Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 260(2): 48, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980389

RESUMO

MAIN CONCLUSION: We studied the D3-type cyclin function during gynoecium development in Arabidopsis and how they are related to the hormone cytokinin and the transcription factor SPATULA. Growth throughout the life of plants is sustained by cell division and differentiation processes in meristematic tissues. In Arabidopsis, gynoecium development implies a multiphasic process where the tissues required for pollination, fertilization, and seed development form. The Carpel Margin Meristem (CMM) is a mass of undifferentiated cells that gives rise to the gynoecium internal tissues, such as septum, ovules, placenta, funiculus, transmitting tract, style, and stigma. Different genetic and hormonal factors, including cytokinin, control the CMM function. Cytokinin regulates the cell cycle transitions through the activation of cell cycle regulators as cyclin genes. D3-type cyclins are expressed in proliferative tissues, favoring the mitotic cell cycle over the endoreduplication. Though the role of cytokinin in CMM and gynoecium development is highly studied, its specific role in regulating the cell cycle in this tissue remains unclear. Additionally, despite extensive research on the relationship between CYCD3 genes and cytokinin, the regulatory mechanism that connects them remains elusive. Here, we found that D3-type cyclins are expressed in proliferative medial and lateral tissues. Conversely, the depletion of the three CYCD3 genes showed that they are not essential for gynoecium development. However, the addition of exogenous cytokinin showed that they could control the division/differentiation balance in gynoecium internal tissues and outgrowths. Finally, we found that SPATULA can be a mechanistic link between cytokinin and the D3-type cyclins. The data suggest that the role of D3-type cyclins in gynoecium development is related to the cytokinin response, and they might be activated by the transcription factor SPATULA.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Citocininas , Flores , Regulação da Expressão Gênica de Plantas , Citocininas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/crescimento & desenvolvimento , Flores/genética , Flores/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ciclina D3/metabolismo , Ciclina D3/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Ciclinas
2.
Zhonghua Nan Ke Xue ; 29(10): 881-887, 2023 Oct.
Artigo em Zh | MEDLINE | ID: mdl-38639656

RESUMO

OBJECTIVE: Exploring the effects and mechanisms of long non coding RNA (lncRNA) RPL22P1-201 on prostate cancer cell proliferation, cell cycle, and docetaxel sensitivity by regulating miR-216b-5p expression. METHODS: The Cancer LncRNA Census database was used to analyze the differential expression of RPL22P1-201 between prostate cancer tissue and normal tissue. Real time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression level of RPL22P1-201 in prostate cancer cell lines (DU-145, C4-2B, PC3, 22Rv1, LNCaP) and normal prostate epithelial cells (RWPE-1). PC3 cells were divided into si-RPL22P1-201 group (transfected with RPL22P1-201 interference sequence) and si-NC group (transfected with si-NC sequence). Colony formation assay was used to detect the proliferation ability of PC3 cells. Flow cytometry was used to detect the PC3 cell cycle. The CCK-8 method was used to detect the proliferation of PC3 cells in each group after treatment with docetaxel. The dual luciferase reporter gene experiment verifies the binding of RPL22P1-201 to the target gene. qRT-PCR was used to detect the expression level of miR-216b-5p. Western blot was used to detect the expression levels of TrkB, CDK4, cyclin D2, cyclin D3, and CDK6 proteins. RESULTS: The expression level of RPL22P1-201 in prostate cancer tissue was higher than that in normal tissue (P<0.01). The expression level of RPL22P1-201 in prostate cancer cell lines was higher than that in normal prostate epithelial cells (P<0.01). The number of colonies in the si-NC group and si-RPL22P1-201 group was (256.1 ± 28.79) and (78.77 ± 14.52), respectively. The difference was statistically significant (P<0.01). The G0/G1 cell rates in the si-NC group and si-RPL22P1-201 group were (43.18 ± 4.56)% and (68.85 ± 3.40)%, respectively. The S cell rates were (36.84 ± 2.28)% and (24.27 ± 2.74)%, respectively. The G2/M cell rates were (19.98 ± 2.69)% and (6.88 ± 1.57)%, respectively, and the differences were statistically significant (all P<0.05). The cell survival rate of the si-RPL22P1-201 group under the action of docetaxel was lower than that of the si-NC group (all P<0.05). RPL22P1-201 can pair and bind with miR-216b-5p (P<0.01). Compared with the si-NC group, the si-RPL22P1-201 group showed a decrease in miR-216b-5p expression in PC3 cells (P<0.01), and a decrease in TrkB, CDK4, cyclin D2, cyclin D3, and CDK6 protein expression. CONCLUSIONS: RPL22P1-201 is highly expressed in prostate cancer, and silencing RPL22P1-201 inhibits prostate cancer PC3 cell proliferation and cell cycle by increasing miR-216b-5p expression, and enhances PC3 cell sensitivity to docetaxel.


Assuntos
MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante , Humanos , Masculino , Apoptose/genética , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D2/genética , Ciclina D2/metabolismo , Ciclina D3/genética , Ciclina D3/metabolismo , Docetaxel/farmacologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
PLoS One ; 19(4): e0302223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625986

RESUMO

Although Schwann cells have been found to play a key role in inflammation and repair following nerve injury, the exact pathway is still unknown. To explore the mechanism by which Schwann cells exert their effects in the neuron microenvironment, we investigated two main inflammatory pathways: the NF-κB and cAMP pathways, and their downstream signaling molecules. In this study, lipopolysaccharide (LPS), a bacterial endotoxin, was used to activate the NF-κB pathway, and forskolin, a plant extract, was used to activate the cAMP pathway. The rat RT4-D6P2T Schwann cell line was treated with 0.1, 1, or 10 µg/mL of LPS, with or without 2 µM of forskolin, for 1, 3, 12, and 24 hours to determine the effects of elevated cAMP levels on LPS-treated cell viability. To investigate the effects of elevated cAMP levels on the expression of downstream signaling effector proteins, specifically NF-κB, TNF-α, AKAP95, and cyclin D3, as well as TNF-α secretion, RT4-D6P2T cells were incubated in the various treatment combinations for a 3-hour time period. Overall, results from the CellTiter-Glo viability assay revealed that forskolin increased viability in cells treated with smaller doses of LPS for 1 and 24 hours. For all time points, 10 µg/mL of LPS noticeably reduced viability regardless of forskolin treatment. Results from the Western blot analysis revealed that, at 10 µg/mL of LPS, forskolin upregulated the expression of TNF-α despite a downregulation of NF-κB, which was also accompanied by a decrease in TNF-α secretion. These results provide evidence that cAMP might regulate TNF-α expression through alternate pathways. Furthermore, although cAMP activation altered AKAP95 and cyclin D3 expression at different doses of LPS, there does not appear to be an association between the expression of AKAP95 or cyclin D3 and the expression of TNF-α. Exploring the possible interactions between cAMP, NF-κB, and other key inflammatory signaling pathways might reveal a potential therapeutic target for the treatment of nerve injury and inflammation.


Assuntos
Lipopolissacarídeos , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Colforsina/farmacologia , Regulação para Baixo , Ciclina D3/metabolismo , AMP Cíclico/metabolismo , Inflamação , Células de Schwann/metabolismo
4.
Theriogenology ; 224: 9-18, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38714024

RESUMO

Sertoli cell (SC) proliferation plays an important role in sperm production and quality; however, the regulatory mechanism of SC proliferation is not well understood. This study investigated the role of adenosine monophosphate-activated protein kinase (AMPK) in the regulation of immature boar SC activity. Cell counting kit-8, Seahorse XFe96, mitochondrial respiratory enzyme-related assay kits, and transmission electron microscopy were used to detect SC proliferative viability, oxygen consumption rate (OCR), mitochondrial respiratory enzyme activity, and the ultrastructure of primary cultured SCs in vitro from the testes of 21-day-old boars. A dual luciferase reporter assay was performed to determine the miRNA-mRNA target interaction. Western blotting was used to analyze cell proliferation-related protein expression of p38, p21, proliferating cell nuclear antigen (PCNA), Cyclin-dependent kinase 4 (CDK4), Cyclin D3, and phosphorylated retinoblastoma protein (Rb). Each experiment had a completely randomized design, with three replicates in each experiment. The results showed that the AMPK inhibitor (Compound C, 20 µM-24 h) increased cell proliferation viability, ATP production, and maximal respiration of SCs by 0.64-, 0.12-, and 0.08-fold (p < 0.05), respectively; increased the SC protein expression of PCNA, CDK4, Cyclin D3, and p-Rb by 0.13-, 0.09-, 0.88-, and 0.12-fold (p < 0.05), respectively; and decreased the SC protein expression of p38 and p21 by 0.36- and 0.27-fold (p < 0.05), respectively. The AMPK agonist AICAR (2 mM-6 h) significantly inhibited SC ultrastructure, OCR, mitochondrial respiratory enzyme activity, and cell proliferation-related protein levels. AMPK was validated to be a target gene of miR-1285 based on the result in which the miR-1285 mimic inhibited the luciferase activity of wild-type AMPK by 0.54-fold (p < 0.001). MiR-1285 mimic promoted the OCR of SCs, with 0.45-, 0.15-, 0.21-, and 0.30-fold (p < 0.01) increases in ATP production, basal and maximal respiration, and spare capacity, respectively. MiR-1285 mimic increased the mitochondrial respiratory enzyme activity of SCs, with 0.63-, 0.70-, and 0.97-fold (p < 0.01) increases in NADH-Q oxidoreductase, cytochrome c oxidase, and ATP synthase, respectively. Moreover, the miR-1285 mimic increased the protein expression of PCNA, CDK4, Cyclin D3, and p-Rb by 0.24-, 0.30-, 0.22-, and 0.13-fold (p < 0.05), respectively, and reduced the protein expression of p38 and p21 by 0.58- and 0.66-fold (p < 0.001). MiR-1285 inhibitor showed opposite effects on the above indicators and induced numerous autophagosomes and large lipid droplets in SCs. A high dose of estradiol (10 µM-6 h, showed a promotion of AMPK activation in a previous study) significantly inhibited SC ultrastructure, mitochondrial function, and proliferation-related pathways, while these adverse effects were weakened by Compound C treatment or miR-1285 mimic transfection. Our findings suggest that the activation and inhibition of AMPK induced by specific drugs or synthesized targeted miRNA fragments could regulate immature boar SC proliferative activity by influencing the CDK4/Cyclin D3 pathway and mitochondrial function; this helps to provide a basis for the prevention and treatment of male sterility in clinical practice.


Assuntos
Proteínas Quinases Ativadas por AMP , Proliferação de Células , Quinase 4 Dependente de Ciclina , Mitocôndrias , Células de Sertoli , Animais , Masculino , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Suínos , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Células de Sertoli/metabolismo , Células de Sertoli/efeitos dos fármacos , Ciclina D3/metabolismo , Ciclina D3/genética , Transdução de Sinais , Regulação da Expressão Gênica/efeitos dos fármacos , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA