Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110.852
Filtrar
1.
Annu Rev Immunol ; 36: 127-156, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29237129

RESUMO

T cells possess an array of functional capabilities important for host defense against pathogens and tumors. T cell effector functions require the T cell antigen receptor (TCR). The TCR has no intrinsic enzymatic activity, and thus signal transduction from the receptor relies on additional signaling molecules. One such molecule is the cytoplasmic tyrosine kinase ZAP-70, which associates with the TCR complex and is required for initiating the canonical biochemical signal pathways downstream of the TCR. In this article, we describe recent structure-based insights into the regulation and substrate specificity of ZAP-70, and then we review novel methods for determining the role of ZAP-70 catalytic activity-dependent and -independent signals in developing and mature T cells. Lastly, we discuss the disease states in mouse models and humans, which range from immunodeficiency to autoimmunity, that are caused by mutations in ZAP-70.


Assuntos
Suscetibilidade a Doenças , Transdução de Sinais , Linfócitos T/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo , Animais , Autoimunidade , Biomarcadores , Catálise , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Regulação da Expressão Gênica , Humanos , Imunidade , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Fosforilação , Transporte Proteico , Relação Estrutura-Atividade , Especificidade por Substrato , Linfócitos T/imunologia , Proteína-Tirosina Quinase ZAP-70/antagonistas & inibidores , Proteína-Tirosina Quinase ZAP-70/química , Proteína-Tirosina Quinase ZAP-70/genética
2.
Annu Rev Biochem ; 90: 349-373, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33781075

RESUMO

Codon-dependent translation underlies genetics and phylogenetic inferences, but its origins pose two challenges. Prevailing narratives cannot account for the fact that aminoacyl-tRNA synthetases (aaRSs), which translate the genetic code, must collectively enforce the rules used to assemble themselves. Nor can they explain how specific assignments arose from rudimentary differentiation between ancestral aaRSs and corresponding transfer RNAs (tRNAs). Experimental deconstruction of the two aaRS superfamilies created new experimental tools with which to analyze the emergence of the code. Amino acid and tRNA substrate recognition are linked to phase transfer free energies of amino acids and arise largely from aaRS class-specific differences in secondary structure. Sensitivity to protein folding rules endowed ancestral aaRS-tRNA pairs with the feedback necessary to rapidly compare alternative genetic codes and coding sequences. These and other experimental data suggest that the aaRS bidirectional genetic ancestry stabilized the differentiation and interdependence required to initiate and elaborate the genetic coding table.


Assuntos
Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Evolução Molecular , Código Genético , Seleção Genética , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/química , Catálise , Genótipo , Fenótipo , Filogenia , Biossíntese de Proteínas , Dobramento de Proteína , Estrutura Secundária de Proteína , RNA de Transferência/genética , Termodinâmica
3.
Cell ; 172(3): 389-390, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29373826

RESUMO

While it has been known for decades that the essential function of selenium was in the form of its incorporation as selenocysteine into selenoproteins-including the enzyme glutathione peroxidase-4-now, Ingold et al. (2018) reveal the precise role of selenolate-based catalysis by this enzyme.


Assuntos
Peróxido de Hidrogênio , Selênio , Apoptose , Catálise , Glutationa Peroxidase
4.
Cell ; 175(7): 1856-1871.e21, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30503205

RESUMO

Cas12a, also known as Cpf1, is a type V-A CRISPR-Cas RNA-guided endonuclease that is used for genome editing based on its ability to generate specific dsDNA breaks. Here, we show cryo-EM structures of intermediates of the cleavage reaction, thus visualizing three protein regions that sense the crRNA-DNA hybrid assembly triggering the catalytic activation of Cas12a. Single-molecule FRET provides the thermodynamics and kinetics of the conformational activation leading to phosphodiester bond hydrolysis. These findings illustrate why Cas12a cuts its target DNA and unleashes unspecific cleavage activity, degrading ssDNA molecules after activation. In addition, we show that other crRNAs are able to displace the R-loop inside the protein after target DNA cleavage, terminating indiscriminate ssDNA degradation. We propose a model whereby the conformational activation of the enzyme results in indiscriminate ssDNA cleavage. The displacement of the R-loop by a new crRNA molecule will reset Cas12a specificity, targeting new DNAs.


Assuntos
Proteínas de Bactérias/química , Sistemas CRISPR-Cas , Clivagem do DNA , DNA de Cadeia Simples/química , Francisella/química , RNA Guia de Cinetoplastídeos/química , Proteínas de Bactérias/genética , Catálise , DNA de Cadeia Simples/genética , Francisella/genética , Edição de Genes , RNA Guia de Cinetoplastídeos/genética
5.
Annu Rev Biochem ; 86: 461-484, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28654322

RESUMO

Self-catalyzed DNA depurination is a sequence-specific physiological mechanism mediated by spontaneous extrusion of a stem-loop catalytic intermediate. Hydrolysis of the 5'G residue of the 5'GA/TGG loop and of the first 5'A residue of the 5'GAGA loop, together with particular first stem base pairs, specifies their hydrolysis without involving protein, cofactor, or cation. As such, this mechanism is the only known DNA catalytic activity exploited by nature. The consensus sequences for self-depurination of such G- and A-loop residues occur in all genomes examined across the phyla, averaging one site every 2,000-4,000 base pairs. Because apurinic sites are subject to error-prone repair, leading to substitution and short frameshift mutations, they are both a source of genome damage and a means for creating sequence diversity. Their marked overrepresentation in genomes, and largely unchanging density from the lowest to the highest organisms, indicate their selection over the course of evolution. The mutagenicity at such sites in many human genes is associated with loss of function of key proteins responsible for diverse diseases.


Assuntos
Adenina/metabolismo , Síndrome de Bloom/genética , DNA Catalítico/genética , Guanina/metabolismo , Polimorfismo Genético , Síndrome de Werner/genética , Evolução Biológica , Síndrome de Bloom/metabolismo , Síndrome de Bloom/patologia , Catálise , Reparo do DNA , DNA Catalítico/metabolismo , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Humanos , Hidrólise , Sequências Repetidas Invertidas , Mutação , Síndrome de Werner/metabolismo , Síndrome de Werner/patologia , Globinas beta/genética , Globinas beta/metabolismo
6.
Annu Rev Cell Dev Biol ; 34: 163-188, 2018 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-30110557

RESUMO

Molecular biologists and chemists alike have long sought to modify proteins with substituents that cannot be installed by standard or even advanced genetic approaches. We here describe the use of transpeptidases to achieve these goals. Living systems encode a variety of transpeptidases and peptide ligases that allow for the enzyme-catalyzed formation of peptide bonds, and protein engineers have used directed evolution to enhance these enzymes for biological applications. We focus primarily on the transpeptidase sortase A, which has become popular over the past few years for its ability to perform a remarkably wide variety of protein modifications, both in vitro and in living cells.


Assuntos
Aminoaciltransferases/genética , Proteínas de Bactérias/genética , Cisteína Endopeptidases/genética , Peptídeos/genética , Peptidil Transferases/genética , Sequência de Aminoácidos/genética , Aminoaciltransferases/química , Proteínas de Bactérias/química , Catálise , Cisteína Endopeptidases/química , Humanos , Peptídeos/química , Peptidil Transferases/química , Engenharia de Proteínas , Especificidade por Substrato
7.
Nat Rev Mol Cell Biol ; 25(5): 339, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38355759
8.
Nature ; 630(8017): 619-624, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898294

RESUMO

The basal plane of graphene can function as a selective barrier that is permeable to protons1,2 but impermeable to all ions3,4 and gases5,6, stimulating its use in applications such as membranes1,2,7,8, catalysis9,10 and isotope separation11,12. Protons can chemically adsorb on graphene and hydrogenate it13,14, inducing a conductor-insulator transition that has been explored intensively in graphene electronic devices13-17. However, both processes face energy barriers1,12,18 and various strategies have been proposed to accelerate proton transport, for example by introducing vacancies4,7,8, incorporating catalytic metals1,19 or chemically functionalizing the lattice18,20. But these techniques can compromise other properties, such as ion selectivity21,22 or mechanical stability23. Here we show that independent control of the electric field, E, at around 1 V nm-1, and charge-carrier density, n, at around 1 × 1014 cm-2, in double-gated graphene allows the decoupling of proton transport from lattice hydrogenation and can thereby accelerate proton transport such that it approaches the limiting electrolyte current for our devices. Proton transport and hydrogenation can be driven selectively with precision and robustness, enabling proton-based logic and memory graphene devices that have on-off ratios spanning orders of magnitude. Our results show that field effects can accelerate and decouple electrochemical processes in double-gated 2D crystals and demonstrate the possibility of mapping such processes as a function of E and n, which is a new technique for the study of 2D electrode-electrolyte interfaces.


Assuntos
Grafite , Prótons , Grafite/química , Hidrogenação , Catálise
9.
Nature ; 632(8024): 313-319, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885695

RESUMO

Oligosaccharides have myriad functions throughout biological processes1,2. Chemical synthesis of these structurally complex molecules facilitates investigation of their functions. With a dense concentration of stereocentres and hydroxyl groups, oligosaccharide assembly through O-glycosylation requires simultaneous control of site, stereo- and chemoselectivities3,4. Chemists have traditionally relied on protecting group manipulations for this purpose5-8, adding considerable synthetic work. Here we report a glycosylation platform that enables selective coupling between unprotected or minimally protected donor and acceptor sugars, producing 1,2-cis-O-glycosides in a catalyst-controlled, site-selective manner. Radical-based activation9 of allyl glycosyl sulfones forms glycosyl bromides. A designed aminoboronic acid catalyst brings this reactive intermediate close to an acceptor through a network of non-covalent hydrogen bonding and reversible covalent B-O bonding interactions, allowing precise glycosyl transfer. The site of glycosylation can be switched with different aminoboronic acid catalysts by affecting their interaction modes with substrates. The method accommodates a wide range of sugar types, amenable to the preparation of naturally occurring sugar chains and pentasaccharides containing 11 free hydroxyls. Experimental and computational studies provide insights into the origin of selectivity outcomes.


Assuntos
Glicosídeos , Oligossacarídeos , Ácidos Borônicos/química , Brometos/química , Catálise , Glicosídeos/química , Glicosídeos/síntese química , Glicosilação , Ligação de Hidrogênio , Oligossacarídeos/química , Oligossacarídeos/síntese química , Sulfonas/química
10.
Nature ; 628(8006): 104-109, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350601

RESUMO

The development of bimolecular homolytic substitution (SH2) catalysis has expanded cross-coupling chemistries by enabling the selective combination of any primary radical with any secondary or tertiary radical through a radical sorting mechanism1-8. Biomimetic9,10 SH2 catalysis can be used to merge common feedstock chemicals-such as alcohols, acids and halides-in various permutations for the construction of a single C(sp3)-C(sp3) bond. The ability to sort these two distinct radicals across commercially available alkenes in a three-component manner would enable the simultaneous construction of two C(sp3)-C(sp3) bonds, greatly accelerating access to complex molecules and drug-like chemical space11. However, the simultaneous in situ formation of electrophilic and primary nucleophilic radicals in the presence of unactivated alkenes is problematic, typically leading to statistical radical recombination, hydrogen atom transfer, disproportionation and other deleterious pathways12,13. Here we report the use of bimolecular homolytic substitution catalysis to sort an electrophilic radical and a nucleophilic radical across an unactivated alkene. This reaction involves the in situ formation of three distinct radical species, which are then differentiated by size and electronics, allowing for regioselective formation of the desired dialkylated products. This work accelerates access to pharmaceutically relevant C(sp3)-rich molecules and defines a distinct mechanistic approach for alkene dialkylation.


Assuntos
Alcenos , Catálise , Hidrogênio , Ácidos/química , Álcoois/química , Alcenos/química , Biomimética , Hidrogênio/química , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/química
11.
Nature ; 631(8021): 556-562, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806060

RESUMO

Asymmetric catalysis enables the synthesis of optically active compounds, often requiring the differentiation between two substituents on prochiral substrates1. Despite decades of development of mainly noble metal catalysts, achieving differentiation between substituents with similar steric and electronic properties remains a notable challenge2,3. Here we introduce a class of Earth-abundant manganese catalysts for the asymmetric hydrogenation of dialkyl ketimines to give a range of chiral amine products. These catalysts distinguish between pairs of minimally differentiated alkyl groups bound to the ketimine, such as methyl and ethyl, and even subtler distinctions, such as ethyl and n-propyl. The degree of enantioselectivity can be adjusted by modifying the components of the chiral manganese catalyst. This reaction demonstrates a wide substrate scope and achieves a turnover number of up to 107,800. Our mechanistic studies indicate that exceptional stereoselectivity arises from the modular assembly of confined chiral catalysts and cooperative non-covalent interactions between the catalyst and the substrate.


Assuntos
Técnicas de Química Sintética , Hidrogenação , Iminas , Nitrilas , Estereoisomerismo , Aminas/química , Aminas/síntese química , Catálise , Iminas/química , Manganês/química , Nitrilas/química , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/química , Especificidade por Substrato , Alquilação
12.
Nature ; 632(8027): 1052-1059, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39025123

RESUMO

Bimolecular nucleophilic substitution (SN2) mechanisms occupy a central place in the historical development and teaching of the field of organic chemistry1. Despite the importance of SN2 pathways in synthesis, catalytic control of ionic SN2 pathways is rare and notably uncommon even in biocatalysis2,3, reflecting the fact that any electrostatic interaction between a catalyst and the reacting ion pair necessarily stabilizes its charge and, by extension, reduces polar reactivity. Nucleophilic halogenase enzymes navigate this tradeoff by desolvating and positioning the halide nucleophile precisely on the SN2 trajectory, using geometric preorganization to compensate for the attenuation of nucleophilicity4. Here we show that a small-molecule (646 Da) hydrogen-bond-donor catalyst accelerates the SN2 step of an enantioselective Michaelis-Arbuzov reaction by recapitulating the geometric preorganization principle used by enzymes. Mechanistic and computational investigations show that the hydrogen-bond donor diminishes the reactivity of the chloride nucleophile yet accelerates the rate-determining dealkylation step by reorganizing both the phosphonium cation and the chloride anion into a geometry that is primed to enter the SN2 transition state. This new enantioselective Arbuzov reaction affords highly enantioselective access to an array of H-phosphinates, which are in turn versatile P-stereogenic building blocks amenable to myriad derivatizations. This work constitutes, to our knowledge, the first demonstration of catalytic enantiocontrol of the phosphonium dealkylation step, establishing a new platform for the synthesis of P-stereogenic compounds.


Assuntos
Catálise , Técnicas de Química Sintética , Biocatálise , Química Orgânica/métodos , Cloretos/metabolismo , Cloretos/química , Enzimas/metabolismo , Halogênios/química , Halogênios/metabolismo , Ligação de Hidrogênio , Cinética , Estereoisomerismo , Técnicas de Química Sintética/métodos
13.
Nature ; 634(8033): 352-358, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39208846

RESUMO

Amino acids are essential building blocks in biology and chemistry. Whereas nature relies on a small number of amino acid structures, chemists desire access to a vast range of structurally diverse analogues1-3. The selective modification of amino acid side-chain residues represents an efficient strategy to access non-canonical derivatives of value in chemistry and biology. While semisynthetic methods leveraging the functional groups found in polar and aromatic amino acids have been extensively explored, highly selective and general approaches to transform unactivated C-H bonds in aliphatic amino acids remain less developed4,5. Here we disclose a stepwise dehydrogenative method to convert aliphatic amino acids into structurally diverse analogues. The key to the success of this approach lies in the development of a selective catalytic acceptorless dehydrogenation method driven by photochemical irradiation, which provides access to terminal alkene intermediates for downstream functionalization. Overall, this strategy enables the rapid synthesis of new amino acid building blocks and suggests possibilities for the late-stage modification of more complex oligopeptides.


Assuntos
Aminoácidos , Técnicas de Química Sintética , Hidrogenação , Alcenos/química , Alcenos/síntese química , Aminoácidos/química , Aminoácidos/síntese química , Catálise/efeitos da radiação , Técnicas de Química Sintética/métodos , Hidrogenação/efeitos da radiação , Oligopeptídeos/química , Oligopeptídeos/síntese química , Processos Fotoquímicos/efeitos da radiação
14.
Nature ; 631(8022): 789-795, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843825

RESUMO

The ability to tame high-energy intermediates is important for synthetic chemistry, enabling the construction of complex molecules and propelling advances in the field of synthesis. Along these lines, carbenes and carbenoid intermediates are particularly attractive, but often unknown, high-energy intermediates1,2. Classical methods to access metal carbene intermediates exploit two-electron chemistry to form the carbon-metal bond. However, these methods are usually prohibitive because of reagent safety concerns, limiting their broad implementation in synthesis3-6. Mechanistically, an alternative approach to carbene intermediates that could circumvent these pitfalls would involve two single-electron steps: radical addition to metal to forge the initial carbon-metal bond followed by redox-promoted α-elimination to yield the desired metal carbene intermediate. Here we realize this strategy through a metallaphotoredox platform that exploits iron carbene reactivity using readily available chemical feedstocks as radical sources and α-elimination from six classes of previously underexploited leaving groups. These discoveries permit cyclopropanation and σ-bond insertion into N-H, S-H and P-H bonds from abundant and bench-stable carboxylic acids, amino acids and alcohols, thereby providing a general solution to the challenge of carbene-mediated chemical diversification.


Assuntos
Álcoois , Aminoácidos , Ácidos Carboxílicos , Técnicas de Química Sintética , Ferro , Metano , Fotoquímica , Álcoois/química , Aminoácidos/química , Carbono/química , Ácidos Carboxílicos/química , Catálise , Ciclopropanos/química , Ciclopropanos/síntese química , Ferro/química , Metano/análogos & derivados , Metano/química , Oxirredução , Fotoquímica/métodos , Técnicas de Química Sintética/métodos , Elétrons
15.
Nature ; 630(8016): 381-386, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811733

RESUMO

Lignocellulose is mainly composed of hydrophobic lignin and hydrophilic polysaccharide polymers, contributing to an indispensable carbon resource for green biorefineries1,2. When chemically treated, lignin is compromised owing to detrimental intra- and intermolecular crosslinking that hampers downstream process3,4. The current valorization paradigms aim to avoid the formation of new C-C bonds, referred to as condensation, by blocking or stabilizing the vulnerable moieties of lignin5-7. Although there have been efforts to enhance biomass utilization through the incorporation of phenolic additives8,9, exploiting lignin's proclivity towards condensation remains unproven for valorizing both lignin and carbohydrates to high-value products. Here we leverage the proclivity by directing the C-C bond formation in a catalytic arylation pathway using lignin-derived phenols with high nucleophilicity. The selectively condensed lignin, isolated in near-quantitative yields while preserving its prominent cleavable ß-ether units, can be unlocked in a tandem catalytic process involving aryl migration and transfer hydrogenation. Lignin in wood is thereby converted to benign bisphenols (34-48 wt%) that represent performance-advantaged replacements for their fossil-based counterparts. Delignified pulp from cellulose and xylose from xylan are co-produced for textile fibres and renewable chemicals. This condensation-driven strategy represents a key advancement complementary to other promising monophenol-oriented approaches targeting valuable platform chemicals and materials, thereby contributing to holistic biomass valorization.


Assuntos
Compostos Benzidrílicos , Biomassa , Fracionamento Químico , Lignina , Fenóis , Compostos Benzidrílicos/química , Compostos Benzidrílicos/metabolismo , Catálise , Celulose/química , Celulose/metabolismo , Fracionamento Químico/métodos , Hidrogenação , Lignina/química , Lignina/metabolismo , Fenóis/química , Fenóis/metabolismo , Madeira/química , Xilanos/química , Xilanos/metabolismo , Xilose/química , Xilose/metabolismo , Combustíveis Fósseis , Têxteis
16.
Nature ; 629(8011): 363-369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547926

RESUMO

Cytochrome P450 enzymes are known to catalyse bimodal oxidation of aliphatic acids via radical intermediates, which partition between pathways of hydroxylation and desaturation1,2. Developing analogous catalytic systems for remote C-H functionalization remains a significant challenge3-5. Here, we report the development of Cu(I)-catalysed bimodal dehydrogenation/lactonization reactions of synthetically common N-methoxyamides through radical abstractions of the γ-aliphatic C-H bonds. The feasibility of switching from dehydrogenation to lactonization is also demonstrated by altering reaction conditions. The use of a readily available amide as both radical precursor and internal oxidant allows for the development of redox-neutral C-H functionalization reactions with methanol as the sole side product. These C-H functionalization reactions using a Cu(I) catalyst with loading as low as 0.5 mol.% is applied to the diversification of a wide range of aliphatic acids including drug molecules and natural products. The exceptional compatibility of this catalytic system with a wide range of oxidatively sensitive functionality demonstrates the unique advantage of using a simple amide substrate as a mild internal oxidant.


Assuntos
Carbono , Cobre , Hidrogênio , Lactonas , Amidas/química , Amidas/metabolismo , Carbono/química , Catálise , Cobre/química , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/química , Hidrogênio/química , Hidrogenação , Lactonas/química , Metanol/química , Oxidantes/química , Oxidantes/metabolismo , Oxirredução
17.
Nature ; 632(8026): 795-801, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39085607

RESUMO

Polyene cyclizations are among the most complex and challenging transformations in biology. In a single reaction step, multiple carbon-carbon bonds, ring systems and stereogenic centres are constituted from simple, acyclic precursors1-3. Simultaneously achieving this kind of precise control over product distribution and stereochemistry poses a formidable task for chemists. In particular, the polyene cyclization of (3E,7E)-homofarnesol to the valuable naturally occurring ambergris odorant (-)-ambrox is recognized as a longstanding challenge in chemical synthesis1,4-7. Here we report a diastereoselective and enantioselective synthesis of (-)-ambrox and the sesquiterpene lactone natural product (+)-sclareolide by a catalytic asymmetric polyene cyclization by using a highly Brønsted-acidic and confined imidodiphosphorimidate catalyst in the presence of fluorinated alcohols. Several experiments, including deuterium-labelling studies, suggest that the reaction predominantly proceeds through a concerted pathway in line with the Stork-Eschenmoser hypothesis8-10. Mechanistic studies show the importance of the enzyme-like microenvironment of the imidodiphosphorimidate catalyst for attaining exceptionally high selectivities, previously thought to be achievable only in enzyme-catalysed polyene cyclizations.


Assuntos
Catálise , Ciclização , Diterpenos , Farneseno Álcool , Furanos , Naftalenos , Polienos , Álcoois/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Diterpenos/síntese química , Diterpenos/química , Farneseno Álcool/análogos & derivados , Farneseno Álcool/química , Flúor/química , Furanos/síntese química , Furanos/química , Lactonas/química , Lactonas/síntese química , Naftalenos/síntese química , Naftalenos/química , Polienos/química , Estereoisomerismo
18.
Nature ; 634(8034): 592-599, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39208847

RESUMO

The incorporation of deuterium in organic molecules has widespread applications in medicinal chemistry and materials science1,2. For example, the deuterated drugs austedo3, donafenib4 and sotyktu5 have been recently approved. There are various methods for the synthesis of deuterated compounds with high deuterium incorporation6. However, the reductive deuteration of aromatic hydrocarbons-ubiquitous chemical feedstocks-to saturated cyclic compounds has rarely been achieved. Here we describe a scalable and general electrocatalytic method for the reductive deuteration and deuterodefluorination of (hetero)arenes using a prepared nitrogen-doped electrode and deuterium oxide (D2O), giving perdeuterated and saturated deuterocarbon products. This protocol has been successfully applied to the synthesis of 13 highly deuterated drug molecules. Mechanistic investigations suggest that the ruthenium-deuterium species, generated by electrolysis of D2O in the presence of a nitrogen-doped ruthenium electrode, are key intermediates that directly reduce aromatic compounds. This quick and cost-effective methodology for the preparation of highly deuterium-labelled saturated (hetero)cyclic compounds could be applied in drug development and metabolism studies.


Assuntos
Técnicas de Química Sintética , Óxido de Deutério , Eletroquímica , Eletrodos , Nitrogênio , Preparações Farmacêuticas , Rutênio , Catálise , Técnicas de Química Sintética/métodos , Ciclização , Óxido de Deutério/química , Eletroquímica/instrumentação , Eletroquímica/métodos , Eletrólise , Halogenação , Hidrocarbonetos Aromáticos/química , Hidrocarbonetos Aromáticos/síntese química , Nitrogênio/química , Oxirredução , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/química , Rutênio/química
19.
Mol Cell ; 82(24): 4712-4726.e7, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423631

RESUMO

Programmed cell death and caspase proteins play a pivotal role in host innate immune response combating pathogen infections. Blocking cell death is employed by many bacterial pathogens as a universal virulence strategy. CopC family type III effectors, including CopC from an environmental pathogen Chromobacterium violaceum, utilize calmodulin (CaM) as a co-factor to inactivate caspases by arginine ADPR deacylization. However, the molecular basis of the catalytic and substrate/co-factor binding mechanism is unknown. Here, we determine successive cryo-EM structures of CaM-CopC-caspase-3 ternary complex in pre-reaction, transition, and post-reaction states, which elucidate a multistep enzymatic mechanism of CopC-catalyzed ADPR deacylization. Moreover, we capture a snapshot of the detachment of modified caspase-3 from CopC. These structural insights are validated by mutagenesis analyses of CopC-mediated ADPR deacylization in vitro and animal infection in vivo. Our study offers a structural framework for understanding the molecular basis of arginine ADPR deacylization catalyzed by the CopC family.


Assuntos
Calmodulina , Caspases , Animais , Calmodulina/genética , Calmodulina/metabolismo , Caspases/metabolismo , Caspase 3/metabolismo , Arginina , Catálise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
20.
Mol Cell ; 82(3): 598-615.e8, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34998453

RESUMO

An increasing number of genetic diseases are linked to deregulation of E3 ubiquitin ligases. Loss-of-function mutations in the RING-between-RING (RBR) family E3 ligase RNF216 (TRIAD3) cause Gordon-Holmes syndrome (GHS) and related neurodegenerative diseases. Functionally, RNF216 assembles K63-linked ubiquitin chains and has been implicated in regulation of innate immunity signaling pathways and synaptic plasticity. Here, we report crystal structures of key RNF216 reaction states including RNF216 in complex with ubiquitin and its reaction product, K63 di-ubiquitin. Our data provide a molecular explanation for chain-type specificity and reveal the molecular basis for disruption of RNF216 function by pathogenic GHS mutations. Furthermore, we demonstrate how RNF216 activity and chain-type specificity are regulated by phosphorylation and that RNF216 is allosterically activated by K63-linked di-ubiquitin. These molecular insights expand our understanding of RNF216 function and its role in disease and further define the mechanistic diversity of the RBR E3 ligase family.


Assuntos
Ataxia Cerebelar/enzimologia , Hormônio Liberador de Gonadotropina/deficiência , Hipogonadismo/enzimologia , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/metabolismo , Regulação Alostérica , Sítios de Ligação , Catálise , Ataxia Cerebelar/genética , Cristalografia por Raios X , Predisposição Genética para Doença , Hormônio Liberador de Gonadotropina/genética , Células HEK293 , Humanos , Hipogonadismo/genética , Mutação com Perda de Função , Lisina , Modelos Moleculares , Fenótipo , Fosforilação , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA