Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.720
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(48): e2306525120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37988463

RESUMO

So-called spontaneous activity is a central hallmark of most nervous systems. Such non-causal firing is contrary to the tenet of spikes as a means of communication, and its purpose remains unclear. We propose that self-initiated firing can serve as a release valve to protect neurons from the toxic conditions arising in mitochondria from lower-than-baseline energy consumption. To demonstrate the viability of our hypothesis, we built a set of models that incorporate recent experimental results indicating homeostatic control of metabolic products-Adenosine triphosphate (ATP), adenosine diphosphate (ADP), and reactive oxygen species (ROS)-by changes in firing. We explore the relationship of metabolic cost of spiking with its effect on the temporal patterning of spikes and reproduce experimentally observed changes in intrinsic firing in the fruitfly dorsal fan-shaped body neuron in a model with ROS-modulated potassium channels. We also show that metabolic spiking homeostasis can produce indefinitely sustained avalanche dynamics in cortical circuits. Our theory can account for key features of neuronal activity observed in many studies ranging from ion channel function all the way to resting state dynamics. We finish with a set of experimental predictions that would confirm an integrated, crucial role for metabolically regulated spiking and firmly link metabolic homeostasis and neuronal function.


Assuntos
Canais Iônicos , Neurônios , Espécies Reativas de Oxigênio/metabolismo , Neurônios/metabolismo , Canais Iônicos/fisiologia , Canais de Potássio/fisiologia , Trifosfato de Adenosina/metabolismo , Homeostase
2.
J Neurosci ; 43(12): 2199-2209, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813574

RESUMO

Pathogenic variants in HCN1 are associated with a range of epilepsy syndromes including a developmental and epileptic encephalopathy. The recurrent de novo HCN1 pathogenic variant (M305L) results in a cation leak, allowing the flux of excitatory ions at potentials where the wild-type channels are closed. The Hcn1M294L mouse recapitulates patient seizure and behavioral phenotypes. As HCN1 channels are highly expressed in rod and cone photoreceptor inner segments, where they shape the light response, mutated channels are likely to impact visual function. Electroretinogram (ERG) recordings from male and female mice Hcn1M294L mice revealed a significant decrease in the photoreceptor sensitivity to light, as well as attenuated bipolar cell (P2) and retinal ganglion cell responses. Hcn1M294L mice also showed attenuated ERG responses to flickering lights. ERG abnormalities are consistent with the response recorded from a single female human subject. There was no impact of the variant on the structure or expression of the Hcn1 protein in the retina. In silico modeling of photoreceptors revealed that the mutated HCN1 channel dramatically reduced light-induced hyperpolarization, resulting in more Ca2+ flux during the response when compared with the wild-type situation. We propose that the light-induced change in glutamate release from photoreceptors during a stimulus will be diminished, significantly blunting the dynamic range of this response. Our data highlight the importance of HCN1 channels to retinal function and suggest that patients with HCN1 pathogenic variants are likely to have a dramatically reduced sensitivity to light and a limited ability to process temporal information.SIGNIFICANCE STATEMENT Pathogenic variants in HCN1 are emerging as an important cause of catastrophic epilepsy. HCN1 channels are ubiquitously expressed throughout the body, including the retina. Electroretinogram recordings from a mouse model of HCN1 genetic epilepsy showed a marked decrease in the photoreceptor sensitivity to light and a reduced ability to respond to high rates of light flicker. No morphologic deficits were noted. Simulation data suggest that the mutated HCN1 channel blunts light-induced hyperpolarization and consequently limits the dynamic range of this response. Our results provide insights into the role HCN1 channels play in retinal function as well as highlighting the need to consider retinal dysfunction in disease caused by HCN1 variants. The characteristic changes in the electroretinogram open the possibility of using this tool as a biomarker for this HCN1 epilepsy variant and to facilitate development of treatments.


Assuntos
Epilepsia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Humanos , Masculino , Feminino , Camundongos , Animais , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Retina/metabolismo , Eletrorretinografia , Epilepsia/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Canais de Potássio/fisiologia
3.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493665

RESUMO

At present, the QT interval on the electrocardiographic (ECG) waveform is the most common metric for assessing an individual's susceptibility to ventricular arrhythmias, with a long QT, or, at the cellular level, a long action potential duration (APD) considered high risk. However, the limitations of this simple approach have long been recognized. Here, we sought to improve prediction of arrhythmia susceptibility by combining mechanistic mathematical modeling with machine learning (ML). Simulations with a model of the ventricular myocyte were performed to develop a large heterogenous population of cardiomyocytes (n = 10,586), and we tested each variant's ability to withstand three arrhythmogenic triggers: 1) block of the rapid delayed rectifier potassium current (IKr Block), 2) augmentation of the L-type calcium current (ICaL Increase), and 3) injection of inward current (Current Injection). Eight ML algorithms were trained to predict, based on simulated AP features in preperturbed cells, whether each cell would develop arrhythmic dynamics in response to each trigger. We found that APD can accurately predict how cells respond to the simple Current Injection trigger but cannot effectively predict the response to IKr Block or ICaL Increase. ML predictive performance could be improved by incorporating additional AP features and simulations of additional experimental protocols. Importantly, we discovered that the most relevant features and experimental protocols were trigger specific, which shed light on the mechanisms that promoted arrhythmia formation in response to the triggers. Overall, our quantitative approach provides a means to understand and predict differences between individuals in arrhythmia susceptibility.


Assuntos
Arritmias Cardíacas/prevenção & controle , Fenômenos Eletrofisiológicos/fisiologia , Previsões/métodos , Potenciais de Ação , Antiarrítmicos/farmacologia , Suscetibilidade a Doenças , Ventrículos do Coração/metabolismo , Humanos , Síndrome do QT Longo , Aprendizado de Máquina , Modelos Teóricos , Células Musculares , Miócitos Cardíacos/metabolismo , Potássio/metabolismo , Canais de Potássio/fisiologia
4.
Physiology (Bethesda) ; 37(5): 0, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35797055

RESUMO

Voltage-gated potassium (Kv) channels each comprise four pore-forming α-subunits that orchestrate essential duties such as voltage sensing and K+ selectivity and conductance. In vivo, however, Kv channels also incorporate regulatory subunits-some Kv channel specific, others more general modifiers of protein folding, trafficking, and function. Understanding all the above is essential for a complete picture of the role of Kv channels in physiology and disease.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Humanos , Potássio/metabolismo , Canais de Potássio/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Subunidades Proteicas/metabolismo
5.
J Neurophysiol ; 130(5): 1265-1281, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820016

RESUMO

After rostral spinal cord injury (SCI) of lampreys, the descending axons of injured (axotomized) reticulospinal (RS) neurons regenerate and locomotor function gradually recovers. Our previous studies indicated that relative to uninjured lamprey RS neurons, injured RS neurons display several dramatic changes in their biophysical properties, called the "injury phenotype." In the present study, at the onset of applied depolarizing current pulses for membrane potentials below as well as above threshold for action potentials (APs), injured RS neurons displayed a transient depolarization consisting of an initial depolarizing component followed by a delayed repolarizing component. In contrast, for uninjured neurons the transient depolarization was mostly only evident at suprathreshold voltages when APs were blocked. For injured RS neurons, the delayed repolarizing component resisted depolarization to threshold and made these neurons less excitable than uninjured RS neurons. After block of voltage-gated sodium and calcium channels for injured RS neurons, the transient depolarization was still present. After a further block of voltage-gated potassium channels, the delayed repolarizing component was abolished or significantly reduced, with little or no effect on the initial depolarizing component. Voltage-clamp experiments indicated that the delayed repolarizing component was due to a noninactivating outward-rectifying potassium channel whose conductance (gK) was significantly larger for injured RS neurons compared to that for uninjured neurons. Thus, SCI results in an increase in gK and other changes in the biophysical properties of injured lamprey RS neurons that lead to a reduction in excitability, which is proposed to create an intracellular environment that supports axonal regeneration.NEW & NOTEWORTHY After spinal cord injury (SCI), lamprey reticulospinal (RS) neurons responded to subthreshold depolarizing current pulses with a transient depolarization, which included an initial depolarization that was due to passive channels followed by a delayed repolarization that was mediated by voltage-gated potassium channels. The conductance of these channels (gK) was significantly increased for RS neurons after SCI and contributed to a reduction in excitability, which is expected to provide supportive conditions for subsequent axonal regeneration.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Traumatismos da Medula Espinal , Animais , Canais de Potássio/fisiologia , Neurônios/fisiologia , Potenciais da Membrana/fisiologia , Lampreias , Medula Espinal
6.
J Neurosci Res ; 101(11): 1699-1710, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37466411

RESUMO

One group of the K+ ion channels, the small-conductance Ca2+ -activated potassium channels (KCa 2.x, also known as SK channels family), is widely expressed in neurons as well as the heart, endothelial cells, etc. They are named small-conductance Ca2+ -activated potassium channels (SK channels) due to their comparatively low single-channel conductance of about ~10 pS. These channels are insensitive to changes in membrane potential and are activated solely by rises in the intracellular Ca2+ . According to the phylogenic research done on the KCa 2.x channels family, there are three channels' subtypes: KCa 2.1, KCa 2.2, and KCa 2.3, which are encoded by KCNN1, KCNN2, and KCNN3 genes, respectively. The KCa 2.x channels regulate neuronal excitability and responsiveness to synaptic input patterns. KCa 2.x channels inhibit excitatory postsynaptic potentials (EPSPs) in neuronal dendrites and contribute to the medium afterhyperpolarization (mAHP) that follows the action potential bursts. Multiple brain regions, including the hippocampus, express the KCa 2.2 channel encoded by the KCNN2 gene on chromosome 5. Of particular interest, rat cerebellar Purkinje cells express KCa 2.2 channels, which are crucial for various cellular processes during development and maturation. Patients with a loss-of-function of KCNN2 mutations typically exhibit extrapyramidal symptoms, cerebellar ataxia, motor and language developmental delays, and intellectual disabilities. Studies have revealed that autosomal dominant neurodevelopmental movement disorders resembling rodent symptoms are caused by heterozygous loss-of-function mutations, which are most likely to induce KCNN2 haploinsufficiency. The KCa 2.2 channel is a promising drug target for spinocerebellar ataxias (SCAs). SCAs exhibit the dysregulation of firing in cerebellar Purkinje cells which is one of the first signs of pathology. Thus, selective KCa 2.2 modulators are promising potential therapeutics for SCAs.


Assuntos
Células Endoteliais , Canais de Potássio , Ratos , Animais , Canais de Potássio/fisiologia , Neurônios/fisiologia , Potenciais da Membrana/fisiologia , Células de Purkinje
7.
Nat Methods ; 17(12): 1245-1253, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33169015

RESUMO

Impaired protein stability or trafficking underlies diverse ion channelopathies and represents an unexploited unifying principle for developing common treatments for otherwise dissimilar diseases. Ubiquitination limits ion channel surface density, but targeting this pathway for the purposes of basic study or therapy is challenging because of its prevalent role in proteostasis. We developed engineered deubiquitinases (enDUBs) that enable selective ubiquitin chain removal from target proteins to rescue the functional expression of disparate mutant ion channels that underlie long QT syndrome (LQT) and cystic fibrosis (CF). In an LQT type 1 (LQT1) cardiomyocyte model, enDUB treatment restored delayed rectifier potassium currents and normalized action potential duration. CF-targeted enDUBs synergistically rescued common (ΔF508) and pharmacotherapy-resistant (N1303K) CF mutations when combined with the US Food and Drug Administation (FDA)-approved drugs Orkambi (lumacaftor/ivacaftor) and Trikafta (elexacaftor/tezacaftor/ivacaftor and ivacaftor). Altogether, targeted deubiquitination via enDUBs provides a powerful protein stabilization method that not only corrects diverse diseases caused by impaired ion channel trafficking, but also introduces a new tool for deconstructing the ubiquitin code in situ.


Assuntos
Canalopatias/patologia , Fibrose Cística/patologia , Enzimas Desubiquitinantes/metabolismo , Transporte de Íons/fisiologia , Síndrome do QT Longo/patologia , Canais de Potássio/fisiologia , Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Canalopatias/genética , Fibrose Cística/genética , Enzimas Desubiquitinantes/genética , Combinação de Medicamentos , Humanos , Indóis/farmacologia , Transporte de Íons/genética , Síndrome do QT Longo/genética , Miócitos Cardíacos/fisiologia , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Canais de Potássio/genética , Pirazóis/farmacologia , Piridinas/farmacologia , Quinolinas/farmacologia , Quinolonas/farmacologia
8.
Exp Eye Res ; 233: 109548, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348671

RESUMO

We examined the effects of nobiletin, a polymethoxyflavonoid, on the retinal microvascular diameter to determine if they depend on the endothelium and/or smooth muscle to reveal the signaling mechanisms involved in this vasomotor activity. Porcine retinal arterioles were isolated, cannulated, and pressurized without flow in vitro. Video microscopic techniques recorded diametric responses to nobiletin. The retinal arterioles dilated in a nobiletin concentration-dependent (100 pM-10 µM) manner and decreased by 50% after endothelial removal. The nitric oxide (NO) synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME), reduced nobiletin-induced vasodilation comparable to denudation. Blockade of soluble guanylyl cyclase by 1H-[1,2,4] oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ) produced a similar inhibitory effect as that by L-NAME. Nobiletin-induced vasodilation was also inhibited by the nonselective potassium channel inhibitor, tetraethylammonium (TEA), and the voltage-gated K (Kv) inhibitor, 4-aminopyridine. Co-administration of L-NAME and TEA almost eliminated nobiletin-induced vasodilation. Nobiletin elicits both endothelium-dependent and -independent dilation of retinal arterioles mediated by NO release and Kv channel activation, respectively.


Assuntos
Óxido Nítrico , Canais de Potássio , Suínos , Animais , Óxido Nítrico/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Arteríolas/fisiologia , Canais de Potássio/farmacologia , Canais de Potássio/fisiologia , Dilatação , Vasodilatação/fisiologia , Inibidores Enzimáticos/farmacologia , Endotélio Vascular/metabolismo
9.
PLoS Biol ; 18(12): e3000964, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33296375

RESUMO

The carnivorous plant Dionaea muscipula harbors multicellular trigger hairs designed to sense mechanical stimuli upon contact with animal prey. At the base of the trigger hair, mechanosensation is transduced into an all-or-nothing action potential (AP) that spreads all over the trap, ultimately leading to trap closure and prey capture. To reveal the molecular basis for the unique functional repertoire of this mechanoresponsive plant structure, we determined the transcriptome of D. muscipula's trigger hair. Among the genes that were found to be highly specific to the trigger hair, the Shaker-type channel KDM1 was electrophysiologically characterized as a hyperpolarization- and acid-activated K+-selective channel, thus allowing the reuptake of K+ ions into the trigger hair's sensory cells during the hyperpolarization phase of the AP. During trap development, the increased electrical excitability of the trigger hair is associated with the transcriptional induction of KDM1. Conversely, when KDM1 is blocked by Cs+ in adult traps, the initiation of APs in response to trigger hair deflection is reduced, and trap closure is suppressed. KDM1 thus plays a dominant role in K+ homeostasis in the context of AP and turgor formation underlying the mechanosensation of trigger hair cells and thus D. muscipula's hapto-electric signaling.


Assuntos
Droseraceae/genética , Droseraceae/metabolismo , Canais de Potássio/metabolismo , Potenciais de Ação/fisiologia , Transporte Biológico , Fenômenos Eletrofisiológicos , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Íons , Mecanorreceptores/metabolismo , Mecanorreceptores/fisiologia , Folhas de Planta/fisiologia , Potássio/metabolismo , Canais de Potássio/fisiologia , Transdução de Sinais , Transcriptoma/genética
10.
Cardiovasc Drugs Ther ; 37(1): 53-62, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35895166

RESUMO

PURPOSE: Ventricular arrhythmias (VAs) are a common cause of sudden death in acute myocardial infarction (MI), for which hypertension is a major risk factor. Nicorandil opens ATP-sensitive potassium (KATP) channels, which are expressed by nerve terminals and cardiomyocytes and regulate the release of norepinephrine (NE). However, the effects of nicorandil on ischemic NE release in cardiac tissue remain unclear. Therefore, we herein investigated whether nicorandil suppressed interstitial NE concentrations and VAs during acute MI in pressure overload-induced hypertrophic hearts. METHODS: Rats were divided into two groups: an abdominal aortic constriction (AAC) group and sham-operated (Sham) group. Four weeks after constriction, cardiac geometry and functions were examined using echocardiography and hemodynamic analyses. Myocardial ischemia was induced by coronary artery occlusion for 100 min with or without the administration of nicorandil. VAs were assessed by electrocardiography, and NE concentrations in the ischemic region were measured using a micro-dialysis method. RESULTS: AAC induced left ventricular hypertrophy with diastolic dysfunction. VAs markedly increased in the early phase (0-20 min) of ischemia in both groups and were more frequent in the AAC group. Cardiac interstitial NE concentrations were higher in the AAC group before ischemia and significantly increased during ischemia in both groups. Nicorandil significantly suppressed ischemia-induced VAs and NE increases in the AAC group. CONCLUSION: Ischemia-induced VAs were more frequent in hypertrophic hearts and associated with high interstitial concentrations of NE. The attenuation of ischemia-induced increases in NE through neuronal KATP opening by nicorandil may suppress ischemia-induced VAs in hypertrophic hearts.


Assuntos
Infarto do Miocárdio , Isquemia Miocárdica , Ratos , Animais , Nicorandil/farmacologia , Norepinefrina , Canais de Potássio/fisiologia , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/prevenção & controle , Isquemia Miocárdica/complicações , Isquemia Miocárdica/tratamento farmacológico , Infarto do Miocárdio/complicações
11.
Biol Cybern ; 117(6): 433-451, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37755465

RESUMO

For single neuron models, reproducing characteristics of neuronal activity such as the firing rate, amplitude of spikes, and threshold potentials as functions of both synaptic current and conductance is a challenging task. In the present work, we measure these characteristics of regular spiking cortical neurons using the dynamic patch-clamp technique, compare the data with predictions from the standard Hodgkin-Huxley and Izhikevich models, and propose a relatively simple five-dimensional dynamical system model, based on threshold criteria. The model contains a single sodium channel with slow inactivation, fast activation and moderate deactivation, as well as, two fast repolarizing and slow shunting potassium channels. The model quantitatively reproduces characteristics of steady-state activity that are typical for a cortical pyramidal neuron, namely firing rate not exceeding 30 Hz; critical values of the stimulating current and conductance which induce the depolarization block not exceeding 80 mV and 3, respectively (both values are scaled by the resting input conductance); extremum of hyperpolarization close to the midpoint between spikes. The analysis of the model reveals that the spiking regime appears through a saddle-node-on-invariant-circle bifurcation, and the depolarization block is reached through a saddle-node bifurcation of cycles. The model can be used for realistic network simulations, and it can also be implemented within the so-called mean-field, refractory density framework.


Assuntos
Neurônios , Células Piramidais , Células Piramidais/fisiologia , Neurônios/fisiologia , Canais de Potássio/fisiologia , Potenciais de Ação/fisiologia
12.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674825

RESUMO

Potassium channels are widely distributed integral proteins responsible for the effective and selective transport of K+ ions through the biological membranes. According to the existing structural and mechanistic differences, they are divided into several groups. All of them are considered important molecular drug targets due to their physiological roles, including the regulation of membrane potential or cell signaling. One of the recent trends in molecular pharmacology is the evaluation of the therapeutic potential of natural compounds and their derivatives, which can exhibit high specificity and effectiveness. Among the pharmaceuticals of plant origin, which are potassium channel modulators, flavonoids appear as a powerful group of biologically active substances. It is caused by their well-documented anti-oxidative, anti-inflammatory, anti-mutagenic, anti-carcinogenic, and antidiabetic effects on human health. Here, we focus on presenting the current state of knowledge about the possibilities of modulation of particular types of potassium channels by different flavonoids. Additionally, the biological meaning of the flavonoid-mediated changes in the activity of K+ channels will be outlined. Finally, novel promising directions for further research in this area will be proposed.


Assuntos
Hipoglicemiantes , Canais de Potássio , Humanos , Canais de Potássio/fisiologia , Potássio
13.
J Neurosci ; 41(2): 269-283, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33208467

RESUMO

Neurons in the medial superior olive (MSO) detect 10 µs differences in the arrival times of a sound at the two ears. Such acuity requires exquisitely precise integration of binaural synaptic inputs. There is substantial understanding of how neuronal phase locking of afferent MSO structures, and MSO membrane biophysics subserve such high precision. However, we still lack insight into how the entirety of excitatory inputs is integrated along the MSO dendrite under sound stimulation. To understand how the dendrite integrates excitatory inputs as a whole, we combined anatomic quantifications of the afferent innervation in gerbils of both sexes with computational modeling of a single cell. We present anatomic data from confocal and transmission electron microscopy showing that single afferent fibers follow a single dendrite mostly up to the soma and contact it at multiple (median 4) synaptic sites, each containing multiple independent active zones (the overall density of active zones is estimated as 1.375 per µm2). Thus, any presynaptic action potential may elicit temporally highly coordinated synaptic vesicle release at tens of active zones, thereby achieving secure transmission. Computer simulations suggest that such an anatomic arrangement boosts the amplitude and sharpens the time course of excitatory postsynaptic potentials by reducing current sinks and more efficiently recruiting subthreshold potassium channels. Both effects improve binaural coincidence detection compared with single large synapses at the soma. Our anatomic data further allow for estimation of a lower bound of 7 and an upper bound of 70 excitatory fibers per dendrite.SIGNIFICANCE STATEMENT Passive dendritic propagation attenuates the amplitude of postsynaptic potentials and widens their temporal spread. Neurons in the medial superior olive, with their large bilateral dendrites, however, can detect coincidence of binaural auditory inputs with submillisecond precision, a computation that is in stark contrast to passive dendritic processing. Here, we show that dendrites can counteract amplitude attenuation and even decrease the temporal spread of postsynaptic potentials, if active subthreshold potassium conductances are triggered in temporal coordination along the whole dendrite. Our anatomic finding that axons run in parallel to the dendrites and make multiple synaptic contacts support such coordination since incoming action potentials would depolarize the dendrite at multiple sites within a brief time interval.


Assuntos
Dendritos/fisiologia , Complexo Olivar Superior/fisiologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Animais , Simulação por Computador , Potenciais Pós-Sinápticos Excitadores , Feminino , Gerbillinae , Masculino , Fibras Nervosas/fisiologia , Neurônios Aferentes/fisiologia , Canais de Potássio/fisiologia , Terminações Pré-Sinápticas/fisiologia , Localização de Som/fisiologia , Transmissão Sináptica , Vesículas Sinápticas/fisiologia
14.
J Biol Chem ; 296: 100381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556372

RESUMO

Calcium-/voltage-gated, large-conductance potassium channels (BKs) control critical physiological processes, including smooth muscle contraction. Numerous observations concur that elevated membrane cholesterol (CLR) inhibits the activity of homomeric BKs consisting of channel-forming alpha subunits. In mammalian smooth muscle, however, native BKs include accessory KCNMB1 (ß1) subunits, which enable BK activation at physiological intracellular calcium. Here, we studied the effect of CLR enrichment on BK currents from rat cerebral artery myocytes. Using inside-out patches from middle cerebral artery (MCA) myocytes at [Ca2+]free=30 µM, we detected BK activation in response to in vivo and in vitro CLR enrichment of myocytes. While a significant increase in myocyte CLR was achieved within 5 min of CLR in vitro loading, this brief CLR enrichment of membrane patches decreased BK currents, indicating that BK activation by CLR requires a protracted cellular process. Indeed, blocking intracellular protein trafficking with brefeldin A (BFA) not only prevented BK activation but led to channel inhibition upon CLR enrichment. Surface protein biotinylation followed by Western blotting showed that BFA blocked the increase in plasmalemmal KCNMB1 levels achieved via CLR enrichment. Moreover, CLR enrichment of arteries with naturally high KCNMB1 levels, such as basilar and coronary arteries, failed to activate BK currents. Finally, CLR enrichment failed to activate BK channels in MCA myocytes from KCNMB1-/- mouse while activation was detected in their wild-type (C57BL/6) counterparts. In conclusion, the switch in CLR regulation of BK from inhibition to activation is determined by a trafficking-dependent increase in membrane levels of KCNMB1 subunits.


Assuntos
Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Células Musculares/metabolismo , Canais de Potássio/metabolismo , Animais , Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Artérias Cerebrais/citologia , Artérias Cerebrais/metabolismo , Colesterol/metabolismo , Colesterol/fisiologia , Vasos Coronários/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Canais de Potássio/fisiologia , Ratos , Ratos Sprague-Dawley , Vasoconstrição
15.
Synapse ; 76(7-8): e22234, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35460585

RESUMO

4-aminopyridine (4-AP) is a potassium channel blocker that has been used to treat patients with multiple sclerosis and Lambert-Eaton disease. The concentration of this drug in the blood of patients was estimated to be in low or submicromolar range. Animal studies have shown that 4-AP at such low concentration selectively blocks a subset of channels in Kv1 or Kv3 families. The crayfish opener neuromuscular junction and ventral superficial flexor (VSF) preparations were used to examine functions of K+ channels blocked by low concentrations of 4-AP. At opener motor axons, intracellular recordings show that 4-AP could increase action potential (AP) amplitude, duration, and after-depolarization (ADP) at 10 µM. As 4-AP concentration was increased, in twofold steps, AP amplitude did not increase further up to 5 mM. AP duration and ADP increased significantly mainly in two concentration ranges, 10-50 µM and 1-5 mM. The effects of 50 µM 4-AP on the VSF were less consistent than that observed at the opener motor axons. 4-AP did not change AP amplitude of motor axons recorded with an extracellular electrode and change in AP repolarizing potential was observed in ∼25% of the axons. EPSP recorded simultaneously with AP showed an increase in amplitude with 4-AP treatment only in 30% of the axon-EPSP pairs. 4-AP also increased firing frequencies of ∼50% of axons. In four animals, 4-AP "awakened" the firing of APs from an axon that was silent before the drug. The mixture of positive and negative 4-AP effects summarized above was observed in the same VSF preparations in all cases (n = 8). We propose that there is a significant diversity in the density 4-AP-sensitive potassium channels among motor axons of the VSF. Functional significance in the differences of 4-AP sensitivity of the two motor systems is discussed.


Assuntos
4-Aminopiridina , Astacoidea , Canais de Potássio , 4-Aminopiridina/farmacologia , Potenciais de Ação , Animais , Astacoidea/fisiologia , Axônios , Canais de Potássio/fisiologia
16.
Pharmacol Res ; 175: 105986, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34800627

RESUMO

During cardiac reperfusion after myocardial infarction, the heart is subjected to cascading cycles of ischaemia reperfusion injury (IRI). Patients presenting with this injury succumb to myocardial dysfunction resulting in myocardial cell death, which contributes to morbidity and mortality. New targeted therapies are required if the myocardium is to be protected from this injury and improve patient outcomes. Extensive research into the role of mitochondria during ischaemia and reperfusion has unveiled one of the most important sites contributing towards this injury; specifically, the opening of the mitochondrial permeability transition pore. The opening of this pore occurs during reperfusion and results in mitochondria swelling and dysfunction, promoting apoptotic cell death. Activation of mitochondrial ATP-sensitive potassium channels (mitoKATP) channels, uncoupling proteins, and inhibition of glycogen synthase kinase-3ß (GSK3ß) phosphorylation have been identified to delay mitochondrial permeability transition pore opening and reduce reactive oxygen species formation, thereby decreasing infarct size. Statins have recently been identified to provide a direct cardioprotective effect on these specific mitochondrial components, all of which reduce the severity of myocardial IRI, promoting the ability of statins to be a considerate preconditioning agent. This review will outline what has currently been shown in regard to statins cardioprotective effects on mitochondria during myocardial IRI.


Assuntos
Cardiotônicos/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Cardiotônicos/farmacologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/fisiologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Mitofagia/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Canais de Potássio/fisiologia
17.
Prostaglandins Other Lipid Mediat ; 163: 106673, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36115499

RESUMO

AIM/OBJECTIVE: This study aimed to investigate the effects of Rosa damascena Miller essential oil on rat tracheal smooth muscle contractility and the hypothesis that voltage-gated potassium (K<sub>V</sub>) channels, ATP-sensitive potassium (K<sub>ATP</sub>) channels, and large-conductance calcium-activated potassium (BK<sub>Ca</sub>) channels may have roles in these effects. METHODS: Isometric contraction-relaxation responses of tracheal rings were measured with an isolated tissue bath model. The steady contraction was induced with both 10<sup>-5</sup> M ACh and 60 mM KCl, and then the concentration-dependent responses of rose oil (0.1-100 µg/mL) were examined. The time-matched control (double distilled water) group was also formed. To evaluate the role of K<sub>V</sub>, K<sub>ATP</sub>, and BK<sub>Ca</sub> channels, tracheal rings were incubated with 4-AP (K<sub>V</sub> channel blocker), glibenclamide (K<sub>ATP</sub> channel blocker), TEA (BK<sub>Ca</sub> channel blocker), and iberiotoxin (selective BK<sub>Ca</sub> channel blocker). Also, a vehicle control group was formed for dimethyl sulfoxide (DMSO). RESULTS: Rose oil exerted the relaxant effects in tracheal rings pre-contracted with both ACh and KCl at concentrations of 1, 10, and 100 µg/mL (p < 0.05). Besides, K<sub>V</sub> channel blocker 4-AP, K<sub>ATP</sub> channel blocker glibenclamide, and BK<sub>Ca</sub> channel blockers TEA and iberiotoxin incubations significantly inhibited the rose oil-induced relaxation responses (p < 0.05). However, incubation of tissues with DMSO, glibenclamide solvent, for 10 min did not cause a significant change in the relaxation responses to rose oil (p > 0.05). CONCLUSIONS: In conclusion, the first physiological findings were obtained regarding the functional relaxant effects of rose essential oil in rat trachea. The findings showed that rose oil induces bronchorelaxation in a concentration-dependent manner. Besides, this study is the first to report that rose oil-mediated bronchodilation responses are associated with the activity of K<sub>V</sub>, K<sub>ATP</sub>, and BK<sub>Ca</sub> channels. These results suggest that rose oil might be a useful agent in the treatment of abnormal bronchoconstriction-related diseases such as asthma and chronic obstructive pulmonary disease.


Assuntos
Óleos Voláteis , Rosa , Ratos , Animais , Glibureto/farmacologia , Canais de Potássio/fisiologia , Traqueia , Óleos Voláteis/farmacologia , Dimetil Sulfóxido , Potássio , Trifosfato de Adenosina
18.
Biochemistry (Mosc) ; 87(8): 683-688, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36171650

RESUMO

The conclusions made in the three papers published in Function by Juhaszova et al. [Function, 3, 2022, zqab065, zqac001, zqac018], can be seen as a breakthrough in bioenergetics and mitochondrial medicine. For more than half a century, it has been believed that mitochondrial energetics is solely protonic and is based on the generation of electrochemical potential of hydrogen ions across the inner mitochondrial membrane upon oxidation of respiratory substrates, resulting in the generation of ATP via reverse transport of protons through the ATP synthase complex. Juhaszova et al. demonstrated that ATP synthase transfers not only protons, but also potassium ions, with the generation of ATP. This mechanism seems logical, given the fact that in eukaryotic cells, the concentration of potassium ions is several million times higher than the concentration of protons. The transport of K+ through the ATP synthase was enhanced by the activators of mitochondrial ATP-dependent K+ channel (mK/ATP), leading to the conclusion that ATP synthase is the material essence of mK/ATP. Beside ATP generation, the transport of osmotically active K+ to the mitochondrial matrix is accompanied by water entry to the matrix, leading to an increase in the matrix volume and activation of mitochondrial respiration with the corresponding increase in the ATP synthesis, which suggests an advantage of such transport for energy production. The driving force for K+ transport into the mitochondria is the membrane potential; an excess of K+ is exported from the matrix by the hypothetical K+/H+ exchangers. Inhibitory factor 1 (IF1) plays an important role in the activation of mK/ATP by increasing the chemo-mechanical efficiency of ATP synthase, which may be a positive factor in the protective anti-ischemic signaling.


Assuntos
Potássio , Prótons , Trifosfato de Adenosina , Mitocôndrias/metabolismo , Potássio/metabolismo , Canais de Potássio/fisiologia , Água
19.
J Neurosci ; 40(9): 1795-1809, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31969470

RESUMO

In mouse cerebellar Purkinje neurons (PNs), the climbing fiber (CF) input provides a signal to parallel fiber (PF) synapses, triggering PF synaptic plasticity. This signal is given by supralinear Ca2+ transients, associated with the CF synaptic potential and colocalized with the PF Ca2+ influx, occurring only when PF activity precedes the CF input. Here, we unravel the biophysical determinants of supralinear Ca2+ signals associated with paired PF-CF synaptic activity. We used membrane potential (Vm) and Ca2+ imaging to investigate the local CF-associated Ca2+ influx following a train of PF synaptic potentials in two cases: (1) when the dendritic Vm is hyperpolarized below the resting Vm, and (2) when the dendritic Vm is at rest. We found that supralinear Ca2+ signals are mediated by type-1 metabotropic glutamate receptors (mGluR1s) when the CF input is delayed by 100-150 ms from the first PF input in both cases. When the dendrite is hyperpolarized only, however, mGluR1s boost neighboring T-type channels, providing a mechanism for local coincident detection of PF-CF activity. The resulting Ca2+ elevation is locally amplified by saturation of endogenous Ca2+ buffers produced by the PF-associated Ca2+ influx via the mGluR1-mediated nonselective cation conductance. In contrast, when the dendritic Vm is at rest, mGluR1s increase dendritic excitability by inactivating A-type K+ channels, but this phenomenon is not restricted to the activated PF synapses. Thus, Vm is likely a crucial parameter in determining PF synaptic plasticity, and the occurrence of hyperpolarization episodes is expected to play an important role in motor learning.SIGNIFICANCE STATEMENT In Purkinje neurons, parallel fiber synaptic plasticity, determined by coincident activation of the climbing fiber input, underlies cerebellar learning. We unravel the biophysical mechanisms allowing the CF input to produce a local Ca2+ signal exclusively at the sites of activated parallel fibers. We show that when the membrane potential is hyperpolarized with respect to the resting membrane potential, type-1 metabotropic glutamate receptors locally enhance Ca2+ influx mediated by T-type Ca2+ channels, and that this signal is amplified by saturation of endogenous buffer also mediated by the same receptors. The combination of these two mechanisms is therefore capable of producing a Ca2+ signal at the activated parallel fiber sites, suggesting a role of Purkinje neuron membrane potential in cerebellar learning.


Assuntos
Sinalização do Cálcio/fisiologia , Cerebelo/fisiologia , Células de Purkinje/fisiologia , Receptores de AMPA/fisiologia , Algoritmos , Animais , Canais de Cálcio Tipo T/fisiologia , Cerebelo/citologia , Simulação por Computador , Dendritos/fisiologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Canais de Potássio/fisiologia , Sinapses/fisiologia
20.
J Neurosci ; 40(12): 2519-2537, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32054675

RESUMO

The bed nucleus of the stria terminalis (BNST) is a forebrain region highly responsive to stress that expresses corticotropin-releasing hormone (CRH) and is implicated in mood disorders, such as anxiety. However, the exact mechanism by which chronic stress induces CRH-mediated dysfunction in BNST and maladaptive behaviors remains unclear. Here, we first confirmed that selective acute optogenetic activation of the oval nucleus BNST (ovBNST) increases maladaptive avoidance behaviors in male mice. Next, we found that a 6 week chronic variable mild stress (CVMS) paradigm resulted in maladaptive behaviors and increased cellular excitability of ovBNST CRH neurons by potentiating mEPSC amplitude, altering the resting membrane potential, and diminishing M-currents (a voltage-gated K+ current that stabilizes membrane potential) in ex vivo slices. CVMS also increased c-fos+ cells in ovBNST following handling. We next investigated potential molecular mechanism underlying the electrophysiological effects and observed that CVMS increased CRH+ and pituitary adenylate cyclase-activating polypeptide+ (PACAP; a CRH upstream regulator) cells but decreased striatal-enriched protein tyrosine phosphatase+ (a STEP CRH inhibitor) cells in ovBNST. Interestingly, the electrophysiological effects of CVMS were reversed by CRHR1-selective antagonist R121919 application. CVMS also activated protein kinase A (PKA) in BNST, and chronic infusion of the PKA-selective antagonist H89 into ovBNST reversed the effects of CVMS. Coadministration of the PKA agonist forskolin prevented the beneficial effects of R121919. Finally, CVMS induced an increase in surface expression of phosphorylated GluR1 (S845) in BNST. Collectively, these findings highlight a novel and indispensable stress-induced role for PKA-dependent CRHR1 signaling in activating BNST CRH neurons and mediating maladaptive behaviors.SIGNIFICANCE STATEMENT Chronic stress and acute activation of oval bed nucleus of the stria terminalis (ovBNST) induces maladaptive behaviors in rodents. However, the precise molecular and electrophysiological mechanisms underlying these effects remain unclear. Here, we demonstrate that chronic variable mild stress activates corticotropin-releasing hormone (CRH)-associated stress signaling and CRH neurons in ovBNST by potentiating mEPSC amplitude and decreasing M-current in male mice. These electrophysiological alterations and maladaptive behaviors were mediated by BNST protein kinase A-dependent CRHR1 signaling. Our results thus highlight the importance of BNST CRH dysfunction in chronic stress-induced disorders.


Assuntos
Adaptação Psicológica , Hormônio Liberador da Corticotropina/fisiologia , Núcleos Septais/fisiologia , Transdução de Sinais/fisiologia , Estresse Psicológico/psicologia , Animais , Doença Crônica , Hormônio Liberador da Corticotropina/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fenômenos Eletrofisiológicos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Genes fos , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Canais de Potássio/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA