Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Mycoses ; 67(3): e13710, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38414346

RESUMO

BACKGROUND: Onychomycoses are difficult-to-treat fungal infections with high relapse rates. Combining oral and topical antifungal drugs is associated with higher success rates. Additive or synergistic modes of action are expected to enhance treatment success rates. OBJECTIVES: Investigation of the combined effects of antifungal drugs in vitro with different modes of action and application on clinical isolates from mycotic nails. METHODS: Isolates of Trichophyton rubrum, Trichophyton interdigitale and Scopulariopsis brevicaulis were collected from infected toenail specimens of patients with onychomycosis. Susceptibility testing was performed in 96-well polystyrene plates using a standard stepwise microdilution protocol. Additive or synergistic activity at varying concentrations was investigated by the checkerboard method. RESULTS: Combining terbinafine with amorolfine tended to be more effective than terbinafine in conjunction with ciclopirox. In most combinations, additive effects were observed. Synergy was detected in combinations with involving amorolfine in S. brevicaulis. These additive and synergistic interactions indicate that combined therapy with topical amorolfine and oral terbinafine is justified. Sublimation of amorolfine (and terbinafine) may enhance the penetration in and through the nail plate, and support treatment efficacy. CONCLUSIONS: These in vitro results support the notion that combining oral terbinafine and topical amorolfine is beneficial to patients with onychomycosis, particularly if the pathogen is a non-dermatophyte fungus such as S. brevicaulis.


Assuntos
Morfolinas , Onicomicose , Humanos , Terbinafina/farmacologia , Terbinafina/uso terapêutico , Onicomicose/tratamento farmacológico , Onicomicose/microbiologia , Ciclopirox/farmacologia , Ciclopirox/uso terapêutico , Antifúngicos/uso terapêutico , Naftalenos
2.
Biochem Biophys Res Commun ; 659: 10-19, 2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37030020

RESUMO

The activating receptor natural killer group 2D (NKG2D) expressed by Natural killer (NK) cells functions as a "master-switch" in governing the awakening status of NK cells. The NKG2D-mediated cytotoxicity has been declared to be related with the expression levels of NKG2D ligands (NKG2DLs) expressed on tumor cells. Therefore, selective induction of NKG2DLs could be a reliable approach to enhance the efficacy of NK cell-mediated immunotherapy. Our existing study demonstrated that Ciclopirox Olamine (CPX), an off-patent antifungal agent, effectively elevated the expression of NKG2DLs on leukemia cells and sensitized leukemia cells to NK-cell mediated cytolysis. Induction of ROS production and AKT phosphorylation by CPX is essential for the up-regulation of NKG2DLs expressions. Inhibition of AKT by using AKT inhibitor MK2206 decreased both NKG2DLs expressions and NK cell cytotoxicity. These data indicated that increased sensitivity of CPX-treated leukemia cells to NK cell cytolysis was attributed to higher NKG2DLs expressions, resulting from activated AKT signaling pathway. Our findings support the ongoing development of CPX as an anti-tumor agent and suggest its promising immunotherapeutic value in the medication of leukemia.


Assuntos
Leucemia , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ciclopirox/farmacologia , Ciclopirox/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células Matadoras Naturais/metabolismo , Transdução de Sinais , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Linhagem Celular Tumoral
3.
Immunopharmacol Immunotoxicol ; 45(6): 701-708, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37606515

RESUMO

OBJECTIVE: Septic shock, the most severe stage of sepsis, is a deadly inflammatory disorder with high mortality. Ciclopirox (CPX) is a broad-spectrum antimycotic agent which also exerts anti-inflammatory effects in human diseases. However, whether CPX can relieve inflammatory response in LPS-induced septic shock remains unclear. MATERIALS AND METHODS: Male C57BL/6 mice LPS were injected intraperitoneally with LPS to simulate septic shock in vivo. RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were subject to LPS treatment to simulate septic shock in vitro. ELISA was applied to detect the level of pro-inflammatory cytokines. Cell viability was assessed by CCK-8 assay. Protein levels was detected by western blotting. RESULTS: CPX enhanced the survival rate and attenuated inflammation in mice with LPS-induced septic shock. Similarly, CPX dose-dependently mitigated LPS-induced inflammation in BMDMs. It was also found that Sortilin 1 (SORT1) was upregulated in both in vivo and in vitro models of LPS-induced septic shock. In addition, SORT1 overexpression counteracted the alleviative effects of CPX on the inflammation response of LPS-challenged BMDMs by activating the Wnt/ß-Catenin signaling. Furthermore, BML-284 (a Wnt/ß-Catenin agonist) treatment also abrogated CPX-mediated moderation of LPS-triggered inflammatory reaction in BMDMs. CONCLUSIONS: In sum, we found that CPX protected against LPS-induced septic shock by mitigating inflammation via SORT1-mediated Wnt/ß-Catenin signaling pathway.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Ciclopirox , Inflamação , Choque Séptico , Via de Sinalização Wnt , Ciclopirox/farmacologia , Choque Séptico/induzido quimicamente , Choque Séptico/tratamento farmacológico , Lipopolissacarídeos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Proteínas Adaptadoras de Transporte Vesicular/genética , Inflamação/tratamento farmacológico
4.
Cell Commun Signal ; 20(1): 37, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331268

RESUMO

BACKGROUND: Lung cancer remains a major cause of cancer-related mortality throughout the world at present. Repositioning of existing drugs for other diseases is a promising strategy for cancer therapies, which may rapidly advance potentially promising agents into clinical trials and cut down the cost of drug development. Ciclopirox (CPX), an iron chelator commonly used to treat fungal infections, which has recently been shown to have antitumor activity against a variety of cancers including both solid tumors and hematological malignancies in vitro and in vivo. However, the effect of CPX on non-small cell lung cancer (NSCLC) and the underlying mechanism is still unclear. METHODS: CCK-8, clonal formation test and cell cycle detection were used to observe the effect of inhibitor on the proliferation ability of NSCLC cells. The effects of CPX on the metastasis ability of NSCLC cells were analyzed by Transwell assays. Apoptosis assay was used to observe the level of cells apoptosis. The role of CPX in energy metabolism of NSCLC cells was investigated by reactive oxygen species (ROS) detection, glucose uptake, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) experiments. Western blot was used to examine the protein changes. RESULTS: We report that CPX inhibits NSCLC cell migration and invasion abilities through inhibiting the epithelial-mesenchymal transition, impairing cellular bioenergetics, and promoting reactive oxygen species to activate endoplasmic reticulum (ER) stress-induced apoptotic cell death. Moreover, CPX intraperitoneal injection can significantly inhibit NSCLC growth in vivo in a xenograft model. CONCLUSIONS: Our study revealed that CPX targets cellular bioenergetics and activates unfolded protein response in ER to drive apoptosis in NSCLC cells, indicating that CPX may be a potential therapeutic drug for the treatment of NSCLC. Video Abstract.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Apoptose , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclopirox/farmacologia , Ciclopirox/uso terapêutico , Metabolismo Energético , Humanos , Neoplasias Pulmonares/patologia , Espécies Reativas de Oxigênio/metabolismo
5.
Med Mycol ; 60(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35896502

RESUMO

Onychomycosis is a nail infection caused by Trichophyton interdigitale and other fungi, which can be treated with topical amorolfine (AMR) and ciclopirox olamine (CPX). Although these drugs are widely used, little is known about the role of reactive oxygen (ROS) and nitrogen (RNS) in their mechanism of action. To better understand the effects of AMR and CPX in dermatophytes, we evaluated whether they act through the production of ROS and peroxynitrite (PRN). We tested a set of strains, all susceptible to AMR and CPX, and these antifungals significantly reduced T. interdigitale viability within 24 h. This effect occurred concomitantly with reduced ergosterol, increased production of ROS and PRN, and consequently increased lipid peroxidation. Together, these mechanisms lead to cell damage and fungal death. These fungicidal effects were abolished when PRN and superoxide scavengers were used in the assays, demonstrating the role of these species in the mechanism of action. We also studied the antioxidant system when T. interdigitale was exposed to AMR and CPX. Interestingly, superoxide dismutase and catalase inhibition lead to altered ROS and PRN production, lipid peroxidation, and ergosterol levels. In fact, the combination of AMR or CPX with a superoxide dismutase inhibitor was antagonistic. Together, these data demonstrate the importance of ROS and PRN in the antifungal action of AMR and CPX against the evaluated T. interdigitale strains. LAY SUMMARY: Onychomycosis is a nail infection, which can be treated with amorolfine and ciclopirox olamine. Here we demonstrate that these drugs exhibit antifungal activity also through the production of oxidative and nitrosative radicals.


Assuntos
Arthrodermataceae , Onicomicose , Animais , Antifúngicos/uso terapêutico , Ciclopirox/farmacologia , Ciclopirox/uso terapêutico , Ergosterol , Testes de Sensibilidade Microbiana/veterinária , Morfolinas , Nitrogênio , Onicomicose/microbiologia , Onicomicose/veterinária , Oxigênio , Espécies Reativas de Oxigênio , Superóxido Dismutase , Trichophyton
6.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563420

RESUMO

Drug repurposing is an attractive strategy for developing new antibacterial molecules. Herein, we evaluated the in vitro antibacterial, antibiofilm, and antivirulence activities of eight FDA-approved "non-antibiotic" drugs, comparatively to tobramycin, against selected Pseudomonas aeruginosa strains from cystic fibrosis patients. MIC and MBC values were measured by broth microdilution method. Time-kill kinetics was studied by the macro dilution method, and synergy studies were performed by checkerboard microdilution assay. The activity against preformed biofilms was measured by crystal violet and viable cell count assays. The effects on gene expression were studied by real-time quantitative PCR, while the cytotoxic potential was evaluated against IB3-1 bronchial CF cells. Ciclopirox, 5-fluorouracil, and actinomycin D showed the best activity against P. aeruginosa planktonic cells and therefore underwent further evaluation. Time-kill assays indicated actinomycin D and ciclopirox, contrarily to 5-fluorouracil and tobramycin, have the potential for bacterial eradication, although with strain-dependent efficacy. Ciclopirox was the most effective against the viability of the preformed biofilm. A similar activity was observed for other drugs, although they stimulate extracellular polymeric substance production. Ribavirin showed a specific antibiofilm effect, not dependent on bacterial killing. Exposure to drugs and tobramycin generally caused hyperexpression of the virulence traits tested, except for actinomycin D, which downregulated the expression of alkaline protease and alginate polymerization. Ciclopirox and actinomycin D revealed high cytotoxic potential. Ciclopirox and ribavirin might provide chemical scaffolds for anti-P. aeruginosa drugs. Further studies are warranted to decrease ciclopirox cytotoxicity and evaluate the in vivo protective effects.


Assuntos
Biofilmes , Ciclopirox , Fibrose Cística , Infecções por Pseudomonas , Ribavirina , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ciclopirox/farmacologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Dactinomicina/farmacologia , Reposicionamento de Medicamentos , Matriz Extracelular de Substâncias Poliméricas , Fluoruracila/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa , Ribavirina/farmacologia , Tobramicina/farmacologia
7.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361069

RESUMO

Postmenopausal osteoporosis is closely associated with excessive osteoclast formation and function, resulting in the loss of bone mass. Osteoclast-targeting agents have been developed to manage this disease. We examined the effects of ciclopirox on osteoclast differentiation and bone resorption in vitro and in vivo. Ciclopirox significantly inhibited osteoclast formation from primary murine bone marrow macrophages (BMMs) in response to receptor activator of nuclear factor kappa B ligand (RANKL), and the expression of genes associated with osteoclastogenesis and function was decreased. The formation of actin rings and resorption pits was suppressed by ciclopirox. Analysis of RANKL-mediated early signaling events in BMMs revealed that ciclopirox attenuates IκBα phosphorylation without affecting mitogen-activated protein kinase activation. Furthermore, the administration of ciclopirox suppressed osteoclast formation and bone loss in ovariectomy-induced osteoporosis in mice and reduced serum levels of osteocalcin and C-terminal telopeptide fragment of type I collagen C-terminus. These results indicate that ciclopirox exhibits antiosteoclastogenic activity both in vitro and in vivo and represents a new candidate compound for protection against osteoporosis and other osteoclast-related bone diseases.


Assuntos
Antifúngicos/farmacologia , Reabsorção Óssea/tratamento farmacológico , Ciclopirox/farmacologia , Osteoclastos/citologia , Osteogênese , Ovariectomia/efeitos adversos , Substâncias Protetoras/farmacologia , Animais , Reabsorção Óssea/etiologia , Reabsorção Óssea/patologia , Diferenciação Celular , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/efeitos dos fármacos , Ligante RANK/genética , Ligante RANK/metabolismo
8.
Int J Cancer ; 146(2): 461-474, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31603527

RESUMO

The malignant growth of human papillomavirus (HPV)-positive cancer cells is dependent on the continuous expression of the viral E6/E7 oncogenes. Here, we examined the effects of iron deprivation on the phenotype of HPV-positive cervical cancer cells. We found that iron chelators, such as the topical antifungal agent ciclopirox (CPX), strongly repress HPV E6/E7 oncogene expression, both at the transcript and protein level. CPX efficiently blocks the proliferation of HPV-positive cancer cells by inducing cellular senescence. Although active mTOR signaling is considered to be critical for the cellular senescence response towards a variety of prosenescent agents, CPX-induced senescence occurs under conditions of severely impaired mTOR signaling. Prolonged CPX treatment leads to p53-independent Caspase-3/7 activation and induction of apoptosis. CPX also eliminates HPV-positive cancer cells under hypoxic conditions through induction of apoptosis. Taken together, these results show that iron deprivation exerts profound antiviral and antiproliferative effects in HPV-positive cancer cells and suggest that iron chelators, such as CPX, possess therapeutic potential as HPV-inhibitory, prosenescent and proapoptotic agents in both normoxic and hypoxic environments.


Assuntos
Ciclopirox/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas Oncogênicas Virais/antagonistas & inibidores , Proteínas E7 de Papillomavirus/antagonistas & inibidores , Infecções por Papillomavirus/tratamento farmacológico , Proteínas Repressoras/antagonistas & inibidores , Neoplasias do Colo do Útero/tratamento farmacológico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Apoptose/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Ciclopirox/uso terapêutico , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HCT116 , Células HeLa , Humanos , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Proteínas Repressoras/metabolismo , Esferoides Celulares , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-31907180

RESUMO

Pseudomonas aeruginosa is a multidrug-resistant nosocomial pathogen. We showed previously that thiostrepton (TS), a Gram-positive thiopeptide antibiotic, is imported via pyoverdine receptors and synergizes with iron chelator deferasirox (DSX) to inhibit the growth of P. aeruginosa and Acinetobacter baumannii clinical isolates. A small number of P. aeruginosa and A. baumannii isolates were resistant to the combination, prompting us to search for other compounds that could synergize with TS against those strains. From literature surveys, we selected 14 compounds reported to have iron-chelating activity, plus one iron analogue, and tested them for synergy with TS. Doxycycline (DOXY), ciclopirox olamine (CO), tropolone (TRO), clioquinol (CLI), and gallium nitrate (GN) synergized with TS. Individual compounds were bacteriostatic, but the combinations were bactericidal. Our spectrophotometric data and chrome azurol S agar assay confirmed that the chelators potentiate TS activity through iron sequestration rather than through their innate antimicrobial activities. A triple combination of TS plus DSX plus DOXY had the most potent activity against P. aeruginosa and A. baumannii isolates. One P. aeruginosa clinical isolate was resistant to the triple combination but susceptible to a triple combination containing higher concentrations of CLI, CO, or DOXY. All A. baumannii isolates were susceptible to the triple combinations. Our data reveal a diverse set of compounds with dual activity as antibacterial agents and TS adjuvants, allowing combinations to be tailored for resistant clinical isolates.


Assuntos
Antibacterianos/farmacologia , Ferro/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Ciclopirox/farmacologia , Clioquinol/farmacologia , Doxiciclina/farmacologia , Gálio/farmacologia , Deficiências de Ferro , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Tropolona/farmacologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-31988099

RESUMO

Amphotericin B (AmB) is the antifungal with the strongest fungicidal activity, but its use has several limitations, mainly associated with its toxicity. Although some lipidic and liposomal formulations that present reduced toxicity are available, their price limits their application in developing countries. Flucytosine (5FC) has shown synergistic effect with AmB for treatment of some fungal infections, such as cryptococcosis, but again, its price is a limitation for its use in many regions. In the present work, we aimed to identify new drugs that have a minor effect on Cryptococcus neoformans, reducing its growth in the presence of subinhibitory concentrations of AmB. In the initial screening, we found fourteen drugs that had this pattern. Later, checkerboard assays of selected compounds, such as erythromycin, riluzole, nortriptyline, chenodiol, nisoldipine, promazine, chlorcyclizine, cloperastine, and glimepiride, were performed and all of them confirmed for their synergistic effect (fractional inhibitory concentration index [FICI] < 0.5). Additionally, toxicity of these drugs in combination with AmB was tested in mammalian cells and in zebrafish embryos. Harmless compounds, such as the antibiotic erythromycin, were found to have synergic activity with AmB, not only against C. neoformans but also against some Candida spp., in particular against Candida albicans In parallel, we identified drugs that had antifungal activity against C. neoformans and found 43 drugs that completely inhibited the growth of this fungus, such as ciclopirox and auranofin. Our results expand our knowledge about antifungal compounds and open new perspectives in the treatment of invasive mycosis based on repurposing off-patent drugs.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Reposicionamento de Medicamentos , Animais , Auranofina/farmacologia , Candidíase/tratamento farmacológico , Linhagem Celular , Ciclopirox/farmacologia , Criptococose/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Sinergismo Farmacológico , Eritromicina/farmacologia , Flucitosina/farmacologia , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Infecções Oportunistas/tratamento farmacológico , Infecções Oportunistas/microbiologia , Células RAW 264.7 , Peixe-Zebra/embriologia
11.
Mycoses ; 63(10): 1069-1082, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32662568

RESUMO

BACKGROUND: The influence of biofilm on the complexity of fungal diseases has been reported in recent years, especially in non-invasive mycoses such as keratitis and onychomycosis. The difficulty in treating cases of fusariosis in the human medical clinic exemplifies this situation, because when Fusarium spp. are present in the form of biofilm, the permeation of antifungal agents is compromised. OBJECTIVES: This study proposes an association of clioquinol, an inhibitor of fungal cells with antifungal drugs prescribed to combat fusariosis in humans. METHODS: Susceptibility was assessed by microdilution in broth. Formation of biofilm by staining with violet crystal. Inhibition and removal of biofilm using the MTT colorimetric reagent. Time-kill combination, hypoallergenicity test, cytotoxicity test and toxicity prediction by computer analysis were also performed. RESULTS: Clioquinol associated with voriconazole and ciclopirox inhibited biofilm formation. Possibly, clioquinol acts in the germination and elongation of hyphae, while voriconazole prevents cell adhesion and ciclopirox the formation of the extracellular polymeric matrix. The CLIO-VRC association reduced the biofilm formation by more than 90%, while the CLIO-CPX association prevented over 95%. None of the association was irritating, and over 90% of the leucocytes remained viable. Computational analysis does not reveal toxicity relevant to CLIO, whereas VRC and CPX showed some risks for systemic use, but suitable for topical formulations. CONCLUSIONS: The combination of CLIO-VRC or CLIO-CPX proved to be a promising association strategy in the medical clinic, both in combating fungal keratitis and onychomycosis, since they prevent the initial process of establishing an infection, the formation of biofilm.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Clioquinol , Sinergismo Farmacológico , Fusariose/tratamento farmacológico , Ciclopirox/farmacologia , Clioquinol/administração & dosagem , Clioquinol/farmacologia , Clioquinol/toxicidade , Combinação de Medicamentos , Fusarium/efeitos dos fármacos , Fusarium/isolamento & purificação , Humanos , Leucócitos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Voriconazol/farmacologia
12.
Mycoses ; 63(8): 869-875, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32406142

RESUMO

BACKGROUND: Matrix-assisted laser desorption ionisation mass spectrometry imaging (MALDI-MSI) is a mass spectrometry-based technique, which can be applied for compound-specific imaging of pharmaceuticals in tissues samples. MALDI-MSI technology is widely used to visualise penetration and distribution profile through different tissues but has never been used with nail tissue. OBJECTIVES: This study used MALDI-MSI technology to visualise distribution profile and penetration into ex vivo human mycosis-infected toenails of three antifungal active ingredients amorolfine, ciclopirox and naftifine contained in topical onychomycosis nail treatment preparations, marketed as Loceryl® , Ciclopoli® and Exoderil® . METHODS: Three mycosis-infected toenails were used for each treatment condition. Six and twenty-four hours after one single topical application of antifungal drugs, excess of formulation was removed, nails were cryo-sectioned at a thickness of 20 µm, and MALDI matrix was deposited on each nail slice. Penetration and distribution profile of amorolfine, ciclopirox and naftifine in the nails were analysed by MALDI-MSI. RESULTS: All antifungal actives have been visualised in the nail by MALDI-MSI. Ciclopirox and naftifine molecules showed a highly localised distribution in the uppermost layer of the nail plate. In comparison, amorolfine diffuses through the nail plate to the deep layers already 6 hours after application and keeps diffusing towards the lowest nail layers within 24 hours. CONCLUSIONS: This study shows for the first-time distribution and penetration of certain antifungal actives into human nails using MALDI-MSI analysis. The results showed a more homogeneous distribution of amorolfine to nail and a better penetration through the infected nails than ciclopirox and naftifine.


Assuntos
Antifúngicos/farmacologia , Onicomicose/diagnóstico por imagem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Administração Tópica , Alilamina/administração & dosagem , Alilamina/análogos & derivados , Alilamina/farmacologia , Alilamina/uso terapêutico , Antifúngicos/administração & dosagem , Antifúngicos/uso terapêutico , Ciclopirox/administração & dosagem , Ciclopirox/farmacologia , Ciclopirox/uso terapêutico , Humanos , Laca , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Unhas/microbiologia , Unhas/patologia , Onicomicose/tratamento farmacológico
13.
Mycoses ; 63(9): 993-1001, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32506716

RESUMO

BACKGROUND: Dermatophytoses are the most frequent fungal infections worldwide and there have been described clinical resistance to the commonly used antifungals. Clioquinol is an antimicrobial that had the oral formulations withdrawn from the market in the 70s due to the report of neurotoxicity and recently has been considered as an effective alternative for the treatment of dermatophytosis. OBJECTIVES: To evaluate the effect of the double and triple association between clioquinol with terbinafine and ciclopirox on clinical isolates of dermatophytes. The cytotoxicity of these associations on human leukocytes was also verified. METHODS: Checkerboard method was used to evaluate the interaction between antifungal agents. Time-kill assay was used to verify fungicidal action and evaluate the combination with greater effect for TRU47 isolate. Cell viability was assessed by loss of integrity of the leukocyte membrane in order to verify the toxicity. RESULTS: Synergistic interaction was observed in 42% of isolates when terbinafine was associated with clioquinol and in 50% of isolates when ciclopirox was associated with clioquinol. The triple association resulted in synergistic interaction for 75% of the isolates. Clioquinol + terbinafine and triple combination were more effective for TRU47 isolate, and the combinations exhibited a time-dependent fungicidal effect. Furthermore, the results of cell viability demonstrated that clioquinol and terbinafine combination is not cytotoxic to human leukocytes. CONCLUSIONS: Clioquinol in combination with antifungals in the treatment of dermatophytosis can be a therapeutic strategy to overcome problems related to resistance, action spectrum and toxicity of the antifungal drugs used in the clinic.


Assuntos
Antifúngicos/farmacologia , Arthrodermataceae/efeitos dos fármacos , Ciclopirox/farmacologia , Clioquinol/farmacologia , Fungos/efeitos dos fármacos , Terbinafina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Combinação de Medicamentos , Sinergismo Farmacológico , Fungos/classificação , Humanos , Leucócitos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Tinha/tratamento farmacológico
14.
Artigo em Inglês | MEDLINE | ID: mdl-31332076

RESUMO

Onychomycosis is a nail fungal infection, mostly caused by dermatophytes. The treatment efficacy is impaired by difficulties of reaching effective drug levels at the site of infection; frequent relapses occur after cessation of antifungal therapy. The aim of the study was to compare two commercial products containing ciclopirox or efinaconazole for antimycotic activity and antifungal drug resistance. A study of permeation and penetration through bovine hoof membranes, as a nail model, was performed to evaluate the antimycotic activity of permeates against clinical isolates of selected fungi, and the frequency of spontaneous in vitroTrichophyton rubrum-resistant strains was assessed by broth microdilution assays. The results suggest that ciclopirox creates a depot in the nail, leading to a gradual release of the drug over time with action on both the nail plate and bed. Conversely, efinaconazole, mildly interacting with nail keratin, mainly exerts its antifungal activity in the nail bed. However, in the case of T. rubrum, the antifungal activities of the drugs in the nail plate seem comparable. Finally, efinaconazole showed a potential for induction of resistance in T. rubrum, which may limit its efficacy over time. Ciclopirox did not show any potential to induce resistance in T. rubrum and appears endowed with a more complete activity than efinaconazole in the management of onychomycosis as the nail keratin is a substrate for the growth of fungal cells, and the availability of drug in large concentration just in the nail bed may not be sufficient to guarantee the complete eradication of pathogens.


Assuntos
Antifúngicos/farmacologia , Ciclopirox/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Casco e Garras/efeitos dos fármacos , Triazóis/farmacologia , Trichophyton/efeitos dos fármacos , Animais , Antifúngicos/farmacocinética , Transporte Biológico , Bovinos , Ciclopirox/farmacocinética , Farmacorresistência Fúngica/genética , Casco e Garras/metabolismo , Casco e Garras/microbiologia , Humanos , Queratinas/metabolismo , Testes de Sensibilidade Microbiana , Microtomia , Modelos Biológicos , Mutação , Unhas/efeitos dos fármacos , Unhas/metabolismo , Unhas/microbiologia , Permeabilidade , Ligação Proteica , Tinha/microbiologia , Triazóis/farmacocinética , Trichophyton/genética , Trichophyton/crescimento & desenvolvimento , Trichophyton/isolamento & purificação
15.
Int J Cosmet Sci ; 41(3): 221-227, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30851208

RESUMO

OBJECTIVE: Dandruff is a complex skin condition characterized by unpleasant itching and flaking of the scalp. It is primarily attributed to the over colonization of Malassezia yeasts such as Malassezia globosa and Malassezia restricta. Some studies also suggest the involvement of staphylococci bacteria in dandruff disease pathogenesis. We aimed to access the effectiveness of anti-dandruff treatments by determining the efficacy of the active antifungal agents alone or in commercial shampoo formulations against Malassezia and Staphylococcus. METHODS: The minimum inhibitory concentrations of three anti-dandruff shampoo antifungals (zinc pyrithione, ketoconazole and ciclopirox) and the witch hazel extract, hamamelitannin were tested against commensal Malassezia and Staphylococcus species using broth microdilution methods. In experiments simulating shampoo exposure and washing conditions on the scalp, we also tested the ability of the above agents in shampoo formulation (Head and Shoulders® (H&S), Ketomed® , Sebiprox® , Erol Healthcare Hair Shampoo® respectively) along with a generic over-the-shelf shampoo to inhibit microbial growth. RESULTS: Ketomed® and H&S shampoo were the most effective treatments against Malassezia in in vitro assays and washing simulation experiments. Erol Healthcare Hair Shampoo® was less effective against Malassezia as it required a longer contact time to achieve growth inhibition for some species. Sebiprox® showed variable efficacy in washing and contact time experiments whereas the generic over-the-shelf shampoo was the least effective in inhibiting Malassezia and Staphylococcus growth. CONCLUSION: From these findings, it is reasonable that patients with dandruff may benefit from applying specific antifungal shampoo although results may vary with microbial species, time of contact and shampoo formulation components.


OBJECTIFS: Les pellicules sont une affection cutanée complexe caractérisée par des démangeaisons et une desquamation du cuir chevelu. Elles sont principalement attribuées à une colonisation excessive par des levures du genre Malassezia telles que Malassezia globosa et Malassezia restricta. Certaines études suggèrent également que des bactéries comme les staphylocoques sont impliquées dans la pathogenèse des pellicules. Nous désirions évaluer l'efficacité des traitements antipelliculaires en déterminant l'efficacité des antifongiques actifs seuls ou dans des formulations commerciales de shampooing contre Malassezia et les bactéries du genre Staphylococcus. MÉTHODES: Les concentrations minimales inhibitrices de trois antifongiques présents dans des shampooings antipelliculaires (pyrithione de zinc, kétoconazole et ciclopirox) ainsi que l'hamamélan, extrait d'hamamélis, ont été évaluées contre des espèces commensales de Malassezia et Staphylococcus en utilisant des méthodes de microdilution en culture. Dans des expériences simulant l'exposition au shampooing et les conditions de lavage sur le cuir chevelu, nous avons également testé la capacité à inhiber la croissance microbienne des agents décrits ci-dessus dans la formulation de shampooings (Head and Shoulders (H&S), Ketomed, Sebiprox, Erol Healthcare Hair Shampoo, respectivement) avec un produit générique trouvé dans le commerce. RÉSULTATS: Les shampooings Ketomed et H&S ont été les traitements les plus efficaces contre Malassezia dans des essais in vitro et dans des expériences de simulation de lavage. Le shampooing Erol Healthcare était moins efficace contre Malassezia in vitro car nécessitant un temps de contact plus long pour obtenir une inhibition de la croissance de certaines espèces. Sebiprox a montré une efficacité variable dans les expériences de lavage et de temps de contact alors que le shampooing générique était le moins efficace pour inhiber la croissance de Malassezia et Staphylococcus. CONCLUSION: Ces résultats suggèrent que les patients avec des pellicules peuvent raisonnablement retirer un bénéfice de l'utilisation d'un shampooing antifongique spécifique bien que les résultats puissent varier selon les espèces microbiennes, la durée du contact et des composants entrant dans la formulation du shampooing.


Assuntos
Antifúngicos/farmacologia , Caspa/microbiologia , Preparações para Cabelo/farmacologia , Malassezia/efeitos dos fármacos , Staphylococcus/efeitos dos fármacos , Ciclopirox/farmacologia , Preparações para Cabelo/química , Humanos , Técnicas In Vitro , Cetoconazol/farmacologia , Testes de Sensibilidade Microbiana , Compostos Organometálicos/farmacologia , Piridinas/farmacologia , Dodecilsulfato de Sódio/farmacologia , Estudos de Tempo e Movimento
16.
Artigo em Inglês | MEDLINE | ID: mdl-29530857

RESUMO

Dermatophytosis, the commonest superficial fungal infection, has gained recent attention due to its change of epidemiology and treatment failures. Despite the availability of several agents effective against dermatophytes, the incidences of chronic infection, reinfection, and treatment failures are on the rise. Trichophyton rubrum and Trichophyton interdigitale are the two species most frequently identified among clinical isolates in India. Consecutive patients (n = 195) with suspected dermatophytosis during the second half of 2014 were included in this study. Patients were categorized into relapse and new cases according to standard definitions. Antifungal susceptibility testing of the isolated Trichophyton species (n = 127) was carried out with 12 antifungal agents: fluconazole, voriconazole, itraconazole, ketoconazole, sertaconazole, clotrimazole, terbinafine, naftifine, amorolfine, ciclopirox olamine, griseofulvin, and luliconazole. The squalene epoxidase gene was evaluated for mutation (if any) in 15 T. interdigitale and 5 T. rubrum isolates exhibiting high MICs for terbinafine. A T1189C mutation was observed in four T. interdigitale and two T. rubrum isolates. This transition leads to the change of phenylalanine to leucine in the 397th position of the squalene epoxidase enzyme. In homology modeling the mutant residue was smaller than the wild type and positioned in the dominant site of squalene epoxidase during drug interaction, which may lead to a failure to block the ergosterol biosynthesis pathway by the antifungal drug.


Assuntos
Alilamina/farmacologia , Antifúngicos/farmacologia , Esqualeno Mono-Oxigenase/metabolismo , Trichophyton/efeitos dos fármacos , Trichophyton/enzimologia , Alilamina/análogos & derivados , Arthrodermataceae/efeitos dos fármacos , Ciclopirox/farmacologia , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Itraconazol/farmacologia , Testes de Sensibilidade Microbiana , Morfolinas/farmacologia , Esqualeno Mono-Oxigenase/genética , Terbinafina/farmacologia , Trichophyton/genética , Voriconazol/farmacologia
17.
Comput Methods Biomech Biomed Engin ; 27(6): 765-774, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37781969

RESUMO

The Ni and Co doping effect on the ciclopirox (CPX) drug delivery performance of a ZnO nanosheet (ZnO-NS) was investigated theoretically. Doping Ni and Co metals into the ZnO-NS increased the adsorption energy of CPX from -7.9 to -27.4 and -31.7 kcal/mol, respectively. The CPX adsorption reduced the ZnO-NS gap (Eg) from 3.81 to 3.46 eV, while the CPX adsorption reduced the Eg of the Ni- and Co-doped ZnO-NS from 2.74 and 2.68 eV to 1.87 and 1.71 eV, respectively. The CPX adsorption performance increased after doping process. A drug release mechanism was introduced in cancerous tissues based on the PH. .


Assuntos
Antineoplásicos , Óxido de Zinco , Ciclopirox/farmacologia , Teoria da Densidade Funcional , Metais
18.
Eur J Dermatol ; 33(1): 19-24, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154811

RESUMO

BACKGROUND: Onychomycosis affects up to 50% of patients in the older population. OBJECTIVES: This study aimed to explore heat sensitivity of Trichophyton rubrum and Trichophyton interdigitale as pathogens of onychomycosis. MATERIALS & METHODS: The fungi were heated in sterile saline solution up to 100°C for five or 10 minutes with or without additional previous treatment with 1% ciclopirox solution or chitinase and 1,3 -galactidase or for 45 minutes at 40°C or 60°C with washing powder. Subsequently, the fungi were cultured and regrowth was assessed after one week. RESULTS: After heating T. rubrum for five minutes at 60°C, growth was completely inhibited. After heating T. interdigitale for five minutes at 60°C, all of the samples regrew, and at 95°C, none of the samples regrew. No difference between five and 10-minute heating was observed. Previous incubation with 1% ciclopirox solution for 24 hours inhibited the growth of T. rubrum completely. T. interdigitale was still able to regrow to 100% after five minutes at 40°C, to 33% after 60°C, and to 22% after 80°C. Incubation for 45 minutes with washing powder solution at 40°C or 60°C did not lead to significant growth reduction of T. rubrum or interdigitale. Two hours incubation with -1,3-glucanase and chitinase prior to five minutes of heating to 60°C and 80°C reduced the heat resistance of T. interdigitale; growth was inhibited in 56% and 100% of the samples, respectively. CONCLUSION: The heat resistance of T. rubrum and interdigitale should be considered using non-medical thermal treatment.


Assuntos
Onicomicose , Humanos , Trichophyton , Ciclopirox/farmacologia , Temperatura Alta , Pós
19.
Blood Adv ; 7(24): 7407-7417, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37487020

RESUMO

Culture conditions in which hematopoietic stem cells (HSCs) can be expanded for clinical benefit are highly sought after. To elucidate regulatory mechanisms governing the maintenance and propagation of human HSCs ex vivo, we screened libraries of annotated small molecules in human cord blood cells using an optimized assay for detection of functional HSCs during culture. We found that the antifungal agent ciclopirox ethanolamine (CPX) selectively supported immature CD34+CD90+ cells during culture and enhanced their long-term in vivo repopulation capacity. Purified HSCs treated with CPX showed a reduced cell division rate and an enrichment of HSC-specific gene expression patterns. Mechanistically, we found that the HSC stimulating effect of CPX was directly mediated by chelation of the intracellular iron pool, which in turn affected iron-dependent proteins and enzymes mediating cellular metabolism and respiration. Our findings unveil a significant impact of iron homeostasis in regulation of human HSCs, with important implications for both basic HSC biology and clinical hematology.


Assuntos
Células-Tronco Hematopoéticas , Ferro , Humanos , Ciclopirox/farmacologia , Ciclopirox/metabolismo , Ferro/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Antígenos CD34/metabolismo , Etanolaminas/metabolismo , Etanolaminas/farmacologia
20.
PLoS One ; 18(5): e0285941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37196004

RESUMO

The Hepatitis B virus (HBV) core protein is an attractive target for preventing capsid assembly and viral replication. Drug repurposing strategies have introduced several drugs targeting HBV core protein. This study used a fragment-based drug discovery (FBDD) approach to reconstruct a repurposed core protein inhibitor to some novel antiviral derivatives. Auto Core Fragment in silico Screening (ACFIS) server was used for deconstruction-reconstruction of Ciclopirox in complex with HBV core protein. The Ciclopirox derivatives were ranked based on their free energy of binding (ΔGB). A quantitative structure affinity relationship (QSAR) was established on the Ciclopirox derivatives. The model was validated by a Ciclopirox-property-matched decoy set. A principal component analysis (PCA) was also assessed to define the relationship of the predictive variable of the QSAR model. 24-derivatives with a ΔGB (-16.56±1.46 Kcal.mol-1) more than Ciclopirox was highlighted. A QSAR model with a predictive power of 88.99% (F-statistics = 9025.78, corrected df(25), Pr > F = 0.0001) was developed by four predictive descriptors (ATS1p, nCs, Hy, F08[C-C]). The model validation showed no predictive power for the decoy set (Q2 = 0). No significant correlation was observed between predictors. By directly attaching to the core protein carboxyl-terminal domain, Ciclopirox derivatives may be able to suppress HBV virus assembly and subsequent viral replication inhibition. Hydrophobic residue Phe23 is a critical amino acid in the ligand binding domain. These ligands share the same physicochemical properties that lead to the development of a robust QSAR mode. The same strategy may also be used for future drug discovery of viral inhibitors.


Assuntos
Hepatite B , Montagem de Vírus , Humanos , Vírus da Hepatite B/metabolismo , Ciclopirox/farmacologia , Replicação Viral , Antivirais/química , Proteínas do Capsídeo/metabolismo , Descoberta de Drogas , Proteínas do Core Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA