Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 660
Filtrar
1.
Am J Pathol ; 194(4): 551-561, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38061627

RESUMO

Diabetes is a prevalent disease, primarily characterized by high blood sugar (hyperglycemia). Significantly higher rates of myocardial dysfunction have been noted in individuals with diabetes, even in those without coronary artery disease or high blood pressure (hypertension). Numerous molecular mechanisms have been identified through which diabetes contributes to the pathology of diabetic cardiomyopathy, which presents as cardiac hypertrophy and fibrosis. At the cellular level, oxidative stress and inflammation in cardiomyocytes are triggered by hyperglycemia. Although males are generally more likely to develop cardiovascular disease than females, diabetic males are less likely to develop diabetic cardiomyopathy than are diabetic females. One reason for these differences may be the higher levels of serum testosterone in males compared with females. Although testosterone appears to protect against cardiomyocyte oxidative stress and exacerbate hypertrophy, its role in inflammation and fibrosis is much less clear. Additional preclinical and clinical studies will be required to delineate testosterone's effect on the diabetic heart.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Hiperglicemia , Hipertensão , Humanos , Masculino , Feminino , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/patologia , Testosterona/farmacologia , Caracteres Sexuais , Cardiomegalia , Estresse Oxidativo , Fibrose , Inflamação
2.
J Mol Cell Cardiol ; 189: 83-89, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484473

RESUMO

Diabetic heart disease morbidity and mortality is escalating. No specific therapeutics exist and mechanistic understanding of diabetic cardiomyopathy etiology is lacking. While lipid accumulation is a recognized cardiomyocyte phenotype of diabetes, less is known about glycolytic fuel handling and storage. Based on in vitro studies, we postulated the operation of an autophagy pathway in the myocardium specific for glycogen homeostasis - glycophagy. Here we visualize occurrence of cardiac glycophagy and show that the diabetic myocardium is characterized by marked glycogen elevation and altered cardiomyocyte glycogen localization. We establish that cardiac glycophagy flux is disturbed in diabetes. Glycophagy may represent a potential therapeutic target for alleviating the myocardial impacts of metabolic disruption in diabetic heart disease.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/tratamento farmacológico , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Glicogênio/metabolismo , Autofagia , Diabetes Mellitus/metabolismo
3.
Am J Physiol Cell Physiol ; 326(3): C724-C741, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223927

RESUMO

Diabetic cardiomyopathy (DCM) is closely related to ferroptosis, a new type of cell death that mainly manifests as intracellular iron accumulation and lipid peroxidation. Paeoniflorin (PA) helps to improve impaired glucose tolerance, influences the distribution of the intestinal flora, and induces significant resistance to ferroptosis in several models. In this study, we found that PA improved cardiac dysfunction in mice with DCM by alleviating myocardial damage, resisting oxidative stress and ferroptosis, and changing the community composition and structure of the intestinal microbiota. Metabolomics analysis revealed that PA-treated fecal microbiota transplantation affected metabolites in DCM mice. Based on in vivo and in vitro experiments, 11,12-epoxyeicosatrienoic acid (11,12-EET) may serve as a key contributor that mediates the cardioprotective and antiferroptotic effects of PA-treated fecal microbiota transplantation (FMT) in DCM mice.NEW & NOTEWORTHY This study demonstrated for the first time that paeoniflorin (PA) exerts protective effects in diabetic cardiomyopathy mice by alleviating myocardial damage, resisting ferroptosis, and changing the community composition and structure of the intestinal microbiota, and 11,12-epoxyeicosatrienoic acid (11,12-EET) may serve as a key contributor in its therapeutic efficacy.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Ferroptose , Microbioma Gastrointestinal , Glucosídeos , Monoterpenos , Animais , Camundongos , Cardiomiopatias Diabéticas/tratamento farmacológico , Miocárdio
4.
Am J Physiol Cell Physiol ; 326(2): C331-C347, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047307

RESUMO

Diabetic cardiomyopathy (dCM) is a major complication of diabetes; however, specific treatments for dCM are currently lacking. RTA 408, a semisynthetic triterpenoid, has shown therapeutic potential against various diseases by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. We established in vitro and in vivo models using high glucose toxicity and db/db mice, respectively, to simulate dCM. Our results demonstrated that RTA 408 activated Nrf2 and alleviated various dCM-related cardiac dysfunctions, both in vivo and in vitro. Additionally, it was found that silencing the Nrf2 gene eliminated the cardioprotective effect of RTA 408. RTA 408 ameliorated oxidative stress in dCM mice and high glucose-exposed H9C2 cells by activating Nrf2, inhibiting mitochondrial fission, exerting anti-inflammatory effects through the Nrf2/NF-κB axis, and ultimately suppressing apoptosis, thereby providing cardiac protection against dCM. These findings provide valuable insights for potential dCM treatments.NEW & NOTEWORTHY We demonstrated first that the nuclear factor erythroid 2-related factor 2 (Nrf2) activator RTA 408 has a protective effect against diabetic cardiomyopathy. We found that RTA 408 could stimulate the nuclear entry of Nrf2 protein, regulate the mitochondrial fission-fusion balance, and redistribute p65, which significantly alleviated the oxidative stress level in cardiomyocytes, thereby reducing apoptosis and inflammation, and protecting the systolic and diastolic functions of the heart.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Triterpenos , Camundongos , Animais , NF-kappa B/genética , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Dinâmica Mitocondrial , Estresse Oxidativo , Inflamação/metabolismo , Triterpenos/metabolismo , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Miócitos Cardíacos/metabolismo , Glucose/metabolismo , Diabetes Mellitus/metabolismo
5.
J Cell Mol Med ; 28(2): e18055, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113341

RESUMO

Diabetic cardiomyopathy (DCM) is a chronic microvascular complication of diabetes that is generally defined as ventricular dysfunction occurring in patients with diabetes and unrelated to known causes. Several mechanisms have been proposed to contribute to the occurrence and persistence of DCM, in which oxidative stress and autophagy play a non-negligible role. Diabetic cardiomyopathy is involved in a variety of physiological and pathological processes. The 5' adenosine monophosphate-activated protein kinase/nuclear factor-erythroid 2-related factor 2 (AMPK/Nrf2) are expressed in the heart, and studies have shown that asiaticoside (ASI) and activated AMPK/Nrf2 have a protective effect on the myocardium. However, the roles of ASI and AMPK/Nrf2 in DCM are unknown. The intraperitoneal injection of streptozotocin (STZ) and high-fat feed were used to establish the DCM models in 100 C57/BL mice. Asiaticoside and inhibitors of AMPK/Nrf2 were used for intervention. Cardiac function, oxidative stress, and autophagy were measured in mice. DCM mice displayed increased levels of oxidative stress while autophagy levels declined. In addition, AMPK/Nrf2 was activated in DCM mice with ASI intervention. Further, we discovered that AMPK/Nrf2 inhibition blocked the protective effect of ASI by compound C and treatment with ML-385. The present study demonstrates that ASI exerts a protective effect against DCM via the potential activation of the AMPK/Nrf2 pathway. Asiaticoside is a potential therapeutic target for DCM.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Triterpenos , Humanos , Camundongos , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Estresse Oxidativo
6.
J Transl Med ; 22(1): 494, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790051

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM), a serious complication of diabetes, leads to structural and functional abnormalities of the heart and ultimately evolves to heart failure. IL-37 exerts a substantial influence on the regulation of inflammation and metabolism. Whether IL-37 is involved in DCM is unknown. METHODS: The plasma samples were collected from healthy controls, diabetic patients and DCM patients, and the level of IL-37 and its relationship with heart function were observed. The changes in cardiac function, myocardial fibrosis and mitochondrial injury in DCM mice with or without IL-37 intervention were investigated in vivo. By an in vitro co-culture approach involving HG challenge of cardiomyocytes and fibroblasts, the interaction carried out by cardiomyocytes on fibroblast profibrotic activation was studied. Finally, the possible interactive mediator between cardiomyocytes and fibroblasts was explored, and the intervention role of IL-37 and its relevant molecular mechanisms. RESULTS: We showed that the level of plasma IL-37 in DCM patients was upregulated compared to that in healthy controls and diabetic patients. Both recombinant IL-37 administration or inducing IL-37 expression alleviated cardiac dysfunction and myocardial fibrosis in DCM mice. Mechanically, hyperglycemia impaired mitochondria through SIRT1/AMPK/PGC1α signaling, resulting in significant cardiomyocyte apoptosis and the release of extracellular vesicles containing mtDNA. Fibroblasts then engulfed these mtDNA-enriched vesicles, thereby activating TLR9 signaling and the cGAS-STING pathway to initiate pro-fibrotic process and adverse remodeling. However, the presence of IL-37 ameliorated mitochondrial injury by preserving the activity of SIRT1-AMPK-PGC1α axis, resulting in a reduction in release of mtDNA-enriched vesicle and ultimately attenuating the progression of DCM. CONCLUSIONS: Collectively, our study demonstrates a protective role of IL-37 in DCM, offering a promising therapeutic agent for this disease.


Assuntos
DNA Mitocondrial , Cardiomiopatias Diabéticas , Fibrose , Interleucina-1 , Miócitos Cardíacos , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Apoptose/efeitos dos fármacos , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , DNA Mitocondrial/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Interleucina-1/metabolismo , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo
7.
Cardiovasc Diabetol ; 23(1): 116, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566123

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is a serious complication in patients with type 1 diabetes mellitus (T1DM), which still lacks adequate therapy. Irisin, a cleavage peptide off fibronectin type III domain-containing 5, has been shown to preserve cardiac function in cardiac ischemia-reperfusion injury. Whether or not irisin plays a cardioprotective role in DCM is not known. METHODS AND RESULTS: T1DM was induced by multiple low-dose intraperitoneal injections of streptozotocin (STZ). Our current study showed that irisin expression/level was lower in the heart and serum of mice with STZ-induced TIDM. Irisin supplementation by intraperitoneal injection improved the impaired cardiac function in mice with DCM, which was ascribed to the inhibition of ferroptosis, because the increased ferroptosis, associated with increased cardiac malondialdehyde (MDA), decreased reduced glutathione (GSH) and protein expressions of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), was ameliorated by irisin. In the presence of erastin, a ferroptosis inducer, the irisin-mediated protective effects were blocked. Mechanistically, irisin treatment increased Sirtuin 1 (SIRT1) and decreased p53 K382 acetylation, which decreased p53 protein expression by increasing its degradation, consequently upregulated SLC7A11 and GPX4 expressions. Thus, irisin-mediated reduction in p53 decreases ferroptosis and protects cardiomyocytes against injury due to high glucose. CONCLUSION: This study demonstrated that irisin could improve cardiac function by suppressing ferroptosis in T1DM via the SIRT1-p53-SLC7A11/GPX4 pathway. Irisin may be a therapeutic approach in the management of T1DM-induced cardiomyopathy.


Assuntos
Diabetes Mellitus Tipo 1 , Cardiomiopatias Diabéticas , Ferroptose , Humanos , Animais , Camundongos , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/prevenção & controle , Sirtuína 1 , Fibronectinas , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Proteína Supressora de Tumor p53 , Miócitos Cardíacos
8.
Cardiovasc Diabetol ; 23(1): 19, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195474

RESUMO

AIMS: Diabetic cardiomyopathy (DCM) is a major cause of mortality in patients with diabetes, and the potential strategies for treating DCM are insufficient. Melatonin (Mel) has been shown to attenuate DCM, however, the underlying mechanism remains unclear. The role of vascular endothelial growth factor-B (VEGF-B) in DCM is little known. In present study, we aimed to investigate whether Mel alleviated DCM via regulation of VEGF-B and explored its underlying mechanisms. METHODS AND RESULTS: We found that Mel significantly alleviated cardiac dysfunction and improved autophagy of cardiomyocytes in type 1 diabetes mellitus (T1DM) induced cardiomyopathy mice. VEGF-B was highly expressed in DCM mice in comparison with normal mice, and its expression was markedly reduced after Mel treatment. Mel treatment diminished the interaction of VEGF-B and Glucose-regulated protein 78 (GRP78) and reduced the interaction of GRP78 and protein kinase RNA -like ER kinase (PERK). Furthermore, Mel increased phosphorylation of PERK and eIF2α, then up-regulated the expression of ATF4. VEGF-B-/- mice imitated the effect of Mel on wild type diabetic mice. Interestingly, injection with Recombinant adeno-associated virus serotype 9 (AAV9)-VEGF-B or administration of GSK2656157 (GSK), an inhibitor of phosphorylated PERK abolished the protective effect of Mel on DCM. Furthermore, rapamycin, an autophagy agonist displayed similar effect with Mel treatment; while 3-Methyladenine (3-MA), an autophagy inhibitor neutralized the effect of Mel on high glucose-treated neonatal rat ventricular myocytes. CONCLUSIONS: These results demonstrated that Mel attenuated DCM via increasing autophagy of cardiomyocytes, and this cardio-protective effect of Mel was dependent on VEGF-B/GRP78/PERK signaling pathway.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Melatonina , Humanos , Camundongos , Ratos , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/prevenção & controle , Miócitos Cardíacos , Fator B de Crescimento do Endotélio Vascular , Melatonina/farmacologia , Chaperona BiP do Retículo Endoplasmático , Diabetes Mellitus Experimental/tratamento farmacológico , Transdução de Sinais , Autofagia , Glucose
9.
Cardiovasc Diabetol ; 23(1): 169, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750502

RESUMO

Diabetic heart disease (DHD) is a serious complication in patients with diabetes. Despite numerous studies on the pathogenic mechanisms and therapeutic targets of DHD, effective means of prevention and treatment are still lacking. The pathogenic mechanisms of DHD include cardiac inflammation, insulin resistance, myocardial fibrosis, and oxidative stress. Macrophages, the primary cells of the human innate immune system, contribute significantly to these pathological processes, playing an important role in human disease and health. Therefore, drugs targeting macrophages hold great promise for the treatment of DHD. In this review, we examine how macrophages contribute to the development of DHD and which drugs could potentially be used to target macrophages in the treatment of DHD.


Assuntos
Cardiomiopatias Diabéticas , Macrófagos , Estresse Oxidativo , Transdução de Sinais , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Cardiomiopatias Diabéticas/imunologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Animais , Estresse Oxidativo/efeitos dos fármacos , Fibrose , Anti-Inflamatórios/uso terapêutico , Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/imunologia , Resistência à Insulina , Mediadores da Inflamação/metabolismo , Terapia de Alvo Molecular
10.
Cardiovasc Diabetol ; 23(1): 197, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849829

RESUMO

OBJECTIVE: Sodium glucose cotransporter 2 (SGLT2) inhibitors significantly improve cardiovascular outcomes in diabetic patients; however, the mechanism is unclear. We hypothesized that dapagliflozin improves cardiac outcomes via beneficial effects on systemic and cardiac inflammation and cardiac fibrosis. RESEARCH AND DESIGN METHODS: This randomized placebo-controlled clinical trial enrolled 62 adult patients (mean age 62, 17% female) with type 2 diabetes (T2D) without known heart failure. Subjects were randomized to 12 months of daily 10 mg dapagliflozin or placebo. For all patients, blood/plasma samples and cardiac magnetic resonance imaging (CMRI) were obtained at time of randomization and at the end of 12 months. Systemic inflammation was assessed by plasma IL-1B, TNFα, IL-6 and ketone levels and PBMC mitochondrial respiration, an emerging marker of sterile inflammation. Global myocardial strain was assessed by feature tracking; cardiac fibrosis was assessed by T1 mapping to calculate extracellular volume fraction (ECV); and cardiac tissue inflammation was assessed by T2 mapping. RESULTS: Between the baseline and 12-month time point, plasma IL-1B was reduced (- 1.8 pg/mL, P = 0.003) while ketones were increased (0.26 mM, P = 0.0001) in patients randomized to dapagliflozin. PBMC maximal oxygen consumption rate (OCR) decreased over the 12-month period in the placebo group but did not change in patients receiving dapagliflozin (- 158.9 pmole/min/106 cells, P = 0.0497 vs. - 5.2 pmole/min/106 cells, P = 0.41), a finding consistent with an anti-inflammatory effect of SGLT2i. Global myocardial strain, ECV and T2 relaxation time did not change in both study groups. GOV REGISTRATION: NCT03782259.


Assuntos
Compostos Benzidrílicos , Biomarcadores , Diabetes Mellitus Tipo 2 , Glucosídeos , Mediadores da Inflamação , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Compostos Benzidrílicos/uso terapêutico , Compostos Benzidrílicos/efeitos adversos , Glucosídeos/uso terapêutico , Glucosídeos/efeitos adversos , Feminino , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Masculino , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Mediadores da Inflamação/sangue , Biomarcadores/sangue , Fatores de Tempo , Anti-Inflamatórios/uso terapêutico , Fibrose , Inflamação/tratamento farmacológico , Inflamação/sangue , Inflamação/diagnóstico , Método Duplo-Cego , Miocárdio/patologia , Miocárdio/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/diagnóstico por imagem , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/sangue
11.
Cardiovasc Diabetol ; 23(1): 273, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049086

RESUMO

BACKGROUND: Extracellular matrix (ECM) stiffness is closely related to the progress of diabetic cardiomyopathy (DCM) and the response of treatment of DCM to anti-diabetic drugs. Dapagliflozin (Dapa) has been proven to have cardio-protective efficacy for diabetes and listed as the first-line drug to treat heart failure. But the regulatory relationship between ECM stiffness and treatment efficacy of Dapa remains elusive. MATERIALS AND METHODS: This work investigated the effect of ECM stiffness on DCM progression and Dapa efficacy using both in vivo DCM rat model and in vitro myocardial cell model with high glucose injury. First, through DCM rat models with various levels of myocardial injury and administration with Dapa treatment for four weeks, the levels of myocardial injury, myocardial oxidative stress, expressions of AT1R (a mechanical signal protein) and the stiffness of myocardial tissues were obtained. Then for mimicking the stiffness of myocardial tissues at early and late stages of DCM, we constructed cell models through culturing H9c2 myocardial cells on the polyacrylamide gels with two stiffness and exposed to a high glucose level and without/with Dapa intervention. The cell viability, reactive oxygen species (ROS) levels and expressions of mechanical signal sensitive proteins were obtained. RESULTS: The DCM progression is accompanied by the increased myocardial tissue stiffness, which can synergistically exacerbate myocardial cell injury with high glucose. Dapa can improve the ECM stiffness-induced DCM progression and its efficacy on DCM is more pronounced on the soft ECM, which is related to the regulation pathway of AT1R-FAK-NOX2. Besides, Dapa can inhibit the expression of the ECM-induced integrin ß1, but without significant impact on piezo 1. CONCLUSIONS: Our study found the regulation and effect of biomechanics in the DCM progression and on the Dapa efficacy on DCM, providing the new insights for the DCM treatment. Additionally, our work showed the better clinical prognosis of DCM under early Dapa intervention.


Assuntos
Compostos Benzidrílicos , Cardiomiopatias Diabéticas , Matriz Extracelular , Glucosídeos , Miócitos Cardíacos , Estresse Oxidativo , Ratos Sprague-Dawley , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Glucosídeos/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Compostos Benzidrílicos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Masculino , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Espécies Reativas de Oxigênio/metabolismo , Ratos , Quinase 1 de Adesão Focal/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações
12.
J Biochem Mol Toxicol ; 38(3): e23664, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372178

RESUMO

The present work elucidates the role of colchicine (COL) on albumin glycation and cellular oxidative stress in diabetic cardiomyopathy (DCM). Human serum albumin (HSA) was glycated with methylglyoxal in the presence of COL (2.5, 3.75, and 5 µM), whereas positive and negative control samples were maintained separately. The effects of COL on HSA glycation, structural and functional modifications in glycated HSA were analyzed using different spectroscopical and fluorescence techniques. Increased fructosamine, carbonyl, and pentosidine formation in glycated HSA samples were inhibited in the presence of COL. Structural conformation of HSA and glycated HSA samples was examined by field emission scanning electron microscopy, circular dichroism, Fourier transform infrared, and proton nuclear magnetic resonance analyses, where COL maintained both secondary and tertiary structures of HSA against glycation. Functional marker assays included ABTS•+ radical scavenging and total antioxidant activities, advanced oxidative protein product formation, and turbidimetry, which showed preserved functional properties of glycated HSA in COL-containing samples. Afterward, rat cardiomyoblast (H9c2 cell line) was treated with glycated HSA-COL complex (400 µg/mL) for examining various cellular antioxidants (nitric oxide, catalase, superoxide dismutase, and glutathione) and detoxification enzymes (aldose reductase, glyoxalase I, and II) levels. All three concentrations of COL exhibited effective anti-glycation properties, enhanced cellular antioxidant levels, and detoxification enzyme activities. The report comprehensively analyzes the potential anti-glycation and properties of COL during its initial assessment.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Animais , Ratos , Produtos Finais de Glicação Avançada/metabolismo , Antioxidantes/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Reação de Maillard , Glicosilação , Albumina Sérica/metabolismo , Estresse Oxidativo , Albumina Sérica Humana/metabolismo , Dicroísmo Circular
13.
BMC Cardiovasc Disord ; 24(1): 333, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961333

RESUMO

BACKGROUND: Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in diabetic cardiomyopathy. Ginsenoside Rb1 (Rb1) is a major pharmacologically active component of ginseng to treat cardiovascular diseases. Whether Rb1 treat diabetes injured heart remains unknown. This study was to investigate the effect of Rb1 on diabetes injured cardiac muscle tissue and to further investigate its possible molecular pharmacology mechanisms. METHODS: Male Sprague-Dawley rats were injected streptozotocin solution for 2 weeks, followed 6 weeks Rb1 or insulin treatment. The activity of SOD, CAT, Gpx, and the levels of MDA was measured; histological and ultrastructure analyses, RyR2 activity and phosphorylated RyR2(Ser2808) protein expression analyses; and Tunel assay were performed. RESULTS: There was decreased activity of SOD, CAT, Gpx and increased levels of MDA in the diabetic group from control. Rb1 treatment increased activity of SOD, CAT, Gpx and decreased the levels of MDA as compared with diabetic rats. Neutralizing the RyR2 activity significantly decreased in diabetes from control, and increased in Rb1 treatment group from diabetic group. The expression of phosphorylation of RyR2 Ser2808 was increased in diabetic rats from control, and were attenuated with insulin and Rb1 treatment. Diabetes increased the apoptosis rate, and Rb1 treatment decreased the apoptosis rate. Rb1 and insulin ameliorated myocardial injury in diabetic rats. CONCLUSIONS: These data indicate that Rb1 could be useful for mitigating oxidative damage, reduced phosphorylation of RyR2 Ser2808 and decreased the apoptosis rate of cardiomyocytes in diabetic cardiomyopathy.


Assuntos
Antioxidantes , Apoptose , Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Ginsenosídeos , Miócitos Cardíacos , Estresse Oxidativo , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina , Estreptozocina , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Masculino , Estresse Oxidativo/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Ginsenosídeos/farmacologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/etiologia , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Fosforilação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Miocárdio/patologia , Miocárdio/metabolismo , Insulina , Malondialdeído/metabolismo
14.
Exp Cell Res ; 422(2): 113417, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379276

RESUMO

BACKGROUND: Diabetes cardiomyopathy (DCM) is one of the major risk factors for the heart failure of the diabetic patients. RIPK1 maybe participate in the regulation of the oxidative stress and inflammation during DCM. METHODS: H&E and Masson staining were utilized to assess the inflammation and fibrosis in myocardial tissues. CCK-8 and TUNEL staining were utilized to analyze cell viability and apoptosis, respectively. SOD activity and MDA content were detected utilizing the kits. The formation of autophagosomes was measured by immunofluorescence assay. RESULTS: RIPK1 and RPTOR (a component of mTORC1) expression and oxidative stress level were upregulated, but autophagy was decreased in the myocardial tissues of DCM rat characterized by the high body weight and blood glucose, abnormal cardiac function, myocardial inflammation and fibrosis. High glucose (HG) treatment resulted in cell viability and autophagy level decreasing, inflammatory cytokines expression increasing and oxidative stress increasing in cardiac fibroblasts (CFs). Meanwhile, RIPK1 and RPTOR expression also was increased in HG-treated cells. HG-induced CFs apoptosis, inflammation, oxidative stress and the inhibition of HG to cell viability and autophagy was partly reversed by the inhibitor of RIPK1 and mTORC1. CONCLUSION: Overall, RIPK1/mTORC1 signalling suppression improved HG-induced apoptosis, inflammation and oxidative stress through activation autophagy. These data provided a reliable evidence that RIPK1 may be a potential target for DCM therapeutic.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Ratos , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Estresse Oxidativo/fisiologia , Apoptose , Inflamação/genética , Inflamação/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína Regulatória Associada a mTOR , Fibrose
15.
J Pharm Pharm Sci ; 27: 12568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706718

RESUMO

Unhealthy sources of fats, ultra-processed foods with added sugars, and a sedentary lifestyle make humans more susceptible to developing overweight and obesity. While lipids constitute an integral component of the organism, excessive and abnormal lipid accumulation that exceeds the storage capacity of lipid droplets disrupts the intracellular composition of fatty acids and results in the release of deleterious lipid species, thereby giving rise to a pathological state termed lipotoxicity. This condition induces endoplasmic reticulum stress, mitochondrial dysfunction, inflammatory responses, and cell death. Recent advances in omics technologies and analytical methodologies and clinical research have provided novel insights into the mechanisms of lipotoxicity, including gut dysbiosis, epigenetic and epitranscriptomic modifications, dysfunction of lipid droplets, post-translational modifications, and altered membrane lipid composition. In this review, we discuss the recent knowledge on the mechanisms underlying the development of lipotoxicity and lipotoxic cardiometabolic disease in obesity, with a particular focus on lipotoxic and diabetic cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas , Obesidade , Humanos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Animais , Metabolismo dos Lipídeos/efeitos dos fármacos
16.
Phytother Res ; 38(4): 1745-1760, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37740455

RESUMO

Diabetic cardiomyopathy (DCM) is a cardiac complication resulting from long-term uncontrolled diabetes, characterized by myocardial fibrosis and abnormal cardiac function. This study aimed at investigating the potential of ginsenoside RG1 (RG1)-induced mesenchymal stem cells (MSCs) in alleviating DCM. A DCM mouse model was constructed, and the effects of RG1-induced MSCs on myocardial function and fibrosis in diabetic mice were evaluated. RG1-induced MSCs were cocultured with high glucose-treated fibroblasts for subsequent functional and mechanism assays. It was discovered that RG1-induced MSCs secrete exosomes that induce macrophage M2 polarization. Mechanistically, exosomes derived from RG1-induced MSCs transferred circNOTCH1 into macrophages, activating the NOTCH signaling pathway. A competing endogenous RNA (ceRNA) regulatory axis consisting of circNOTCH1, miR-495-3p, and NOTCH1 was found to contribute to DCM alleviation.. This study unveiled that exosomal circNOTCH1 secreted by RG1-induced MSCs can alleviate DCM by activating the NOTCH signaling pathway to induce macrophage M2 polarization. This finding may contribute to the development of new therapeutic approaches for DCM.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Ginsenosídeos , Células-Tronco Mesenquimais , MicroRNAs , Camundongos , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética
17.
Int J Mol Sci ; 25(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732253

RESUMO

Diabetes mellitus (DM) is known as the first non-communicable global epidemic. It is estimated that 537 million people have DM, but the condition has been properly diagnosed in less than half of these patients. Despite numerous preventive measures, the number of DM cases is steadily increasing. The state of chronic hyperglycaemia in the body leads to numerous complications, including diabetic cardiomyopathy (DCM). A number of pathophysiological mechanisms are behind the development and progression of cardiomyopathy, including increased oxidative stress, chronic inflammation, increased synthesis of advanced glycation products and overexpression of the biosynthetic pathway of certain compounds, such as hexosamine. There is extensive research on the treatment of DCM, and there are a number of therapies that can stop the development of this complication. Among the compounds used to treat DCM are antiglycaemic drugs, hypoglycaemic drugs and drugs used to treat myocardial failure. An important element in combating DCM that should be kept in mind is a healthy lifestyle-a well-balanced diet and physical activity. There is also a group of compounds-including coenzyme Q10, antioxidants and modulators of signalling pathways and inflammatory processes, among others-that are being researched continuously, and their introduction into routine therapies is likely to result in greater control and more effective treatment of DM in the future. This paper summarises the latest recommendations for lifestyle and pharmacological treatment of cardiomyopathy in patients with DM.


Assuntos
Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/terapia , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Hipoglicemiantes/uso terapêutico , Estresse Oxidativo , Antioxidantes/uso terapêutico , Diabetes Mellitus/metabolismo , Diabetes Mellitus/tratamento farmacológico , Animais
18.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396795

RESUMO

Diabetes mellitus is a metabolic disorder with global economic implications that can lead to complications such as diabetic cardiomyopathy. The aim of this study was to compare the effects of chitosan versus dapagliflozin in mouse diabetic cardiomyopathy. We used 32 C57Bl/6 male mice aged between 8 and 10 weeks, which were randomly divided into Control-without diabetes mellitus (DM), type 1 DM (T1DM), T1DM + Chitosan, and T1DM + Dapapgliflozin groups. We induced diabetes with streptozotocin and treated the animals for 12 weeks. The analysis showed a reduction in intramyocardial fibrosis in the T1DM + Dapapgliflozin compared to T1DM animals. In T1DM + CHIT, a reduction in intramyocardial fibrosis was observed although, accordingly, there was also no significant decrease in blood glucose. The level of oxidative stress was reduced in the groups of treated animals compared to T1DM. All these observed changes in the structure and function of hearts were highlighted in the echocardiographic examination. In the treated groups, there was delayed appearance of left ventricular (LV) hypertrophy, a slight decrease in the ejection fraction of the LV, and an improved diastolic profile. The results demonstrate that chitosan has promising effects on diabetic cardiomyopathy that are comparable to the beneficial effects of dapagliflozin.


Assuntos
Compostos Benzidrílicos , Quitosana , Diabetes Mellitus Tipo 1 , Cardiomiopatias Diabéticas , Glucosídeos , Masculino , Camundongos , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Diabetes Mellitus Tipo 1/metabolismo , Quitosana/farmacologia , Quitosana/uso terapêutico , Função Ventricular Esquerda , Modelos Animais de Doenças , Fibrose
19.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000117

RESUMO

Diabetic cardiomyopathy (DCM) is a major determinant of mortality in diabetic populations, and the potential strategies are insufficient. Canagliflozin has emerged as a potential cardioprotective agent in diabetes, yet its underlying molecular mechanisms remain unclear. We employed a high-glucose challenge (60 mM for 48 h) in vitro to rat cardiomyocytes (H9C2), with or without canagliflozin treatment (20 µM). In vivo, male C57BL/6J mice were subjected to streptozotocin and a high-fat diet to induce diabetes, followed by canagliflozin administration (10, 30 mg·kg-1·d-1) for 12 weeks. Proteomics and echocardiography were used to assess the heart. Histopathological alterations were assessed by the use of Oil Red O and Masson's trichrome staining. Additionally, mitochondrial morphology and mitophagy were analyzed through biochemical and imaging techniques. A proteomic analysis highlighted alterations in mitochondrial and autophagy-related proteins after the treatment with canagliflozin. Diabetic conditions impaired mitochondrial respiration and ATP production, alongside decreasing the related expression of the PINK1-Parkin pathway. High-glucose conditions also reduced PGC-1α-TFAM signaling, which is responsible for mitochondrial biogenesis. Canagliflozin significantly alleviated cardiac dysfunction and improved mitochondrial function both in vitro and in vivo. Specifically, canagliflozin suppressed mitochondrial oxidative stress, enhancing ATP levels and sustaining mitochondrial respiratory capacity. It activated PINK1-Parkin-dependent mitophagy and improved mitochondrial function via increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Notably, PINK1 knockdown negated the beneficial effects of canagliflozin on mitochondrial integrity, underscoring the critical role of PINK1 in mediating these protective effects. Canagliflozin fosters PINK1-Parkin mitophagy and mitochondrial function, highlighting its potential as an effective treatment for DCM.


Assuntos
Canagliflozina , Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Camundongos Endogâmicos C57BL , Mitofagia , Proteínas Quinases , Ubiquitina-Proteína Ligases , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Mitofagia/efeitos dos fármacos , Masculino , Camundongos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Ratos , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos
20.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1905-1914, 2024 Apr.
Artigo em Zh | MEDLINE | ID: mdl-38812203

RESUMO

This study aimed to explore the mechanism of Shexiang Tongxin Dropping Pills(STDP) in treating diabetic cardiomyopathy(DCM) based on network pharmacology, molecular docking, and animal experiments. BATMAN, TCMSP, and GeneCards were searched for the active ingredients and targets of STDP against DCM. STRING and Cytoscape were used to build the protein-protein interaction(PPI) network and "drug-active ingredient-target" network. Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis of the targets were carried out based on DAVID. The molecular docking of key receptor proteins with corresponding active ingredients was performed using AutoDock Vina. The rat model of DCM was established by a high-fat diet combined with intraperitoneal injection of streptozotocin. Rats were assigned into control, model, low-(20 mg·kg~(-1)) and high-dose(40 mg·kg~(-1)) STDP, and metformin(200 mg·kg~(-1)) groups. After 8 weeks of continuous administration, the cardiac function, myocardial pathological changes, and myocardial collagen fiber deposition of rats in each group were detected by echocardiography, hematoxylin-eosin(HE) staining, and Sirius red staining, respectively. The myocardial hypertrophy was detected by WGA staining. The expression levels of p38 mitogen-activated protein kinase(p38), phosphorylation-p38(p-p38), c-Jun N-terminal kinase(JNK), phosphorylation-JNK(p-JNK), caspase-3, and C-caspase-3 in the myocardial tissue of rats in each group were measured by Western blot. The network pharmacology predicted 199 active ingredients and 1 655 targets of STDP and 463 targets of DCM. One hundred and thirty-four potential targets of STDP for treating DCM were obtained, and the AGE-RAGE signaling pathway in diabetic complications was screened out. Molecular docking results showed that miltirone, dehydromiltirone, and tryptanthrin had strong binding affinity with RAGE. The results of animal experiments confirmed that STDP effectively protected the cardiac function of DCM rats. Compared with the DCM model group, the STDP groups showed significantly down-regulated protein levels of p-p38, p-JNK, and C-caspase-3. To sum up, STDP may protect the cardiac function of DCM rats by regulating the AGE-RAGE signaling pathway.


Assuntos
Cardiomiopatias Diabéticas , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/genética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/administração & dosagem , Ratos , Masculino , Ratos Sprague-Dawley , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA