Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.108
Filtrar
1.
Anal Chem ; 96(26): 10738-10747, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38898770

RESUMO

Herein, CsPbBr3 perovskite quantum dots (CPB PQDs)@poly(methyl methacrylate) (PMMA) (CPB@PMMA) nanospheres were used as energy donors with high Förster resonance energy transfer (FRET) efficiency and exceptional biocompatibility for ultrasensitive dynamic imaging of tiny amounts of microRNAs in living cells. Impressively, compared with traditional homogeneous single QDs as energy donors, CPB@PMMA obtained by encapsulating numerous CPB PQDs into PMMA as energy donors could not only significantly increase the efficiency of FRET via improving the local concentration of CPB PQDs but also distinctly avoid the problem of cytotoxicity caused by divulged heavy metal ions entering living cells. Most importantly, in the presence of target miRNA-21, DNA dendrimer-like nanostructures labeled with 6-carboxy-tetramethylrhodamine (TAMRA) were generated by the exposed tether interhybridization of the Y-shape structure, which could wrap around the surface of CPB@PMMA nanospheres to remarkably bridge the distance of FRET and increase the opportunity for effective energy transfer, resulting in excellent precision and accuracy for ultrasensitive and dynamic imaging of miRNAs. As proof of concept, the proposed strategy exhibited ultrahigh sensitivity with a detection limit of 45.3 aM and distinctly distinguished drug-irritative miRNA concentration abnormalities with living cells. Hence, the proposed enzyme-free CPB@PMMA biosensor provides convincing evidence for supplying accurate information, which could be expected to be a powerful tool for bioanalysis, diagnosis, and prognosis of human diseases.


Assuntos
Transferência Ressonante de Energia de Fluorescência , MicroRNAs , Óxidos , Pontos Quânticos , Titânio , Pontos Quânticos/química , MicroRNAs/análise , Humanos , Titânio/química , Óxidos/química , Compostos de Cálcio/química , Polimetil Metacrilato/química , Chumbo/química , Chumbo/análise , Gadolínio/química
2.
Anal Chem ; 96(27): 11076-11082, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38934238

RESUMO

Novel hollow AuAg nanoboxes (AuAg NBs) were designed for an innovative electrochemiluminescence (ECL) sensor to ultrasensitively detect Pb2+ and Hg2+ with the aid of DNAzyme and "thymine-Hg2+-thymine" ("T-Hg2+-T") structure. AuAg NBs are employed as an excellent surface plasma resonance (SPR) source, as well as an effective coreaction accelerator for the CoNi NFs/S2O82- system to greatly improve ECL performance. To detect Pb2+, the DNAzyme catalyzes the cleavage of ribonucleic acid targets into numerous small nucleic acid fragments, leading to an ECL signal. When Hg2+ is added, the thymine-thymine (T-T) mismatches of the Hg2+ aptamer bind Hg2+ to form the "T-Hg2+-T" structure, which not only inhibits the SPR process but also produces a large steric hindrance, thus quenching the ECL signal and allowing quantification of Hg2+. The novel ECL sensor quantifies Pb2+ in the range of 0.1 fM to 0.1 µM with a limit of detection of 0.07 fM and Hg2+ in the range of 10 pM to 1 µM with a LOD of 4.07 pM.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Ouro , Chumbo , Medições Luminescentes , Mercúrio , Prata , Mercúrio/análise , Ouro/química , Técnicas Biossensoriais/métodos , Chumbo/análise , Chumbo/química , DNA Catalítico/química , DNA Catalítico/metabolismo , Prata/química , Técnicas Eletroquímicas/métodos , Ressonância de Plasmônio de Superfície , Nanopartículas Metálicas/química , Limite de Detecção , Timina/química
3.
Small ; 20(26): e2310238, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38267815

RESUMO

Cesium lead halide (CsPbX3, X = Br, Cl, and I) nanocrystals (NCs) are widely concerned and applied in many fields due to the excellent photoelectric performance. However, the toxicity of Pb and the loss of luminescence in water limit its application in vivo. A stable perovskite nanomaterial with good bioimaging properties is developed by incorporating europium (Eu) in CsPbX3 NCs followed with the surface coating of silica (SiO2) shell (CsPbX3:Eu@SiO2). Through the surface coating of SiO2, the luminescence stability of CsPbBr3 in water is improved and the leakage of Pb2+ is significantly reduced. In particular, Eu doping inhibits the photoluminescence quantum yield reduction of CsPbBr3 caused by SiO2 coating, and further reduces the release of Pb2+. CsPbBr3:Eu@SiO2 nanoparticles (NPs) show efficient luminescence in water and good biocompatibility to achieve cell imaging. More importantly, CsPb(ClBr)3:Eu@SiO2 NPs are obtained by adjusting the halogen components, and green light and blue light are realized in zebrafish imaging, showing good imaging effect and biosafety. The work provides a strategy for advanced perovskite nanomaterials toward biological practical application.


Assuntos
Césio , Európio , Chumbo , Luminescência , Nanopartículas , Dióxido de Silício , Água , Peixe-Zebra , Animais , Dióxido de Silício/química , Európio/química , Nanopartículas/química , Chumbo/química , Césio/química , Água/química , Titânio/química , Óxidos , Compostos de Cálcio
4.
J Biol Inorg Chem ; 29(2): 201-216, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38587623

RESUMO

The presented study proposes an efficient utilization of a common Thymus serpyllum L. (wild thyme) plant as a highly potent biosorbent of Cu(II) and Pb(II) ions and the efficient interaction of the copper-laden plant with two opportunistic bacteria. Apart from biochars that are commonly used for adsorption, here we report the direct use of native plant, which is potentially interesting also for soil remediation. The highest adsorption capacity for Cu(II) and Pb(II) ions (qe = 12.66 and 53.13 mg g-1, respectively) was achieved after 10 and 30 min of adsorption, respectively. Moreover, the Cu-laden plant was shown to be an efficient antibacterial agent against the bacteria Escherichia coli and Staphylococcus aureus, the results being slightly better in the former case. Such an activity is enabled only via the interaction of the adsorbed ions effectively distributed within the biological matrix of the plant with bacterial cells. Thus, the sustainable resource can be used both for the treatment of wastewater and, after an effective embedment of metal ions, for the fight against microbes.


Assuntos
Antibacterianos , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Adsorção , Metais Pesados/química , Metais Pesados/metabolismo , Metais Pesados/farmacologia , Thymus (Planta)/química , Chumbo/química , Chumbo/metabolismo , Cobre/química , Cobre/farmacologia , Cobre/metabolismo , Testes de Sensibilidade Microbiana
5.
Org Biomol Chem ; 22(33): 6833-6840, 2024 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-39115293

RESUMO

The 10-23 DNAzyme, a catalytic DNA molecule with RNA-cleaving activity, has garnered significant interest for its potential therapeutic applications as a gene-silencing agent. However, the lack of a detailed understanding about its mechanism has hampered progress. A recent structural analysis has revealed a highly organized conformation thanks to the stabilization of specific interactions within the catalytic core of the 10-23 DNAzyme, which facilitate the cleavage of RNA. In this configuration, it has been shown that G14 is in good proximity to the cleavage site which suggests its role as a general base, by activating the 2'-OH nucleophile, in the catalysis of the 10-23 DNAzyme. Also, the possibility of a hydrated metal acting as a general acid has been proposed. In this study, through activity assays, we offer evidence of the involvement of general acid-base catalysis in the mechanism of the 10-23 DNAzyme by analyzing its pH-rate profiles and the role of G14, and metal cofactors like Mg2+ and Pb2+. By substituting G14 with its analogue 2-aminopurine and examining the resultant pH-rate profiles, we propose the participation of G14 in a catalytically relevant proton transfer event, acting as a general base. Further analysis, using Pb2+ as a cofactor, suggests the capability of the hydrated metal ion to act as a general acid. These functional results provide critical insights into the catalytic strategies of RNA-cleaving DNAzymes, revealing common mechanisms among nucleic acid enzymes that cleave RNA.


Assuntos
DNA Catalítico , DNA Catalítico/química , DNA Catalítico/metabolismo , Concentração de Íons de Hidrogênio , Biocatálise , Cinética , Magnésio/química , Magnésio/metabolismo , Catálise , Chumbo/química , Chumbo/metabolismo , DNA de Cadeia Simples
6.
Environ Sci Technol ; 58(37): 16525-16534, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39235261

RESUMO

The reaction of dissolved Pb2+ with calcite surfaces at near-equilibrium conditions involves adsorption of Pb2+ and precipitation of secondary heteroepitaxial Pb-carbonate minerals. A more complex behavior is observed under far-from-equilibrium conditions, including strong inhibition of calcite dissolution, development of microtopography, and near-surface incorporation of multiple monolayers (ML) of Pb2+ without precipitation of secondary phases [where 1 ML ≡ 1 Ca/20.2 Å2, the crystallographic site density of the calcite (104) lattice plane]. However, the mechanistic controls governing far-from-equilibrium reactivity are not well understood. Here, we observe the interfacial incorporation of dissolved Pb2+ during the dissolution of calcite (104) surfaces at pH ∼ 3.7 in a flow-through reaction cell, revealing the formation of a ∼1 nm thick Pb-rich calcite layer with a total Pb coverage of ∼1.4 ML. These observations of the sorbed Pb distribution used resonant anomalous X-ray reflectivity, X-ray fluorescence, and nanoinfrared atomic force microscopy. We propose that this altered surface layer represents a novel sorption mode that is stabilized by conditions of sustained disequilibrium. This behavior may significantly impact the transport of dissolved metals during disequilibrium processes occurring in acid mine drainage and subsurface CO2 injection and, if appropriately accounted for, could improve the predictive capability of geochemical reactive-transport models.


Assuntos
Carbonato de Cálcio , Chumbo , Chumbo/química , Carbonato de Cálcio/química , Adsorção , Propriedades de Superfície , Íons
7.
Environ Sci Technol ; 58(26): 11748-11759, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38912726

RESUMO

Despite extensive study, geochemical modeling often fails to accurately predict lead (Pb) immobilization in environmental samples. This study employs the Charge Distribution MUlti-SIte Complexation (CD-MUSIC) model, X-ray absorption fine structure (XAFS), and density functional theory (DFT) to investigate mechanisms of phosphate (PO4) induced Pb immobilization on metal (hydr)oxides. The results reveal that PO4 mainly enhances bidentate-adsorbed Pb on goethite via electrostatic synergy at low PO4 concentrations. At relatively low pH (below 5.5) and elevated PO4 concentrations, the formation of the monodentate-O-sharing Pb-PO4 ternary structure on goethite becomes important. Precipitation of hydropyromorphite (Pb5(PO4)3OH) occurs at high pH and high concentrations of Pb and PO4, with an optimized log Ksp value of -82.02. The adjustment of log Ksp compared to that in the bulk solution allows for quantification of the overall Pb-PO4 precipitation enhanced by goethite. The CD-MUSIC model parameters for both the bidentate Pb complex and the monodentate-O-sharing Pb-PO4 ternary complex were optimized. The modeling results and parameters are further validated and specified with XAFS analysis and DFT calculations. This study provides quantitative molecular-level insights into the contributions of electrostatic enhancement, ternary complexation, and precipitation to phosphate-induced Pb immobilization on oxides, which will be helpful in resolving controversies regarding Pb distribution in environmental samples.


Assuntos
Chumbo , Fosfatos , Chumbo/química , Fosfatos/química , Compostos de Ferro/química , Minerais/química , Concentração de Íons de Hidrogênio , Adsorção
8.
Bioorg Chem ; 146: 107262, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467092

RESUMO

Modern classes of antimicrobials are crucial because most drugs in development today are basically antibiotic derivatives. Even though a large number of metal-based compounds have been studied as antimicrobial agents, relatively few studies have examined the antimicrobial properties of Pd(II) and Pt(II) compounds. The [3+2] cycloaddition reactions of [M(N3)L]PF6 (M = Pd(II) and Pt(II); L = 4'-(2-pyridyl)-2,2':6',2″-terpyridine) with 4,4,4-trifluoro-2-butynoic acid ethyl ester gave the corresponding triazolate complexes. The reaction products were fully characterized with a variety of analytical and spectroscopic tools including X-ray crystallographic analysis. The crystal structure of [Pd(triazolatoCF3,COOCH2CH3)L]PF6 provided cut-off evidence that the kinetically formed N1-triazolato isomer favoured the isomerization to the thermodynamically stable N2-analogue. The experimental work was complemented with computational work to get an insight into the nature of the predominant triazolate isomer. The lysozyme binding affinity of the triazolate complexes was examined by mass spectrometry. An analysis of the lysozyme Pd(II) adducts suggests a coordinative covalent mode of binding via the loss of the triazolato ligand. The free ligand and its triazolate complexes displayed selective toxicity against Candida albicans and Cryptococcus neoformans, while no cytotoxicity was observed against the normal human embryonic kidney cell line.


Assuntos
Anti-Infecciosos , Muramidase , Humanos , Anti-Infecciosos/farmacologia , Reação de Cicloadição , Isomerismo , Ligantes , Platina/química , Chumbo/química
9.
Environ Res ; 261: 119651, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39094897

RESUMO

The characterisation of hydrochars derived from Sargassum biomass collected along the Mexican Caribbean coast reveals their favourable morphology and chemical composition for incorporating metal ions, including Cd(II) and Pb(II). Among the synthesized materials, HCS-3, produced at 180 °C with a 2 h residence time, exhibited superior yield, specific area, carbon content, and capacity for removing Cd(II) and Pb(II). Adsorption equilibrium studies demonstrate the presence of adsorption processes during Cd(II) and Pb(II) retention on HCS-3, with adsorption capacities slightly exceeding 140 and 340 mg g⁻1, respectively. Notably, HCS-3 shows a greater affinity for Pb(II) over Cd(II) when both elements are present concurrently. The physicochemical analysis through FTIR spectroscopy, functional group analysis, point of zero charge determination, SEM/EDS, and other techniques evidenced that HCS-3 possesses favourable characteristics to serve as a heavy metal adsorbent. These findings underscore the efficacy of hydrochars from Sargassum biomass in removing heavy metals, suggesting their potential as superior adsorbents compared to traditional or novel materials, and advising its possible versatility for other pollutants. Utilizing these hydrochars could mitigate the economic and environmental impact of Sargassum biomass by repurposing it for valuable applications.


Assuntos
Cádmio , Chumbo , Poluentes Químicos da Água , Adsorção , Cádmio/química , Chumbo/química , Poluentes Químicos da Água/química , Biomassa , Sargassum/química
10.
Environ Res ; 252(Pt 2): 118935, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621630

RESUMO

Hematite nanoparticles commonly undergoes isomorphic substitution of Al3+ in nature, while how the Al-substitution-induced morphological change, defective structure and newly generated Al-OH sites affect the adsorption behavior of hematite for contaminants remains poorly understood. Herein, the interfacial reactions between Al-substituted hematite and Pb2+ was investigated via CD-MUSIC modeling and DFT calculations. As the Al content increased from 0% to 9.4%, Al-substitution promoted the proportion of (001) facets and caused Fe vacancies on hematite, which increased the total active site density of hematite from 5.60 to 17.60 sites/nm2. The surface positive charge of hematite significantly increased from 0.096 to 0.418 C/m2 at pH 5.0 due to the increases in site density and proton affinity (logKH) of hematite under Al-substitution. The adsorption amount of hematite for Pb2+ increased from 3.92 to 9.74 mmol/kg at pH 5.0 and 20 µmol/L initial Pb2+ concentration with increasing Al content. More Fe vacancies may lead to a weaker adsorption energy (Ead) of hematite for Pb2+, while the Ead was enhanced at higher Al content. The adsorption affinity (logKPb) of bidentate Pb complexes slightly increased while that of tridentate Pb complexes decreased with increasing Al content due to the presence of ≡ AlOH-0.5 and ≡ Fe2AlO-0.5 sites. Tridentate Pb complexes were dominant species on the surface of pure hematite, while bidentate ones became more dominant with increasing Al content. The obtained model parameters and molecular scale information are of great importance for better describing and predicting the environmental fate of toxic heavy metals in terrestrial and aquatic environments.


Assuntos
Alumínio , Compostos Férricos , Chumbo , Modelos Químicos , Chumbo/química , Compostos Férricos/química , Adsorção , Alumínio/química , Alumínio/análise
11.
Environ Res ; 249: 118360, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325779

RESUMO

For human health and environment safety, it is of great significance to develop novel materials with high effectiveness for removal of lead from not only aqueous solutions but also human body and traditional Chinese medicines. Here, functional kiwi peel composite, manganese dioxide decorated kiwi peel powder (MKPP), is proposed for the removal of Pb2+ effectively. The adsorption of Pb2+ in aqueous solution is a highly selective and endothermic process and kinetically follows a pseudo-second-order model, which can reach equilibrium with the capacity of 192.7 mg/g within 10 min. Comprehensive factors of hydration energy, charge-to-radius ratio and softness of Pb2+ make a stronger affinity between MKPP and Pb2+. The possible adsorption mechanism involves covalent bond, electrostatic force and chelation, etc. MKPP can be efficiently regenerated and reused with high adsorption efficiency after five cycles. Besides, MKPP can remove over 97% of Pb2+ from real water samples. MKPP can also alleviate lead poisoning to a certain extent and make the Pb level of TCM extract meet the safety standard. This work highlights that MKPP is a promising adsorbent for the removal of Pb2+ and provides an efficient strategy for reusing kiwi peel as well as dealing with the problem of Pb pollution.


Assuntos
Medicamentos de Ervas Chinesas , Chumbo , Compostos de Manganês , Óxidos , Poluentes Químicos da Água , Chumbo/isolamento & purificação , Chumbo/química , Compostos de Manganês/química , Adsorção , Óxidos/química , Medicamentos de Ervas Chinesas/química , Humanos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Medicina Tradicional Chinesa , Purificação da Água/métodos
12.
Environ Res ; 250: 118499, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38368921

RESUMO

The practical, sensitive, and real-time detection of heavy metal ions is an essential and difficult problem. This study presents the design of a unique magnetic electrochemical detection system that can achieve real-time field detection. To enhance the electrochemical performance of the sensor, Fe2O3@C-800, Co/CoO@/C-600, and CoFe2O4@C-600 magnetic composites were synthesized using three MOFs precursors by the solvothermal method. And the morphology structure and electrochemical properties of as-prepared magnetic composites were researched by X-ray diffraction (XRD), Scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), specific surface area and porosity analyzer (BET) and differential pulse voltammetry (DPV). The results shown that these composites improve conductivity and stability while preserving the MOFs basic frame structure. Compared with the monometallic MOFs-derived composites, the synergistic effect of the bimetallic composite CoFe2O4@C-600 can significantly enhance the electrochemical performance of the sensor. The linear range for the detection of lead ions was 0.001-60 µM, and the detection limit was 0.0043 µM with a sensitivity of 22.22 µA µM·cm-2 by differential pulse voltammetry. The sensor has good selectivity, stability, reproducibility and can be used for actual sample testing.


Assuntos
Cobalto , Técnicas Eletroquímicas , Chumbo , Chumbo/análise , Chumbo/química , Cobalto/química , Cobalto/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Limite de Detecção , Ferro/química , Ferro/análise , Estruturas Metalorgânicas/química
13.
Environ Res ; 250: 118498, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382665

RESUMO

Soil heavy metal pollution is an important issue that affects human health and ecological well-being. In-situ thermal treatment techniques, such as self-sustaining smoldering combustion (SSS), have been widely studied for the treatment of organic pollutants. However, the lack of fuel in heavy metal-contaminated soil has hindered its application. In this study, we used corn straw as fuel to investigate the feasibility of SSS remediation for copper and lead in heavy metal-contaminated soil, as well as to explore the remediation mechanism. The results of the study showed that SSS increased soil pH, electrical conductivity (EC), total phosphorus (TP), total potassium (TK), rapidly available phosphorus (AP), and available potassium (AK), while decreasing total nitrogen (TN), alkali-hydrolyzed nitrogen (AN), and cation exchange capacity (CEC). The oxidation state of copper (Cu) increased from 10% to 21%-40%, and the residual state of lead (Pb) increased from 18% to 51%-73%. The Toxicity characteristic leaching procedure (TCLP) of Cu decreased by a maximum of 81.08%, and the extracted state of Diethylenetriaminepentaacetic acid (DTPA) decreased by 67.63%; the TCLP of Pb decreased by a maximum of 81.87%, and DTPA decreased by a maximum of 85.68%. The study indicates that SSS using corn straw as fuel successfully achieved remediation of heavy metal-contaminated soil. However, SSS does not reduce the content of copper and lead; it only changes their forms in the soil. The main reasons for the fixation of copper and lead during the SSS process are the adsorption of biochar, complexation with -OH functional groups, binding with π electrons, and the formation of crystalline compounds. This research provides a reference for the application of SSS in heavy metal-contaminated soil and has potential practical implications.


Assuntos
Cobre , Recuperação e Remediação Ambiental , Estudos de Viabilidade , Chumbo , Poluentes do Solo , Cobre/química , Cobre/análise , Chumbo/análise , Chumbo/química , Poluentes do Solo/análise , Poluentes do Solo/química , Recuperação e Remediação Ambiental/métodos , Zea mays/química , Solo/química
14.
Environ Res ; 250: 118530, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387491

RESUMO

A novel multimode colorimetric and fluorescent chemosensor was developed using an 8-hydroxy quinoline carbaldehyde Schiff base with a quinoline hydrazide probe (E)-2-((2-(quinolin-2-yl)hydrazineylidene)methyl)quinolin-8-ol (L). NMR (1H & 13C), FTIR, and HR-mass spectral characterization techniques confirmed the probe L structural conformation. As Probe L contacts Pb2+ ions, a color change and turn-off emission can be visually detected in EtOH:H2O (1:1, v/v, pH = 7.21) medium. The probe displays a good emission at 440 nm due to the combined ESIPT and ICT process. The Pb2+ ion interacts with the probe and selectively quenches fluorescence by inhibiting ESIPT and >CN- isomerization. As per Job's plot, L-Pb2+ complex formation occurred in a 1:1 stoichiometric ratio, with association constant (Ka) and quenching constant (Ksv) estimated at 1.52 × 105 M-1 and 4.12 × 105 M, respectively. The detection limits of Pb2+ by spectrophotometric and spectrofluorometric were 1.99 µM (41 ppb) and 23.4 nM (485 ppt), respectively. Additionally, the test paper kit and RGB tool were used to monitor the color changes of L with Pb2+ and the LOD was found to be 5.99 µM (125 ppb). Its recognition mechanism has been verified by 1H NMR, ESI-mass, and theoretical studies.


Assuntos
Colorimetria , Corantes Fluorescentes , Chumbo , Quinolinas , Bases de Schiff , Chumbo/análise , Chumbo/química , Bases de Schiff/química , Quinolinas/química , Quinolinas/análise , Corantes Fluorescentes/química , Colorimetria/métodos , Smartphone , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Espectrometria de Fluorescência/métodos
15.
Environ Res ; 258: 119416, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885827

RESUMO

To address the urgent need for efficient removal of lead-containing wastewater and reduce the risk of toxicity associated with heavy-metal wastewater contamination, materials with high removal rates and easy separation must be developed. Herein, a novel organic-inorganic hybrid material based on phosphorylated magnetic chitosan (MSCP) was synthesized and applied for the selective removal of lead (II) from wastewater. From the characterization and the experimental results can be obtained that the magnetic saturation strength of MSCP reaches 14.65 emu/g, which can be separated quickly and regenerated readily, and maintains high adsorption performance even after 5 cycles, indicating that the adsorbent possesses good magnetic separation performance and durability. Also, MSCP showed high selective adsorption performance for lead in the multiple metal ions coexistence solutions at pH 6.0 and room temperature, with an adsorption coefficient SPb-MSCP of 78.85%, which was much higher than that of MSC (the SPb-MSC was 11.59%). Additionally, in the single lead system, the sorption characteristics of Pb(II) on MSCP and MCP had obvious pH-responsiveness, and their adsorption capacity increased with the increase of solution pH, reaching the maximal values of 80.19 and 72.68 mg/g, respectively. It is noteworthy that the acid resistance of MSCP with an inert layer coated on the core is significantly improved, with almost no iron leaching from MSCP over the entire acidity range, while MCP has 7.63 mg/g of iron leaching at pH 1.0. Significantly, MSCP exhibited a maximum adsorption capacity of 102.04 mg/g, which matches the Langmuir model at pH 6.0 and 298.15 K, and points to the pseudo-second-order kinetics of the chemisorption process of Pb(II) on MSCP. These findings highlight the great potential of MSCP for Pb(II) removal from aqueous solution, making it a promising solution for Pb(II) contamination in wastewater.


Assuntos
Quitosana , Chumbo , Fosfatos , Águas Residuárias , Poluentes Químicos da Água , Chumbo/química , Chumbo/isolamento & purificação , Quitosana/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Adsorção , Fosfatos/química , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
16.
Environ Res ; 259: 119525, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964586

RESUMO

This study involves synthesizing peanut hull hydrochar (PHH) and a PHH/ß-CD/Fe3O4 magnetic composite through hydrothermal and chemical precipitation methods, respectively, to use as effective adsorbents for Pb2+ removal. Vibrating-sample magnetometry (VSM) and Brunauer-Emmett-Teller (BET) analyses revealed that the magnetic saturation value and specific active surface area of PHH/ß-CD/Fe3O4 are 31.543 emu/g and 32.123 m2/g, respectively. The impact of key variables on adsorption efficiency was evaluated using the response surface method - central composite design. ANOVA results (F-value: 166.22 and p-value: <0.05) demonstrated that the model effectively assesses the interaction of variables in the adsorption process. Additionally, R2, Adjusted R2, and Predicted R2 values were 0.999, 0.986, and 0.975, respectively, indicating the model's high adequacy in describing response changes. The maximum efficiency for Pb2+ adsorption was found to be 95.35% using PHH and 99.73% with the PHH/ß-CD/Fe3O4 magnetic composite. These measurements were taken at a temperature of 25 °C, an adsorbent dose of 1 g/L, a pH of 6, and a Pb2+ concentration of 5 mg/L, with respective contact times of 130 min and 50 min. Thermodynamic analysis revealed negative enthalpy and Gibbs free energy values, indicating that the adsorption process is exothermic and spontaneous. The negative entropy parameter suggests a reduction in random interactions during the process. The Pb2+ adsorption data for both PHH (R2: 0.982) and PHH/ß-CD/Fe3O4 (R2: 0.985) were best described by the Pseudo 2nd order kinetic model. Equilibrium data followed the Freundlich model, with R2 values of 0.981 for PHH and 0.990 for PHH/ß-CD/Fe3O4, highlighting the importance of heterogeneous surfaces in the removal process. The maximum adsorption capacities for Pb2+ were 26.72 mg/g for PHH and 33.88 mg/g for PHH/ß-CD/Fe3O4. Reuse and stability tests confirmed the structural stability and reusability of the adsorbents. Therefore, the PHH/ß-CD/Fe3O4 magnetic composite is a promising option for removing Pb2+ from aqueous solutions.


Assuntos
Arachis , Chumbo , Poluentes Químicos da Água , beta-Ciclodextrinas , Chumbo/química , Chumbo/isolamento & purificação , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Arachis/química , beta-Ciclodextrinas/química , Purificação da Água/métodos
17.
Environ Res ; 252(Pt 2): 118938, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649014

RESUMO

Fly ash (FA) is mainly composed of silica, alumina, and other metal oxide components, and has a positive stabilizing effect on soil heavy metals. Biochar composites produced from FA and corn stover (CS) can improve its remediation performance. Therefore, a batch of biochar composites (alkali-fused FA-CS biochars, ABs), synthesized via co-pyrolysis of CS and alkali-fused FA (AFFA) at different temperatures of 300, 500, and 700 °C (AB300-1, AB500-1, and AB700-1) and CS to AFFA mass ratios of 10:1, 10:2, and 10:5 (AB500-1, AB500-2, and AB500-5), was used to remediate lead (Pb)-contaminated soil. Compared with pristine biochars (BCs), ABs were enriched with oxygen-containing functional groups (Si-O-Si and Si-O) and aromatic structures. The ABs prepared at lower pyrolytic temperature (≤500 °C) and lower ratio of CS to AFFA (10:1) showed higher yield and stability. The contents of Toxicity Characteristic Leaching Procedure (TCLP)-extractable Pb and DTPA-CaCl2-triethanolamine (DTPA)-extractable Pb were generally lower in the soils amended with ABs than BCs. Compared with other ABs such as AB300-1, AB500-2, AB500-5, and AB700-1, the soil amended with AB500-1 had lower contents of TCLP and DTPA-extractable Pb (24% reduction), exhibiting superior performance in stabilizing Pb in the soil. The gradual decrease of DTPA-extractable Pb content in the soil with increasing dosage of AB500-1 amendments suggests that AB500-1 facilitated the conversion of bioavailable Pb to the stable and less toxic residual fractions. Specifically, the highest percentage of residual fraction of Pb in soil amended with AB500-1 was 14%. Correlation analyses showed that the soil DTPA-extractable Pb content decreased with the increase of soil pH and cation-exchange capacity (CEC) value. ABs stabilize Pb in the soils mainly via electrostatic attraction, precipitation, cation-π interaction, cation exchange, and complexation. These findings provide insights for producing functionalized biochar composites from industrial waste like FA and biomass waste for remediating the soils polluted by heavy metals.


Assuntos
Carvão Vegetal , Cinza de Carvão , Recuperação e Remediação Ambiental , Chumbo , Pirólise , Poluentes do Solo , Zea mays , Carvão Vegetal/química , Zea mays/química , Chumbo/química , Chumbo/análise , Cinza de Carvão/química , Poluentes do Solo/química , Poluentes do Solo/análise , Recuperação e Remediação Ambiental/métodos , Álcalis/química , Solo/química
18.
Environ Res ; 259: 119529, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38960359

RESUMO

In this study, pomegranate seed waste (PSW) was added into sand filter (SF) to increase removal efficiency of Lead (Pb(II)) and Copper (Cu(II)) from polluted water. The performance of PSW was compared with activated carbon (AC) as a typical adsorbent. Based on the SEM, EDX, FTIR, XRD, BET and proximate analyses, PSW had porous structure with specific surface area of 2.76 m2/g and active compounds which suggested PSW as an appropriate adsorbent for heavy metals (HMs) adsorption. According to the batch experiments, SF without treatment could only remove 46% and 35% of Pb(II) and Cu(II), respectively. These numbers increased to 88% and 75% for Pb(II) and Cu(II) by adding 3 g/kg PSW to the SF, respectively under the optimal conditions of HMs initial concentrations = 100 mg/L, pH = 7 and contact time = 60 min. The adsorption kinetic and isotherm followed the pseudo-first-order and Langmuir models, respectively indicating that mainly physisorption was involved in the HMs adsorption process of PSW. Based on the column experiments (flow rate = 62.5 mL/min), the Pb(II) and Cu(II) removal increased from 14% to 60% and 10%-55%, respectively after 5 pore volumes (40 min) by adding 3 g/kg PSW to the SF. Breakthrough curves matched better with Thomas mode rather than Adam's Bohart proving Langmuir adsorption isotherm. Our finding suggested modification of SF with PSW is a promising approach for efficient removal of HMs from water.


Assuntos
Cobre , Filtração , Chumbo , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cobre/química , Cobre/isolamento & purificação , Chumbo/química , Chumbo/isolamento & purificação , Cinética , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Filtração/métodos , Purificação da Água/métodos , Areia/química , Punica granatum/química , Sementes/química
19.
Environ Res ; 259: 119517, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38964585

RESUMO

This paper aims to develop a flow-through electrochemical system with a series of graphene nanoparticles loaded PbO2 reactive electrochemical membrane electrodes (GNPs-PbO2 REMs) on porous Ti substrates with pore sizes of 100, 150, 300 and 600 µm, and apply them to treat antibiotic wastewater. Among them, the GNPs-PbO2 with Ti substrate of 150 µm (Ti-150/GNPs-PbO2) had superior electrochemical degradation performance over the REMs with other pore sizes due to its smaller crystal size, larger electrochemical active specific area, lower charge-transfer impedance and larger oxygen evolution potential. Under the relatively optimized conditions of initial pH of 5, current density of 15 mA cm-2, and membrane flux of 4.20 m3 (m2·h)-1, the Ti-150/GNPs-PbO2 REM realized 99.34% of benzylpenicillin sodium (PNG) removal with an EE/O of 6.52 kWh m-3. Its excellent performance could be explained as the increased mass transfer. Then three plausible PNG degradation pathways in the flow-through electrochemical system were proposed, and great stability and safety of Ti-150/GNPs-PbO2 REM were demonstrated. Moreover, a single-pass Ti-150/GNPs-PbO2 REM system with five-modules in series was designed, which could consistently treat real antibiotic wastewater in compliance with disposal requirements of China. Thus, this study evidenced that the flow-through electrochemical system with the Ti-150/GNPs-PbO2 REM is an efficient alternative for treating antibiotic wastewater.


Assuntos
Antibacterianos , Técnicas Eletroquímicas , Eletrodos , Grafite , Oxirredução , Óxidos , Águas Residuárias , Poluentes Químicos da Água , Grafite/química , Antibacterianos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Óxidos/química , Técnicas Eletroquímicas/métodos , Chumbo/química , Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
20.
Curr Microbiol ; 81(9): 294, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095512

RESUMO

More recently, the application of semiconductor nanomaterials called quantum dots (QDs), has gained considerable attention as they possess tunable optoelectronic and physicochemical properties. There are several routes of QDs synthesis some of which include lithography, molecular beam epitaxy, and chemical reduction. However, most of these methods are expensive, labour intensive, and produce toxic by-products. Hence, the biosynthesis of QDs has been extensively researched for addressing the issues. This review elaborates on the biogenic synthesis of cadmium selenide, cadmium telluride, cadmium sulfide, lead sulfide, and zinc sulfide QDs using bacteria, and fungi. Further, we attempt to identify the underlying mechanism and critical parameters that can control the synthesis of QDs. Eventually, their application in detectors, photovoltaics, biodiesel, photocatalysis, infection-control, and bioimaging are discussed. Thus, biogenic QDs have a tremendous scope in future to emerge as next generation nanotheranostics although thorough pharmacokinetic, and pharmacodynamic studies are required.


Assuntos
Bactérias , Compostos de Cádmio , Fungos , Pontos Quânticos , Sulfetos , Compostos de Zinco , Pontos Quânticos/química , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Sulfetos/química , Sulfetos/metabolismo , Fungos/metabolismo , Fungos/efeitos dos fármacos , Compostos de Cádmio/química , Compostos de Zinco/química , Compostos de Selênio/química , Chumbo/química , Telúrio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA