RESUMO
Active artificial bone substitutes are crucial in bone repair and reconstruction. Calcium phosphate bone cement (CPC) is known for its biocompatibility, degradability, and ability to fill various shaped bone defects. However, its low osteoinductive capacity limits bone regeneration applications. Effectively integrating osteoinductive magnesium ions with CPC remains a challenge. Herein, we developed magnesium malate-modified CPC (MCPC). Incorporating 5% magnesium malate significantly enhances the compressive strength of CPC to (6.18 ± 0.49) MPa, reduces setting time and improves disintegration resistance. In vitro, MCPC steadily releases magnesium ions, promoting the proliferation of MC3T3-E1 cells without causing significant apoptosis, proving its biocompatibility. Molecularly, magnesium malate prompts macrophages to release prostaglandin E2 (PGE2) and synergistically stimulates dorsal root ganglion (DRG) neurons to synthesize and release calcitonin gene-related peptide (CGRP). The CGRP released by DRG neurons enhances the expression of the key osteogenic transcription factor Runt-related transcription factor-2 (RUNX2) in MC3T3-E1 cells, promoting osteogenesis. In vivo experiments using minipig vertebral bone defect model showed MCPC significantly increases the bone volume fraction, bone density, new bone formation, and proportion of mature bone in the defect area compared to CPC. Additionally, MCPC group exhibited significantly higher levels of osteogenesis and angiogenesis markers compared to CPC group, with no inflammation or necrosis observed in the hearts, livers, or kidneys, indicating its good biocompatibility. In conclusion, MCPC participates in the repair of bone defects in the complex post-fracture microenvironment through interactions among macrophages, DRG neurons, and osteoblasts. This demonstrates its significant potential for clinical application in bone defect repair.
Assuntos
Cimentos Ósseos , Peptídeo Relacionado com Gene de Calcitonina , Fosfatos de Cálcio , Osteogênese , Porco Miniatura , Animais , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Camundongos , Suínos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Osteogênese/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Coluna Vertebral/cirurgia , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Linhagem Celular , Magnésio/farmacologia , Magnésio/químicaRESUMO
It's imperative to create a more ideal biological scaffold for bone defect repair. Calcium phosphate bone cements (CPC) could be used as a scaffold. Some ingredients and osteogenic factors could be added to improve its poor mechanical properties and biological activity. As a macromolecule extracted from traditional Chinese medicine, Hedysarum polysaccharides (HPS) would significantly promote the osteogenic activity of bone biomaterials. Zirconium oxide and starch were added to the solid phase and citric acid was added to the liquid phase to optimize CPC. HPS was loaded onto the scaffold as an osteogenic factor, and the prepared CPS + HPS was characterized. Further, the cytocompatibility of CPS + HPS was assessed according to activity, differentiation, and calcification in neonatal rat calvarial osteoblasts, and the biosafety of CPS + HPS was evaluated according to acute toxicity, pyrogen, sensitization, and hemolysis. The success of CPS + HPS in repairing bone defects was evaluated by using a rabbit femur implantation experiment. After optimization, CPS-20-CA-5 containing 10% starch and 5% citric acid displayed the highest mechanical strength of 28.96 ± 0.03 MPa. HPS-50 was demonstrated to exert the best osteogenic effect. The combination of CPS + HPS achieved HPS-loaded CPC. Material characterization, cytocompatibility, biosafety, and femoral implantation experiments indicated that CPS + HPS possessed better pressure resistance and improved osteogenic ability in bone defect repair.CPS + HPS demonstrated effective pressure resistance and superior osteogenic ability, which may be of great significance for bone defects and bone tissue engineering to promote bone regeneration and repair.
Assuntos
Cimentos Ósseos , Regeneração Óssea , Fosfatos de Cálcio , Osteogênese , Polissacarídeos , Alicerces Teciduais , Animais , Fosfatos de Cálcio/química , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Coelhos , Polissacarídeos/química , Ratos , Alicerces Teciduais/química , Osteogênese/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ratos Sprague-Dawley , Masculino , Zircônio/química , Engenharia Tecidual/métodos , Fêmur/patologiaRESUMO
Interest in the development of new generation injectable bone cements having appropriate mechanical properties, biodegradability, and bioactivity has been rekindled with the advent of nanoscience. Injectable bone cements made with calcium sulfate (CS) are of significant interest, owing to its compatibility and optimal self-setting property. Its rapid resorption rate, lack of bioactivity, and poor mechanical strength serve as a deterrent for its wide application. Herein, a significantly improved CS-based injectable bone cement (modified calcium sulfate termed as CSmod ), reinforced with various concentrations (0-15%) of a conductive nanocomposite containing gold nanodots and nanohydroxyapatite decorated reduced graphene oxide (rGO) sheets (AuHp@rGO), and functionalized with vancomycin, is presented. The piezo-responsive cement exhibits favorable injectability and setting times, along with improved mechanical properties. The antimicrobial, osteoinductive, and osteoconductive properties of the CSmod cement are confirmed using appropriate in vitro studies. There is an upregulation of the paracrine signaling mediated crosstalk between mesenchymal stem cells and human umbilical vein endothelial cells seeded on these cements. The ability of CSmod to induce endothelial cell recruitment and augment bone regeneration is evidenced in relevant rat models. The results imply that the multipronged activity exhibited by the novel-CSmod cement would be beneficial for bone repair.
Assuntos
Cimentos Ósseos , Nanocompostos , Ratos , Animais , Humanos , Cimentos Ósseos/farmacologia , Durapatita , Ouro , Sulfato de Cálcio , Células Endoteliais , Regeneração Óssea , Fosfatos de Cálcio , Força CompressivaRESUMO
Bone grafting is commonly used as a treatment to repair bone defects. However, its use is challenged by the presence of medical conditions that weaken the bone, like osteoporosis. Calcium phosphate cement (CPC) is used to restore bone defects, and it is commonly available as a bioabsorbable cement paste. However, its use in clinical settings is limited by inadequate mechanical strength, inferior anti-washout characteristics, and poor osteogenic activity. There have been attempts to overcome these shortcomings by adding various natural or synthetic materials as enhancers to CPC. This review summarises the current evidence on the physical, mechanical, and biological properties of CPC after doping with synthetic materials. The incorporation of CPC with polymers, biomimetic materials, chemical elements/compounds, and combination with two or more synthetic materials showed improvement in biocompatibility, bioactivity, anti-washout properties, and mechanical strength. However, the mechanical property of CPC doped with trimethyl chitosan or strontium was decreased. In conclusion, doping of synthetic materials enhances the osteogenic features of pure CPC. The positive findings from in vitro and in vivo studies await further validation on the efficacy of these reinforced CPC composites in clinical settings.
Assuntos
Osso e Ossos , Osteogênese , Teste de Materiais , Polímeros , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/químicaRESUMO
PURPOSE OF THE STUDY Infections of joint replacements represent one of the most serious problems in contemporary orthopedics. The joint infections treatment is usually multimodal and involves various combinations of drug delivery and surgical procedures. The aim of this study was to evaluate and compare the bacteriostatic and bactericidal properties of the most common antibiotic carriers used in orthopedic surgery: bone cements mixed with antibiotic and porous calcium sulfate mixed with antibiotic. MATERIAL AND METHODS Three commercial bone cements (Palacos®, Palacos® R+G, Vancogenx®) and commercial porous sulfate (Stimulan®) were prepared with a known concentration of vancomycin (a glycopeptide antibiotic). Specifically, for the purpose of our study, the testing specimens were prepared to release 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512 mg of vancomycin into 1 liter of solution. The specimens with increasing amount of antibiotic were placed in a separate tubes containing 5 mL of Mueller-Hinton broth inoculated with a suspension (0.1 m, McFarland 1) of the reference strain CCM 4223 Staphylococcus aureus to evaluate their bacteriostatic properties (broth dilution method). After this initial incubation and evaluation of the broth dilution method, an inoculum from each tube was transferred onto blood agar plates. After another 24-hour incubation under the same conditions, we evaluated the bactericidal properties (agar plate method). As many as 132 of independent experiments were performed (4 specimens × 11 concentrations × 3 repetitions = 132). RESULTS The bacteriostatic properties of all investigated samples were excellent, perhaps with the exception of the first bone cement (Palacos®). The sample Palacos® started to exhibit bacteriostatic properties at concentrations ≥ 8 mg/mL, while all other samples (Palacos R+G®, Vancogenx®, and Stimulan®) were bacteriostatic in the whole concentration range starting from 1 mg/mL. The bacteriocidic properties did not show such clear trends, but correlated quite well with different properties of the investigated samples during mixing - the most homogeneous samples seemed to exhibit the best and the most reproducible results. DISCUSSION The reliable and reproducible comparison of ATB carriers is a difficult task. The situation is complicated by high numbers of local antibiotic carriers on the market, numerous antibiotics used, and differences in clinical trials at different laboratories. Simple in vitro testing of bacteriostatic and bacteriocidic properties represents a simple and efficient approach to the problem. CONCLUSIONS The study confirmed that the two most common commercial systems used in the orthopedic surgery (bone cements and porous calcium sulfate) prevent bacterial growth (bacteriostatic effect), but they may not be 100% efficient in complete elimination of bacteria (bacteriocidic effect). The scattered results in the case of bacteriocidic tests seemed to be connected with the homogeneity of ATB dispersion in the systems and with the lower reproducibility of the employed agar plate method. Key words: local release of antibiotics; bone cements; calcium sulfate; antimicrobial susceptibility.
Assuntos
Procedimentos Ortopédicos , Ortopedia , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Sulfato de Cálcio , Vancomicina/farmacologia , Cimentos Ósseos/farmacologia , Cimentos Ósseos/uso terapêutico , Ágar , Reprodutibilidade dos Testes , Polimetil Metacrilato/químicaRESUMO
Background and Objectives: The purpose of this study was to assess the cytotoxicity and antibacterial effects of AgNP-impregnated Tetracalcium phosphate-dicalcium phosphate dihydrate (TTCP-DCPD). Materials and Methods: Using in vitro experiments, the cytotoxicity of AgNP-impregnated TTCP-DCPD against fibroblasts and osteocytes was assessed in terms of cell viability by water-soluble tetrazolium salt assay. To assess antibacterial effects, a disc diffusion test was used; osteomyelitis was induced first in vivo, by injection of methicillin-resistant Staphylococcus aureus into the tibia of rats. AgNP-impregnated TTCP-DCPD bone cement was then applied at various silver concentrations for 3 or 12 weeks. Antibacterial effects were assessed by culturing and reverse transcription-polymerase chain reaction (RT-PCR). For histological observation, the bone tissues were stained using hematoxylin and eosin. Results: Cell viability was decreased by the impregnated bone cement but did not differ according to AgNP concentration. The diameter of the growth-inhibited zone of MRSA was between 4.1 and 13.3 mm on the disks treated with AgNP, indicating antimicrobial effects. In vivo, the numbers of bacterial colonies were reduced in the 12-week treatment groups compared to the 3-week treatment groups. The groups treated with a higher (10×) dose of AgNP (G2-G5) showed a tendency of lower bacterial colony counts compared to the group without AgNP (G1). The PCR analysis results showed a tendency of decreased bacterial gene expression in the AgNP-impregnated TTCP-DCPD groups (G2-G5) compared to the group without AgNP (G1) at 3 and 12 weeks. In the H&E staining, the degree of inflammation and necrosis of the AgNP-impregnated TTCP-DCPD groups (G2-G5) showed a tendency to be lower at 3 and 12 weeks compared to the control group. Our results suggest that AgNP-impregnated TTCP-DCPD cement has antimicrobial effects. Conclusions: This study indicates that AgNP-impregnated TTCP-DCPD bone cement could be considered to treat osteomyelitis.
Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Osteomielite , Animais , Ratos , Cimentos Ósseos/farmacologia , Cimentos Ósseos/uso terapêutico , Cimentos Ósseos/metabolismo , Prata/farmacologia , Prata/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Osteomielite/tratamento farmacológicoRESUMO
BACKGROUND: Icariin (ICA), a main active ingredient of Herba Epimedium, could promote bone formation, inhibit bone resorption and alleviate inflammatory responses. The aim of this study was to investigate the effect of ICA on the inhibition of bacteria associated with peri-implantitis, and fabricate a calcium phosphate cement (CPC) with ICA-loaded gelatin microspheres (GMs) as a local drug delivery system efficiently promoting bone formation and alleviating inflammation. RESULTS: In this study, ICA exhibited antibacterial activity against P. gingivalis with a MIC value of 1 × 10-4 mol/L. When the concentration of ICA was 0.5 mM, the encapsulation efficiency of GMs reached the maximum value of 76.26 ± 3.97%. GMs with ICA revealed a controlled release profile, 0.5 mM ICA exhibited a higher ICA release profile than the other groups during a 21 d monitoring span. The results of SEM and XRD demonstrated successful fabrication of a calcium phosphate cement with ICA-loaded GMs. ICA released from CPC/GMs (ICA) was slower than ICA released from GMs within 10 days. CPC/GMs (ICA) exhibited antibacterial activity against P. gingivalis, but the antibacterial rate of CPC/GMs (ICA) was only 17.15 ± 6.06%. In addition, CPC/GMs (ICA) promoted the proliferation of BMSCs and significantly stimulated the differentiation and maturation of BMSCs. In vivo, H&E and Masson staining experiments demonstrated that CPC/GMs (ICA) exhibited better capacity for bone regeneration than CPC/GMs and CPC, and the expression of TNF-α and IL-1ß in the tissue around CPC/GMs (ICA) was significantly lower than CPC/GMs and CPC in IHC staining (P < 0.05). CONCLUSION: In this study, ICA exhibited limited antibacterial activity against bacteria associated with peri-implantitis. A composite material of calcium phosphate cement with ICA-loaded gelatin microspheres was developed, which not only promoting osteoinductivity and bone formation, but also alleviating inflammation, demonstrating its potential as a promising bone substitute material for treatment of peri-implantitis.
Assuntos
Gelatina , Peri-Implantite , Humanos , Microesferas , Fosfatos de Cálcio/farmacologia , Sistemas de Liberação de Medicamentos , Regeneração Óssea , Cimentos Ósseos/farmacologiaRESUMO
OBJECTIVES: Magnesium phosphate-based cements begin to catch more attention as bone substitute materials and especially as alternatives for the more commonly used calcium phosphates. In bone substitutes for augmentation purposes, atraumatic materials with good biocompatibility and resorbability are favorable. In the current study, we describe the in vivo testing of novel bone augmentation materials in form of spherical granules based on a calcium-doped magnesium phosphate (CaMgP) cement. MATERIALS AND METHODS: Granules with diameters between 500 and 710 µm were fabricated via the emulsification of CaMgP cement pastes in a lipophilic liquid. As basic material, two different CaMgP formulations were used. The obtained granules were implanted into drill hole defects at the distal femoral condyle of 27 New Zealand white rabbits for 6 and 12 weeks. After explantation, the femora were examined via X-ray diffraction analysis, histological staining, radiological examination, and EDX measurement. RESULTS: Both granule types display excellent biocompatibility without any signs of inflammation and allow for proper bone healing without the interposition of connective tissue. CaMgP granules show a fast and continuous degradation and enable fully adequate bone regeneration. CONCLUSIONS: Due to their biocompatibility, their degradation behavior, and their completely spherical morphology, these CaMgP granules present a promising bone substitute material for bone augmentation procedures, especially in sensitive areas. CLINICAL RELEVANCE: The mostly insufficient local bone supply after tooth extractions complicates prosthetic dental restoration or makes it even impossible. Therefore, bone augmentation procedures are oftentimes inevitable. Spherical CaMgP granules may represent a valuable bone replacement material in many situations.
Assuntos
Cimentos Ósseos , Substitutos Ósseos , Animais , Cimentos Ósseos/farmacologia , Regeneração Óssea , Substitutos Ósseos/farmacologia , Fosfatos de Cálcio/farmacologia , Compostos de Magnésio , Teste de Materiais , Fosfatos , CoelhosRESUMO
Calcium phosphate cement (CPC) has been widely studied, but its lack of osteoinductivity and inadequate mechanical properties limit its application, while strontium is able to promote bone formation and inhibit bone resorption. In this study, different proportions of tristrontium silicate were introduced to create a novel strontium-modified calcium phosphate cement (SMPC). The physicochemical properties of SMPC and CPC were compared, and the microstructures of the bone cements were characterized with scanning electron microscopy assays. Then, the effect of SMPC on cell proliferation and differentiation was examined. Furthermore, local inflammatory response and osteogenesis after SMPC implantation were also confirmed in the study. Finally, a rat model of isolated vertebral defects was used to test the biomechanical properties of the cements. The results showed that SMPC has better injectability and a shorter setting time than CPC. Meanwhile, the addition of tristrontium silicate promoted the mechanical strength of calcium phosphate cement, and the compressive strength of 5% SMPC increased to 6.00 ± 0.74 MPa. However, this promotion effect gradually diminished with an increase in tristrontium silicate, which was also found in the rat model of isolated vertebral defects. Furthermore, SMPC showed a more preferential role in promoting cell proliferation and differentiation compared to CPC. Neither SMPC nor CPC showed significant inflammatory responses in vivo. Histological staining suggested that SMPCs were significantly better than CPC in promoting new bone regeneration. Importantly, this osteogenesis effect of SMPC was positively correlated with the ratio of tristrontium silicate. In conclusion, 5% SMPC is a promising substitute material for bone repair with excellent physicochemical properties and biological activity.
Assuntos
Cimentos Ósseos , Cálcio , Animais , Ratos , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Osteogênese , Cálcio da Dieta , Silicatos , Estrôncio/farmacologia , Estrôncio/químicaRESUMO
The demand of bone grafting is increasing as the population ages worldwide. Although bone graft materials have been extensively developed over the decades, only a few injectable bone grafts are clinically available and none of them can be extruded from 18G needles. To overcome the existing treatment limitations, the aim of this study is to develop ideal injectable implants from biomaterials for minimally invasive surgery. An injectable composite bone graft containing calcium sulfate hemihydrate, tetracalcium phosphate, and anhydrous calcium hydrogen phosphate (CSH/CaP paste) was prepared with different CSH/CaP ratios and different concentrations of additives. The setting time, injectability, mechanical properties, and biocompatibility were evaluated. The developed injectable CSH/CaP paste (CSH/CaP 1:1 supplemented with 6% citric acid and 2% HPMC) presented good handling properties, great biocompatibility, and adequate mechanical strength. Furthermore, the paste was demonstrated to be extruded from a syringe equipped with 18G needles and exerted a great potential for minimally invasive surgery. The developed injectable implants with tissue repairing potentials will provide an ideal therapeutic strategy for minimally invasive surgery to apply in the treatment of maxillofacial defects, certain indications in the spine, inferior turbinate for empty nose syndrome (ENS), or reconstructive rhinoplasty.
Assuntos
Fosfatos de Cálcio , Sulfato de Cálcio , Materiais Biocompatíveis/farmacologia , Cimentos Ósseos/farmacologia , Osso e Ossos , Fosfatos de Cálcio/farmacologia , Sulfato de Cálcio/farmacologia , Procedimentos Cirúrgicos Minimamente InvasivosRESUMO
To treat critical-size bone defects, composite materials and tissue-engineered bone grafts play important roles in bone repair materials. The purpose of this study was to investigate the bone regenerative potential of hybrid scaffolds consisting of macroporous calcium phosphate cement (CPC) and microporous mineralized collagen matrix (MCM). Hybrid scaffolds were synthetized by 3D plotting CPC and then filling with MCM (MCM-CPC group) and implanted into a 5 mm critical size femoral defect in rats. Defects left empty (control group) as well as defects treated with scaffolds made of CPC only (CPC group) and MCM only (MCM group) served as controls. Eight weeks after surgery, micro-computed tomography scans and histological analysis were performed to analyze the newly formed bone, the degree of defect healing and the activity of osteoclasts. Mechanical stability was tested by 3-point-bending of the explanted femora. Compared with the other groups, more newly formed bone was found within MCM-CPC scaffolds. The new bone tissue had a clamp-like structure which was fully connected to the hybrid scaffolds and thereby enhanced the biomechanical strength. Together, the biomimetic hybrid MCM-CPC scaffolds enhanced bone defect healing by improved osseointegration and their differentiated degradation provides spatial effects in the process of critical-bone defect healing.
Assuntos
Biomimética , Alicerces Teciduais , Animais , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/uso terapêutico , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Colágeno/farmacologia , Osteogênese , Ratos , Alicerces Teciduais/química , Microtomografia por Raio-XRESUMO
Rutin, also called quercetin-3-rhamnosyl glucoside, is a natural flavonol glycoside present in many plants. Rutin is used to treat various diseases, such as inflammation, diabetes, and cancer. For polymeric biomaterials, triethylene glycol dimethacrylate (TEGDMA) is the most commonly used monomer and serves as a restorative resin, a dentin bonding agent and sealant, and a bone cement component. Overall, TEGDMA induces various toxic effects in macrophages, including cytotoxicity, apoptosis, and genotoxicity. The aim of this study was to investigate the protective mechanism of rutin in alleviating TEGDMA-induced toxicity in RAW264.7 macrophages. After treatment with rutin, we assessed the cell viability and apoptosis of TEGDMA-induced RAW264.7 macrophages using an methylthiazol tetrazolium (MTT) assay and Annexin V-FITC/propidium iodide assay, respectively. Subsequently, we assessed the level of genotoxicity using comet and micronucleus assays, assessed the cysteinyla aspartate specific proteinases (caspases) and antioxidant enzyme (AOE) activity using commercial kits, and evaluated the generation of reactive oxygen species (ROS) using a dichlorodihydrofluorescein diacetate (DCFH-DA) assay. We evaluated the expression of heme oxygenase (HO)-1, the expression of nuclear factor erythroid 2 related factor (Nrf-2), and phosphorylation of AMP activated protein kinase (AMPK) using the Western blot assay. The results indicated that rutin substantially reduced the level of cytotoxicity, apoptosis, and genotoxicity of TEGDMA-induced RAW264.7 macrophages. Rutin also blocked the activity of caspase-3, caspase-8, and caspase-9 in TEGDMA-stimulated RAW264.7 macrophages. In addition, it decreased TEGDMA-induced ROS generation and AOE deactivation in macrophages. Finally, we found that TEGDMA-inhibited slightly the HO-1 expression, Nrf-2 expression, and AMPK phosphorylation would be revered by rutin. In addition, the HO-1 expression, Nrf-2 expression, and AMPK phosphorylation was enhanced by rutin. These findings indicate that rutin suppresses TEGDMA-induced caspase-mediated toxic effects through ROS generation and antioxidative system deactivation through the Nrf-2/AMPK pathway. Therefore, rutin has the potential to serve as a novel antitoxicity agent for TEGDMA in RAW264.7 macrophages.
Assuntos
Proteínas Quinases Ativadas por AMP , Rutina , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/farmacologia , Apoptose , Ácido Aspártico , Materiais Biocompatíveis/farmacologia , Cimentos Ósseos/farmacologia , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Caspases/metabolismo , Adesivos Dentinários , Glucosídeos/farmacologia , Glicosídeos/farmacologia , Macrófagos/metabolismo , Polietilenoglicóis , Ácidos Polimetacrílicos , Propídio , Quercetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Rutina/farmacologiaRESUMO
Calcium phosphate cements (CPCs) are regarded as promising graft substitutes for bone tissue engineering. However, their wide use is limited by the high cost associated with the complex synthetic processes involved in their fabrication. Cheaper xenogeneic calcium phosphate (CaP) materials derived from waste animal bone may solve this problem. Moreover, the surface topography, mechanical strength, and cellular function of CPCs are influenced by the ratio of micro- to nano-sized CaP (M/NCaP) particles. In this study, we developed waste equine bone (EB)-derived CPCs with various M/NCaP particle ratios to examine the potential capacity of EB-CPCs for bone grafting materials. Our study showed that increasing the number of NCaP particles resulted in reductions in roughness and porosity while promoting smoother surfaces of EB-CPCs. Changes in the chemical properties of EB-CPCs by NCaP particles were observed using X-ray diffractometry. The mechanical properties and cohesiveness of the EB-CPCs improved as the NCaP particle content increased. In an in vitro study, EB-CPCs with a greater proportion of MCaP particles showed higher cell adhesion. Alkaline phosphatase activity indicated that osteogenic differentiation by EB-CPCs was promoted with increased NCaP particle content. These results could provide a design criterion for bone substitutes for orthopedic disease, including periodontal bone defects.
Assuntos
Células-Tronco Mesenquimais , Animais , Cimentos Ósseos/farmacologia , Substitutos Ósseos/farmacologia , Fosfatos de Cálcio/farmacologia , Cavalos , Humanos , Teste de Materiais , OsteogêneseRESUMO
OBJECTIVE: The purpose is to observe whether local administration with selenium (Se) can enhance the efficacy of calcium phosphate cement (CPC) in the treatment of osteoporotic bone defects. METHODS: Thirty ovariectomized (OVX) rats with two defects were generated and randomly allocated into the following graft study groups: (1) OVX group (n = 10), (2) CPC group (n = 10); and (3) Se-CPC group (n = 10). Then, these selenium-modified calcium phosphate cement (Se-CPC) scaffolds were implanted into the femoral epiphysis bone defect model of OVX rats for 12 weeks. Micro-CT, history, western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis were used to observe the therapeutic effect and to explore the possible mechanism. RESULT: Micro-CT and histological analysis evaluation showed that the Se-CPC group presented the strongest effect on bone regeneration and bone mineralization when compared with the CPC group and the OVX group. Protein expressions showed that the oxidative stress protein expressions, such as SOD2 and GPX1 of the Se-CPC group, are significantly higher than those of the OVX group and the CPC group, while Se-CPC remarkably reduced the expression of CAT. RT-qPCR analysis showed that the Se-CPC group displayed more OPG than the OVX and CPC groups (p < 0.05), while Se-CPC exhibited less RANKL than the OVX and CPC groups (p < 0.05). CONCLUSION: Our current study demonstrated that Se-CPC is a scheme for rapid repair of femoral condylar defects, and these effects may be achieved by inhibiting local oxidative stress and through OPG/RANKL signaling pathway.
Assuntos
Osteoporose , Selênio , Animais , Cimentos Ósseos/farmacologia , Regeneração Óssea , Fosfatos de Cálcio/farmacologia , Osteoporose/tratamento farmacológico , Ratos , Selênio/farmacologiaRESUMO
Vascularization is an important early indicator of osteogenesis involving biomaterials. Bone repair and new bone formation are associated with extensive neovascularization. Silicon-based biomaterials have attracted widespread attention due to their rapid vascularization. Although calcium phosphate cement (CPC) is a mature substitute for bone, the application of CPC is limited by its slow degradation and insufficient promotion of neovascularization. Calcium silicate (CS) has been shown to stimulate vascular endothelial proliferation. Thus, CS may be added to CPC (CPC-CS) to improve the biocompatibility and neovascularization of CPC. In the early phase of bone repair (the inflammatory phase), macrophages accumulate around the biomaterial and exert both anti- and pro-inflammatory effects. However, the effect of CPC-CS on macrophage polarization is not known, and it is not clear whether the effect on neovascularization is mediated through macrophage polarization. In the present study, we explored whether silicon-mediated macrophage polarization contributes to vascularization by evaluating the CPC-CS-mediated changes in the immuno-environment under different silicate ion contents both in vivo and in vitro. We found that the silicon released from CPC-CS can promote macrophage polarization into the M2 phenotype and rapid endothelial neovascularization during bone repair. Dramatic neovascularization and osteogenesis were observed in mouse calvarial bone defects implanted with CPC-CS containing 60% CS. These findings suggest that CPC-CS is a novel biomaterial that can modulate immune response, promote endothelial proliferation, and facilitate neovascularization and osteogenesis. Thus, CPC-CS shows potential as a bone substitute material.
Assuntos
Cimentos Ósseos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Compostos de Cálcio/farmacologia , Fosfatos de Cálcio/farmacologia , Silicatos/farmacologia , Silício/farmacologia , Crânio/efeitos dos fármacos , Animais , Cimentos Ósseos/química , Compostos de Cálcio/química , Fosfatos de Cálcio/química , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células RAW 264.7 , Silicatos/química , Silício/química , Crânio/irrigação sanguínea , Crânio/lesõesRESUMO
While the infection rate after primary total joint replacements (TJR) sits at 1-2%, for trauma-related surgery, it can be as high as 3.6 to 21.2% based on the type of trauma; the risk of reinfection after revision surgery is even higher. Current treatments with antibiotic-releasing PMMA-based bone cement/ beads and/or systemic antibiotic after surgical debridement do not provide effective treatment due to fluctuating antibiotic levels at the site of infection, leading to insufficient local antibiotic concentration. In addition, non-biodegradable PMMA does not support bone regrowth in the debrided void spaces and often must be removed in an additional surgery. Here, we report a bioactive glass or bioglass (BG) substrate-based biodegradable, easy to fabricate "press fitting" antibiotic-releasing bone void filling (ABVF-BG) putty to provide effective local antibiotic release at the site of infection along with support for bone regeneration. The ABVF-BG putty formulation had homogenously distributed BG particles, a porous structure, and showed putty-like ease of handling. Furthermore, the ABVF-BG putty demonstrated in vitro antibacterial activity for up to 6 weeks. Finally, the ABVF-BG putty was biodegradable in vivo and showed 100% bacterial eradication (as shown by bacterial cell counts) in the treatment group, which received ABVF-BG putty, compared to the infection control group, where all the rats had a high bacterial load (4.63 × 106 ± 7.9 × 105 CFU/gram bone) and sustained osteomyelitis. The ABVF-BG putty also supported bone growth in the void space as indicated by a combination of histology, µCT, and X-ray imaging. The potential for simultaneous infection treatment and bone healing using the developed BG-based ABVF-BG putty is promising as an alternative treatment option for osteomyelitis.
Assuntos
Antibacterianos/farmacologia , Osso e Ossos/efeitos dos fármacos , Cerâmica/farmacologia , Osteomielite/tratamento farmacológico , Vancomicina/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Cimentos Ósseos/farmacologia , Substitutos Ósseos/farmacologia , Portadores de Fármacos/farmacologia , Feminino , Vidro , Masculino , Osteomielite/microbiologia , Ratos , Ratos Sprague-DawleyRESUMO
(1) Background: Vascularization remains a critical challenge in bone tissue engineering. The objective of this study was to prevascularize calcium phosphate cement (CPC) scaffold by co-culturing human periodontal ligament stem cells (hPDLSCs) and human umbilical vein endothelial cells (hUVECs) for the first time; (2) Methods: hPDLSCs and/or hUVECs were seeded on CPC scaffolds. Three groups were tested: (i) hUVEC group (hUVECs on CPC); (ii) hPDLSC group (hPDLSCs on CPC); (iii) co-culture group (hPDLSCs + hUVECs on CPC). Osteogenic differentiation, bone mineral synthesis, and microcapillary-like structures were evaluated; (3) Results: Angiogenic gene expressions of co-culture group were 6-9 fold those of monoculture. vWF expression of co-culture group was 3 times lower than hUVEC-monoculture group. Osteogenic expressions of co-culture group were 2-3 folds those of the hPDLSC-monoculture group. ALP activity and bone mineral synthesis of co-culture were much higher than hPDLSC-monoculture group. Co-culture group formed capillary-like structures at 14-21 days. Vessel length and junction numbers increased with time; (4) Conclusions: The hUVECs + hPDLSCs co-culture on CPC scaffold achieved excellent osteogenic and angiogenic capability in vitro for the first time, generating prevascularized networks. The hPDLSCs + hUVECs co-culture had much better osteogenesis and angiogenesis than monoculture. CPC scaffolds prevacularized via hPDLSCs + hUVECs are promising for dental, craniofacial, and orthopedic applications.
Assuntos
Fosfatos de Cálcio/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Engenharia Tecidual/métodos , Actinas/genética , Actinas/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Cimentos Ósseos/farmacologia , Osso e Ossos/irrigação sanguínea , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Técnicas de Cocultura , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Alicerces Teciduais , Veias Umbilicais/citologia , Veias Umbilicais/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismoRESUMO
OBJECTIVE: to investigate the combined construction of injectable tissue-engineered bone with calcium phosphate bone cement composite (CPC) and bone marrow mesenchymal stem cells (BMMSCs). METHODS: The proliferation activity of BMMSCs encapsulated was detected by CCK8 method on the 7th day after its self-coagulation by CPC. qRT-PCR was used to detect the expressions of mRNA. The microcapsules of BMMSCs combined with CPC were completely filled in the defect site in the experimental group, and the control group not filled. The two groups were sutured and routinely reared, double upper limb X-ray examination performed after operation. RESULTS: Those of two groups were on the rise over time, which were higher at the 1st, 3rd, 5th and 7th days than those at the previous time points (all P<0.05). The relative expressions of ALP and CALCR at the 7th day were higher than those at the day in BMMSCs combined with the CPC group and BMMSCs group (all P<0.05). The relative expression of CALCR was significantly higher in BMMSCs combined with the CPC group than that in the BMMSCs group on the 7th day (P<0.05). CONCLUSION: With good cell activity and biological activity, the combined construction of the tissue-engineered bone with BMMSCs and CPC can be used as an ideal treatment material for bone tissue repair and connection.
Assuntos
Cimentos Ósseos/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Rádio (Anatomia)/diagnóstico por imagem , Rádio (Anatomia)/lesões , Engenharia Tecidual/métodos , Animais , Fosfatos de Cálcio/farmacologia , Células Cultivadas , Terapia Combinada/métodos , Células-Tronco Mesenquimais/fisiologia , Coelhos , Rádio (Anatomia)/efeitos dos fármacosRESUMO
Bacterial adhesion to the calcium phosphate surface is a serious problem in surgery. To prevent bacterial infection, the development of calcium-phosphate cements (CPCs) with bactericidal properties is indispensable. The aim of this study was to fabricate antibacterial CPCs and evaluate their biological properties. Silver-containing tricalcium phosphate (Ag-TCP) microspheres consisting of α/ß-TCP phases were synthesized by an ultrasonic spray-pyrolysis technique. The powders prepared were mixed with the setting liquid to fabricate the CPCs. The resulting cements consisting of ß-TCP and hydroxyapatite had a porous structure and wash-out resistance. Additionally, silver and calcium ions could be released into the culture medium from Ag-TCP cements for a long time accompanied by the dissolution of TCP. These data showed the bioresorbability of the Ag-TCP cement. In vitro antibacterial evaluation demonstrated that both released and immobilized silver suppressed the growth of bacteria and prevented bacterial adhesion to the surface of CPCs. Furthermore, histological evaluation by implantation of Ag-TCP cements into rabbit tibiae exhibited abundant bone apposition on the cement without inflammatory responses. These results showed that Ag-TCP cement has a good antibacterial property and good biocompatibility. The present Ag-TCP cements are promising for bone tissue engineering and may be used as antibacterial biomaterials.
Assuntos
Antibacterianos/química , Cimentos Ósseos/química , Microesferas , Animais , Antibacterianos/farmacologia , Cimentos Ósseos/farmacologia , Fosfatos de Cálcio/química , Hidroxiapatitas/química , Masculino , Coelhos , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Tíbia/cirurgiaRESUMO
Poly(methyl methacrylate) (PMMA)-based bone cement, which is widely used to affix orthopedic metallic implants, is considered bio-tolerant but lacks osteoconductivity and is cytotoxic. Implant loosening and toxic complications are significant and recognized problems. Here we devised two strategies to improve PMMA-based bone cement: (1) adding 4-methacryloyloxylethyl trimellitate anhydride (4-META) to MMA monomer to render it hydrophilic; and (2) using tri-n-butyl borane (TBB) as a polymerization initiator instead of benzoyl peroxide (BPO) to reduce free radical production. Rat bone marrow-derived osteoblasts were cultured on PMMA-BPO, common bone cement ingredients, and 4-META/MMA-TBB, newly formulated ingredients. After 24 h of incubation, more cells survived on 4-META/MMA-TBB than on PMMA-BPO. The mineralized area was 20-times greater on 4-META/MMA-TBB than PMMA-BPO at the later culture stage and was accompanied by upregulated osteogenic gene expression. The strength of bone-to-cement integration in rat femurs was 4- and 7-times greater for 4-META/MMA-TBB than PMMA-BPO during early- and late-stage healing, respectively. MicroCT and histomorphometric analyses revealed contact osteogenesis exclusively around 4-META/MMA-TBB, with minimal soft tissue interposition. Hydrophilicity of 4-META/MMA-TBB was sustained for 24 h, particularly under wet conditions, whereas PMMA-BPO was hydrophobic immediately after mixing and was unaffected by time or condition. Electron spin resonance (ESR) spectroscopy revealed that the free radical production for 4-META/MMA-TBB was 1/10 to 1/20 that of PMMA-BPO within 24 h, and the substantial difference persisted for at least 10 days. The compromised ability of PMMA-BPO in recruiting cells was substantially alleviated by adding free radical-scavenging amino-acid N-acetyl cysteine (NAC) into the material, whereas adding NAC did not affect the ability of 4-META/MMA-TBB. These results suggest that 4-META/MMA-TBB shows significantly reduced cytotoxicity compared to PMMA-BPO and induces osteoconductivity due to uniquely created hydrophilic and radical-free interface. Further pre-clinical and clinical validations are warranted.