Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.594
Filtrar
Mais filtros

Intervalo de ano de publicação
2.
Anal Chem ; 96(18): 7145-7154, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38656793

RESUMO

Immunoassays serve as powerful diagnostic tools for early disease screening, process monitoring, and precision treatment. However, the current methods are limited by high costs, prolonged processing times (>2 h), and operational complexities that hinder their widespread application in point-of-care testing. Here, we propose a novel centrifugo-pneumatic reciprocating flowing coupled with spatial confinement strategy, termed PRCM, for ultrafast multiplexed immunoassay of pathogens on a centrifugal microfluidic platform. Each chip consists of four replicated units; each unit allows simultaneous detection of three targets, thereby facilitating high-throughput parallel analysis of multiple targets. The PRCM platform enables sequential execution of critical steps such as solution mixing, reaction, and drainage by coordinating inherent parameters, including motor rotation speed, rotation direction, and acceleration/deceleration. By integrating centrifugal-mediated pneumatic reciprocating flow with spatial confinement strategies, we significantly reduce the duration of immune binding from 30 to 5 min, enabling completion of the entire testing process within 20 min. As proof of concept, we conducted a simultaneous comparative test on- and off-the-microfluidics using 12 negative and positive clinical samples. The outcomes yielded 100% accuracy in detecting the presence or absence of the SARS-CoV-2 virus, thus highlighting the potential of our PRCM system for multiplexed point-of-care immunoassays.


Assuntos
COVID-19 , Centrifugação , SARS-CoV-2 , Imunoensaio/métodos , Imunoensaio/instrumentação , SARS-CoV-2/isolamento & purificação , Centrifugação/instrumentação , COVID-19/diagnóstico , COVID-19/virologia , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Dispositivos Lab-On-A-Chip
3.
Nat Methods ; 18(6): 631-634, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34092791

RESUMO

L1CAM is a transmembrane protein expressed on neurons that was presumed to be found on neuron-derived extracellular vesicles (NDEVs) in human biofluids. We developed a panel of single-molecule array assays to evaluate the use of L1CAM for NDEV isolation. We demonstrate that L1CAM is not associated with extracellular vesicles in human plasma or cerebrospinal fluid and therefore recommend against its use as a marker in NDEV isolation protocols.


Assuntos
Vesículas Extracelulares/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Biomarcadores/metabolismo , Centrifugação , Cromatografia em Gel , Meios de Cultivo Condicionados , Humanos , Molécula L1 de Adesão de Célula Nervosa/sangue , Molécula L1 de Adesão de Célula Nervosa/líquido cefalorraquidiano , Neurônios/metabolismo
4.
J Med Virol ; 96(2): e29385, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38318918

RESUMO

The aim of this study was to investigate the interference of lipemia on measurement of HBsAg, anti-HBs, HBeAg, anti-HBe, anti-HBc, anti-HCV, HIV Ag/Ab, and anti-TP in serum by chemiluminescent microparticle immunoassay (CMIA) and compare lipemia removing performance between high-speed centrifugation and Lipoclear reagent. Mixed native serum samples (NSs) and hyperlipemia serum samples (HLS) were prepared for the investigated parameters. The levels of these parameters in NS and HLS were determined by CMIA on an Abbott ARCHITECT i2000SR immunoassay analyzer. HBsAg, anti-HBs, and anti-TP were affected with relative bias >12.5% (acceptable limit) when the level of triacylglycerol (TG) was higher than 27.12 mmol/L in HLS. Clinically unacceptable bias were observed for HBeAg and anti-HBe in HLS with TG higher than 40.52 mmol/L. However, anti-HCV and HIV Ag/Ab were not interfered in severe lipemia with TG < 52.03 mmol/L. In addition, the Lipoclear reagent did not reduce the interference of lipemia with relative bias from -62.50% to -18.02%. The high-speed centrifugation under the optimized condition of 12 000g for 10 min successfully removed the interference of lipemia with relative bias from -5.93% to 0% for HBsAg, anti-HBs, HBeAg, anti-HBe, anti-HBc, and anti-TP. To conclude, high-speed centrifugation can be used for removing the interference of lipemia to measure HBsAg, anti-HBs, HBeAg, anti-HBe, anti-HBc, and anti-TP. Accordingly, a standardized sample preanalytical preparation of the patients and other screening participants as well as a specimen examination procedure for removing lipemia interference on the serological tests was recommended.


Assuntos
Síndrome da Imunodeficiência Adquirida , Hepatite B , Hepatite C , Hiperlipidemias , Sífilis , Humanos , Antígenos de Superfície da Hepatite B , Antígenos E da Hepatite B , Indicadores e Reagentes , Sífilis/diagnóstico , Vírus da Hepatite B , Anticorpos Anti-Hepatite B , Imunoensaio , Hepatite C/diagnóstico , Testes Sorológicos , Triglicerídeos , Centrifugação
5.
Biomed Microdevices ; 26(2): 22, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592604

RESUMO

We report a centrifugal microfluidic device that automatically performs sample preparation under steady-state rotation for clinical applications using mass spectrometry. The autonomous microfluidic device was designed for the control of liquid operation on centrifugal hydrokinetics (CLOCK) paradigm. The reported device was highly stable, with less than 7% variation with respect to the time of each unit operation (sample extraction, mixing, and supernatant extraction) in the preparation process. An agitation mechanism with bubbling was used to mix the sample and organic solvent in this device. We confirmed that the device effectively removed the protein aggregates from the sample, and the performance was comparable to those of conventional manual sample preparation procedures that use high-speed centrifugation. In addition, probe electrospray ionization mass spectrometry (PESI-MS) was performed to compare the device-treated and manually treated samples. The obtained PESI-MS spectra were analyzed by partial least squares discriminant analysis, and the preparation capability of the device was found to be equivalent to that of the conventional method.


Assuntos
Microfluídica , Espectrometria de Massas por Ionização por Electrospray , Centrifugação , Dispositivos Lab-On-A-Chip , Rotação
6.
Clin Chem Lab Med ; 62(8): 1557-1569, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38443327

RESUMO

OBJECTIVES: The pre-analytical stability of various biochemical analytes requires careful consideration, as it can lead to the release of erroneous laboratory results. There is currently significant variability in the literature regarding the pre-analytical stability of various analytes. The aim of this study was to determine the pre-analytical stability of 65 analytes in whole blood, serum and plasma using a standardized approach. METHODS: Blood samples were collected from 30 healthy volunteers (10 volunteers per analyte) into five vacutainers; either SST, Li-heparin, K2-EDTA, or Na-fluoride/K-oxalate. Several conditions were tested, including delayed centrifugation with storage of whole blood at room temperature (RT) for 8 h, delayed centrifugation with storage of whole blood at RT or 4 °C for 24 h, and immediate centrifugation with storage of plasma or serum at RT for 24 h. Percent deviation (% PD) from baseline was calculated for each analyte and compared to the maximum permissible instability (MPI) derived from intra- and inter-individual biological variation. RESULTS: The majority of the analytes evaluated remained stable across all vacutainer types, temperatures, and timepoints tested. Glucose, potassium, and aspartate aminotransferase, among others, were significantly impacted by delayed centrifugation, having been found to be unstable in whole blood specimens stored at room temperature for 8 h. CONCLUSIONS: The data presented provides insight into the pre-analytical variables that impact the stability of routine biochemical analytes. This study may help to reduce the frequency of erroneous laboratory results released due to exceeded stability and reduce unnecessary repeat phlebotomy for analytes that remain stable despite delayed processing.


Assuntos
Coleta de Amostras Sanguíneas , Plasma , Soro , Humanos , Coleta de Amostras Sanguíneas/métodos , Plasma/química , Soro/química , Análise Química do Sangue/métodos , Análise Química do Sangue/normas , Adulto , Masculino , Temperatura , Feminino , Voluntários Saudáveis , Centrifugação
7.
BMC Vet Res ; 20(1): 184, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724994

RESUMO

Cinnamon and star anise essential oils are extracted from natural plants and provide a theoretical basis for the development and clinical application of compound essential oil pellets. However, cinnamon oil and star anise oil have the characteristics of a pungent taste, extreme volatility, poor palatability, and unstable physical and chemical properties, which limit their clinical use in veterinary medicine. In this study, the inhibitory effects of cinnamon oil and star anise oil on Escherichia coli and Salmonella were measured. Compound essential oil pellets were successfully prepared by centrifugal granulation technology. Subsequently, the in vitro dissolution of the pellets and their pharmacokinetics in pigs were investigated. The results showd that, cinnamon and star anise oils showed synergistic or additive inhibitiory effects on Escherichia coli and Salmonella. The oil pellets had enteric characteristics in vitro and high dissolution in vitro. The pharmacokinetic results showed that the pharmacokinetic parameters Cmax and AUC were directly correlated with the dosage and showed linear pharmacokinetic characteristics, which provided a theoretical basis for the development and clinical application of compound essential oil pellets.


Assuntos
Cinnamomum zeylanicum , Escherichia coli , Óleos Voláteis , Animais , Óleos Voláteis/farmacocinética , Óleos Voláteis/administração & dosagem , Cinnamomum zeylanicum/química , Escherichia coli/efeitos dos fármacos , Suínos , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Salmonella/efeitos dos fármacos , Satureja/química , Óleos de Plantas/farmacocinética , Óleos de Plantas/química , Masculino , Centrifugação
8.
Scand J Clin Lab Invest ; 84(1): 62-67, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38451167

RESUMO

Glucose measurement plays a central role in the diagnosis of gestational diabetes mellitus (GDM). Because of earlier reports of overestimation of glucose in the widely used tubes containing granulated glycolysis inhibitor, the study assessed the performance of fast-clotting serum tubes as an alternative sample for the measurement of glucose. Glucose concentration in fast-clotting serum was compared to lithium-heparin plasma placed in an ice-water slurry after sample collection and glucose stability at room-temperature was studied. Blood samples from 30 volunteers were drawn in four different types of tubes (serum separator tubes, fast-clotting serum tubes, lithium-heparin tubes and sodium fluoride, EDTA and a citrate buffer (NaF-EDTA-citrate) tubes, all from Greiner Bio-One). Lithium-heparin tubes were placed in an ice-water slurry until centrifugation in accordance with international recommendations and centrifuged within 10 min. After centrifugation, glucose was measured in all tubes (timepoint T0) and after 24, 48, 72, 96 and 120 h of storage at 20-22 °C. NaF-EDTA-citrate plasma showed significant overestimation of glucose concentration by 4.7% compared to lithium-heparin plasma; fast-clotting serum showed glucose concentrations clinically equivalent to lithium-heparin plasma. In fast-clotting serum tubes, mean bias between glucose concentration after 24, 48, 72, 96 and 120 h and T0 was less than 2.4%. All individual differences compared to T0 were less than 6.5%. The results fulfill the acceptance criteria for sample stability based on biological variation. Fast-clotting serum tubes can be an alternative for the measurement of glucose in diagnosis and management of GDM and diabetes mellitus, especially when prolonged transportation is necessary.


Assuntos
Diabetes Gestacional , Heparina , Gravidez , Feminino , Humanos , Glucose , Ácido Cítrico/farmacologia , Ácido Edético , Lítio , Glicemia , Temperatura , Gelo , Citratos , Coleta de Amostras Sanguíneas/métodos , Fluoreto de Sódio/farmacologia , Diabetes Gestacional/diagnóstico , Centrifugação
9.
Perception ; 53(2): 75-92, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37946509

RESUMO

During coordinated flight and centrifugation, pilots show interindividual variability in perceived roll tilt. The study explored how this variability is related to perceptual and cognitive functions. Twelve pilots underwent three 6-min centrifugations on two occasions (G levels: 1.1G, 1.8G, and 2.5G; gondola tilts: 25°, 56°, and 66°). The subjective visual horizontal (SVH) was measured with an adjustable luminous line and the pilots gave estimates of experienced G level. Afterward, they were interrogated regarding the relationship between G level and roll tilt and adjusted the line to numerically mentioned angles. Generally, the roll tilt during centrifugation was underestimated, and there was a large interindividual variability. Both knowledge on the relationship between G level and bank angle, and ability to adjust the line according to given angles contributed to the prediction of SVH in a multiple regression model. However, in most cases, SVH was substantial smaller than predictions based on specific abilities.


Assuntos
Pilotos , Humanos , Centrifugação
10.
J Biomech Eng ; 146(10)2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683061

RESUMO

Computational fluid dynamics (CFD) simulations are widely used to develop and analyze blood-contacting medical devices such as left ventricular assist devices (LVADs). This work presents an analysis of the transient behavior of two centrifugal LVADs with different designs: HeartWare VAD and HeartMate3. A scale-resolving methodology is followed through Large Eddy Simulations, which allows for the visualization of turbulent structures. The three-dimensional (3D) LVAD models are coupled to a zero-dimensional (0D) 2-element Windkessel model, which accounts for the vascular resistance and compliance of the arterial system downstream of the device. Furthermore, both continuous- and pulsatile-flow operation modes are analyzed. For the pulsatile conditions, the artificial pulse of HeartMate3 is imposed, leading to a larger variation of performance variables in HeartWare VAD than in HeartMate3. Moreover, CFD results of pulsatile-flow simulations are compared to those obtained by accessing the quasi-steady maps of the pumps. The quasi-steady approach is a predictive tool used to provide a preliminary approximation of the pulsatile evolution of flow rate, pressure head, and power, by only imposing a speed pulse and vascular parameters. This preliminary quasi-steady solution can be useful for deciding the characteristics of the pulsatile speed law before running a transient CFD simulation, as the former entails a significant reduction in computational cost in comparison to the latter.


Assuntos
Coração Auxiliar , Hidrodinâmica , Fluxo Pulsátil , Modelos Cardiovasculares , Simulação por Computador , Centrifugação , Humanos
11.
Clin Oral Investig ; 28(4): 225, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38514526

RESUMO

OBJECTIVE: To investigate how delayed blood centrifugation affects the composition of the resultant platelet rich fibrin membrane (PRF, a concentrated growth factor preparation) and its biological effects towards gingival fibroblasts. MATERIALS AND METHODS: Blood samples were collected from 18 healthy individuals and centrifuged immediately (T-0), or after a 1-6-minute delay (T-1-6, respectively), to generate PRF. Each PRF membrane was weighed. T-0 and T-6 membranes were incubated for 48 h in cell culture medium at 37 °C to create PRF "releasates" (soluble factors released from the PRF). Human gingival fibroblasts were incubated for 48 h with or without the releasates, followed by RNA isolation and real-time polymerase chain reaction to measure expression of select genes associated with granulation tissue formation, angiogenesis and wound contraction. Additional T-0 and T-6 membranes were used for visualization of leucocyte nuclei and platelets by immunostaining. RESULTS: Immediate centrifugation (T-0) resulted in the largest membranes, T-6 membranes being on average 29% smaller. Leucocytes and platelets were significantly more abundant in T-0 than in T-6 samples. Majority of the fibroblast genes studied were consistently either upregulated or downregulated by the T-0 PRF releasates. However, centrifugation after a 6-minute delay significantly weakened the fibroblast responses. CONCLUSIONS: Delayed centrifugation resulted in smaller PRF membranes with fewer leucocytes and platelets and also significantly reduced on the expression of a set of healing-related gingival fibroblast genes. CLINICAL RELEVANCE: The higher expression of wound healing-related genes in gingival fibroblasts by the immediately-centrifuged PRF membranes may increase their biological properties in clinical use.


Assuntos
Fibrina Rica em Plaquetas , Humanos , Plaquetas , Cicatrização , Leucócitos , Centrifugação/métodos
12.
Aesthetic Plast Surg ; 48(12): 2306-2318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38509318

RESUMO

BACKGROUND: The mechanical manipulations of fat tissue represented from centrifugation, filtration, washing, and fragmentation were considered the most effective strategies aiming to obtain purified lipofilling with different impacts both in terms of adipose-derived stem cells amount contained in stromal vascular fraction, and fat volume maintenance. OBJECTIVES: The present work aimed to report results in fat volume maintenance obtained by lipofilling purification based on the combined use of washing and filtration, in a clinical study, and to deeply investigate the adipose-derived stem cells yield and growth capacity of the different stromal vascular fraction extraction techniques with an in vitro approach. METHODS: A preliminary prospective, case-control study was conducted. 20 patients affected by face and breast soft tissue defects were treated with lipofilling and divided into two groups: n = 10 patients (study group) were treated with lipofilling obtained by washing and filtration procedures, while n = 10 (control group) were treated with lipofilling obtained by centrifugation according to the Coleman technique. 6 months after the lipofilling, the volume maintenance percentage was analyzed by clinical picture and magnetic resonance imaging comparisons. Additionally, extracted stromal vascular fraction cells were also in vitro analyzed in terms of adipose-derived stem cell yield and growth capacity. RESULTS: A 69% ± 5.0% maintenance of fat volume after 6 months was observed in the study group, compared with 44% ± 5.5% in the control group. Moreover, the cellular yield of the control group resulted in 267,000 ± 94,107 adipose-derived stem cells/mL, while the study group resulted in 528,895 ± 115,853 adipose-derived stem cells /mL, with a p-value = 0.1805. Interestingly, the study group showed a fold increase in cell growth of 6758 ± 0.7122, while the control group resulted in 3888 ± 0.3078, with a p < 0.05 (p = 0.0122). CONCLUSIONS: The comparison of both groups indicated that washing and filtration were a better efficient system in lipofilling preparation, compared to centrifugation, both in terms of volume maintenance and adipose-derived stem cell growth ability. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors http://www.springer.com/00266 .


Assuntos
Tecido Adiposo , Humanos , Feminino , Estudos Prospectivos , Estudos de Casos e Controles , Tecido Adiposo/transplante , Tecido Adiposo/citologia , Pessoa de Meia-Idade , Adulto , Centrifugação/métodos , Proliferação de Células , Masculino , Filtração/métodos , Coleta de Tecidos e Órgãos/métodos , Mamoplastia/métodos
13.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 577-583, 2024 Jun 25.
Artigo em Zh | MEDLINE | ID: mdl-38932545

RESUMO

Red blood cells are destroyed when the shear stress in the blood pump exceeds a threshold, which in turn triggers hemolysis in the patient. The impeller design of centrifugal blood pumps significantly influences the hydraulic characteristics and hemolytic properties of these devices. Based on this premise, the present study employs a multiphase flow approach to numerically simulate centrifugal blood pumps, investigating the performance of pumps with varying numbers of blades and blade deflection angles. This analysis encompassed the examination of flow field characteristics, hydraulic performance, and hemolytic potential. Numerical results indicated that the concentration of red blood cells and elevated shear stresses primarily occurred at the impeller and volute tongue, which drastically increased the risk of hemolysis in these areas. It was found that increasing the number of blades within a certain range enhanced the hydraulic performance of the pump but also raised the potential for hemolysis. Moreover, augmenting the blade deflection angle could improve the hemolytic performance, particularly in pumps with a higher number of blades. The findings from this study can provide valuable insights for the structural improvement and performance enhancement of centrifugal blood pumps.


Assuntos
Desenho de Equipamento , Coração Auxiliar , Hemólise , Estresse Mecânico , Humanos , Coração Auxiliar/efeitos adversos , Eritrócitos/citologia , Centrifugação , Simulação por Computador
14.
J Am Chem Soc ; 145(6): 3276-3282, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36716175

RESUMO

For many classes of biomolecules, population-level heterogeneity is an essential aspect of biological function─from antibodies produced by the immune system to post-translationally modified proteins that regulate cellular processes. However, heterogeneity is difficult to fully characterize for multiple reasons: (i) single-molecule approaches are needed to avoid information lost by ensemble-level averaging, (ii) sufficient statistics must be gathered on both a per-molecule and per-population level, and (iii) a suitable analysis framework is required to make sense of a potentially limited number of intrinsically noisy measurements. Here, we introduce an approach that overcomes these difficulties by combining three techniques: a DNA nanoswitch construct to repeatedly interrogate the same molecule, a benchtop centrifuge force microscope (CFM) to obtain thousands of statistics in a highly parallel manner, and a Bayesian nonparametric (BNP) inference method to resolve separate subpopulations with distinct kinetics. We apply this approach to characterize commercially available antibodies and find that polyclonal antibody from rabbit serum is well-modeled by a mixture of three subpopulations. Our results show how combining a spatially and temporally multiplexed nanoswitch-CFM assay with BNP analysis can help resolve complex biomolecular interactions in heterogeneous samples.


Assuntos
Anticorpos , Nanotecnologia , Animais , Humanos , Coelhos , Teorema de Bayes , Microscopia de Força Atômica/métodos , Cinética , Centrifugação/métodos
15.
Anal Chem ; 95(37): 13844-13854, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37656141

RESUMO

Thermal proteome profiling (TPP), an experimental technique combining the cellular thermal shift assay (CETSA) with quantitative protein mass spectrometry (MS), identifies interactions of drugs and chemicals with endogenous proteins. Thermal proximity coaggregation (TPCA) profiling extended TPP to study the intracellular dynamics of protein complexes. In TPP and TPCA, samples are subjected to multiple denaturing temperatures, each requiring over 100 µg of proteins, which restricts their applications for rare cells and precious clinical samples. We developed a workflow termed STASIS (scaled-down thermal profiling and coaggregation analysis with SISPROT) that scales down the required protein to as low as 1 µg per temperature. This is achieved by heating and centrifugation using the same PCR tube, processing samples with the SISPROT technology (simple and integrated spintip-based proteomics technology), and tip-based manual fractionation of TMT-labeled peptides. We evaluate the STASIS workflow with starting protein quantities of 10, 5, and 1 µg per temperature prior to heating, identifying between 4000 and 5000 proteins with 6 h of acquisition time. Importantly, we observed a high correlation in the Tm of proteins with minimal difference in TPCA performance for predicting protein complexes. Moreover, STASIS could identify the targets of methotrexate and panobinostat with high precision with 1 µg of proteins per temperature. In conclusion, STASIS is a robust cost-effective technique for target deconvolution and extended TPCA to rare primary cells and precious clinical samples for the analysis of protein complexes.


Assuntos
Sistemas de Liberação de Medicamentos , Proteoma , Centrifugação , Fracionamento Químico , Interpretação Estatística de Dados
16.
Anal Chem ; 95(48): 17629-17636, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37976500

RESUMO

We herein describe a novel centrifugal microfluidic system to achieve multiple standard additions, which could minimize the effects of matrix interference and consequently lead to more accurate and reliable measurements of analyte concentrations in complex samples. The system leverages laser-irradiated ferrowax microvalves to automatically control fluid transfer on the disc without the need for external pumps or pressure systems, simplifying the procedures and eliminating the need for manual intervention. The disc incorporates metering chambers with rationally designed varying sizes, which could lead to the formation of six standard addition samples very rapidly in just 2.5 min. The final solutions are designed to contain a target component at gradually increasing concentrations but have an equal final volume containing the same amount of an analyte solution, thereby equalizing the matrix effect that is supposedly caused by the unknown components in the analyte solution. By utilizing this design principle, we were able to successfully quantify a model target component, salivary thiocyanate ions, that could be used as a biomarker for exposure to tobacco smoke. Our centrifugal microfluidic system holds great promise as a powerful analytical tool to achieve fully automated diagnostic microsystems involving a standard addition process.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Técnicas Analíticas Microfluídicas/métodos , Centrifugação/métodos
17.
Anal Chem ; 95(38): 14375-14383, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37710979

RESUMO

Rapid and accurate antimicrobial prescriptions are critical for bloodstream infection (BSI) patients, as they can guide drug use and decrease mortality significantly. The traditional antimicrobial susceptibility testing (AST) for BSI is time-consuming and tedious, taking 2-3 days. Avoiding lengthy monoclonal cultures and shortening the drug sensitivity incubation time are keys to accelerating the AST. Here, we introduced a bacteria separation integrated AST (BSI-AST) chip, which could extract bacteria directly from positive blood cultures (PBCs) within 10 min and quickly give susceptibility information within 3 h. The integrated chip includes a bacteria separation chamber, multiple AST chambers, and connection channels. The separator gel was first preloaded into the bacteria separation chamber, enabling the swift separation of bacteria cells from PBCs through on-chip centrifugation. Then, the bacteria suspension was distributed in the AST chambers with preloaded antibiotics through a quick vacuum-assisted aliquoting strategy. Through centrifuge-assisted on-chip enrichment, detectable growth of the phenotype under different antibiotics could be easily observed in the taper tips of AST chambers within a few hours. As a proof of concept, direct AST from artificial PBCs with Escherichia coli against 18 antibiotics was performed on the BSI-AST chip, and the whole process from bacteria extraction to AST result output was less than 3.5 h. Moreover, the integrated chip was successfully applied to the diagnosis of clinical PBCs, showing 93.3% categorical agreement with clinical standard methods. The reliable and fast pathogen characterization of the integrated chip suggested its great potential application in clinical diagnosis.


Assuntos
Hemocultura , Sepse , Humanos , Microfluídica , Antibacterianos/farmacologia , Centrifugação , Escherichia coli
18.
Biotechnol Bioeng ; 120(11): 3347-3356, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37539666

RESUMO

Direct depth filtration is an established technology for single-use harvest operation. Advantages of direct depth filtration include familiarity with depth filtration in downstream processes and simplicity of the operation. Drawbacks include low capacity, large footprint, labor-intensive set-up, high water use, and high waste in the form of discarded filters. Single-use centrifugation is emerging as an alternative to depth filtration for the single-use harvest step. Within the single-use centrifugation space, disc stack centrifugation represents the newest entrant. In this study, we evaluated the performance of the GEA kytero single-use disc stack centrifuge to clarify two monoclonal antibody-producing cell culture fluids. The separation performance of the GEA kytero centrifuge varied between the two cell culture fluids, with differences in centrate turbidity and centrate filterability measured. A comparison was then performed to determine resource savings, compared to direct two-stage depth filtration, when using a GEA kytero centrifuge to harvest a 1000 L bioreactor. The analysis concluded that replacement of the first stage of depth filters with a GEA kytero centrifuge has the potential to decrease the required second stage depth filtration area by up to 80%. The decrease in depth filter area resulting from the use of the GEA kytero would result in a decrease in the harvest step footprint, a decrease in buffer volume required to prime and rinse depth filters, and a decrease in the volume of plastic waste. An economic comparison of the GEA kytero single-use centrifuge against a direct depth filtration step found that for a 1000 L harvest step, the GEA kytero centrifuge may reduce costs by up to 20% compared with two-stage direct depth filtration.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Cricetinae , Animais , Cricetulus , Células CHO , Técnicas de Cultura de Células/métodos , Centrifugação/métodos , Filtração/métodos
19.
Analyst ; 148(4): 932-941, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36722841

RESUMO

cfDNA is an emerging biomarker with promising uses for the monitoring of cancer or infectious disease diagnostics. This work demonstrates a new concept for an automated cfDNA extraction with nanobeads as the solid phase in a centrifugal microfluidic LabDisk. By using a combination of centrifugal and magnetic forces, we retain the nanobeads in one incubation chamber while sequentially adding, incubating and removing the sample and pre-stored buffers for extraction. As the recovery rate of the typically low concentration of cfDNA is of high importance to attain sufficient amounts for analysis, optimal beadhandling is paramount. The goal is that the cfDNA in the sample adsorbs to the solid phase completely during the binding step, is retained during washing and completely removed during elution. In this work, we improved beadhandling by optimizing the incubation chamber geometry and both frequency and temperature protocols, to maximize recovery rates. For characterization of the extraction performance, synthetic mutant DNA was spiked into human plasma samples. The LabDisk showed better reproducibility in DNA recovery rates with a standard deviation of ±13% compared to a manual approach using spin-columns (±17%) or nanobeads (±26%). The extraction of colorectal cancer samples with both the developed LabDisk and a robotic automation instrument resulted in comparable allele frequencies. Consequently, we present a highly attractive solution for an automated liquid biopsy cfDNA extraction in a small benchtop device.


Assuntos
Ácidos Nucleicos Livres , Biópsia Líquida , Microfluídica , Humanos , Ácidos Nucleicos Livres/genética , DNA/genética , Microfluídica/métodos , Reprodutibilidade dos Testes , Nanoestruturas , Centrifugação
20.
Mol Cell Probes ; 68: 101900, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764623

RESUMO

Urinary DNA is widely studied as a non-invasive marker for monitoring of kidneys after transplantation or the progression of urinary tract tumors. The quantity of urinary DNA especially of mitochondrial origin has been reported to mirror kidney damage in various renal diseases and their models. Processing of samples might affect urinary DNA concentrations but the details are not clear. Samples of urine were collected from fifteen healthy volunteers. DNA was extracted from the whole urine, but also from the supernatant after centrifugation at 1600 g and 16000 g. In addition, we have analyzed the DNA in the microparticles in the pellet after the last spin. DNA was measured using fluorometry and real time PCR targeting nuclear and mitochondrial sequences. Addition of deoxyribonuclease to aliquots of samples enabled the characterization of DNA protection. Centrifugation at 1600 g decreased the concentration of extracted DNA by 66% at least in samples with higher DNA in whole urine. Interestingly, the additional spin at 16000 g did not result in a significant decrease in DNA concentration in the supernatant despite detectable microparticle-associated DNA. Deoxyribonuclease decreases total and nuclear DNA by 26% and 31% in whole urine. The majority of urinary mitochondrial DNA seems to be protected against deoxyribonuclease. Our results indicate high variability in urinary DNA even in healthy probands. Extracellular urinary DNA is partially bound to cell debris or microparticles, but a considerable part is still in the supernatant and is protected against cleavage. Further research should identify the nature of the protection, especially for mitochondrial DNA. Better understanding of the biology of urinary DNA should help its clinical interpretation.


Assuntos
Líquidos Corporais , DNA Mitocondrial , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/urina , Mitocôndrias , Centrifugação , Desoxirribonucleases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA