WT mice, Icos-/- CD8+ T cells exhibited defective Trm generation but produced recirculating memory populations normally. ICOS deficiency or ICOS-L blockade compromised establishment of CD8+ Trm cells but not their maintenance. ICOS ligation during CD8+ T cell priming did not determine Trm induction; rather, effector CD8+ T cells showed reduced Trm differentiation after seeding into Icosl-/- mice. IcosYF/YF CD8+ T cells were compromised in Trm generation, indicating a critical role for PI3K signaling. Modest transcriptional changes in the few Icos-/- Trm cells suggest that ICOS-PI3K signaling primarily enhances the efficiency of CD8+ T cell tissue residency. Thus, local ICOS signaling promotes production of Trm cells, providing insight into the contribution of costimulatory signals in the generation of tissue-resident populations.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Células T de Memória/imunologia , Transferência Adotiva , Animais , Anticorpos Bloqueadores/metabolismo , Diferenciação Celular , Células Cultivadas , Ligante Coestimulador de Linfócitos T Induzíveis/imunologia , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
20.
Immunity ; 54(12): 2842-2858.e5, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34813775

RESUMO

People living with HIV (PLWH) are at increased risk for developing skin and mucosal malignancies despite systemic reconstitution of CD4+ T cells upon antiretroviral therapy (ART). The underlying mechanism of chronic tissue-related immunodeficiency in HIV is unclear. We found that skin CD4+ tissue-resident memory T (Trm) cells were depleted after HIV infection and replenished only upon early ART initiation. TCR clonal analysis following early ART suggested a systemic origin for reconstituting CD4+ Trm cells. Single-cell RNA sequencing in PLWH that received late ART treatment revealed a loss of CXCR3+ Trm cells and a tolerogenic skin immune environment. Human papilloma virus-induced precancerous lesion biopsies showed reduced CXCR3+ Trm cell frequencies in the mucosa in PLWH versus HIV- individuals. These results reveal an irreversible loss of CXCR3+ Trm cells confined to skin and mucosa in PLWH who received late ART treatment, which may be a precipitating factor in the development of HPV-related cancer.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Síndromes de Imunodeficiência/imunologia , Células T de Memória/imunologia , Mucosa/imunologia , Pele/imunologia , Adulto , Terapia Antirretroviral de Alta Atividade , Feminino , Infecções por HIV/tratamento farmacológico , Sobreviventes de Longo Prazo ao HIV , Humanos , Síndromes de Imunodeficiência/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Receptores CXCR3/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Tempo para o Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA