Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Int J Phytoremediation ; 26(6): 947-963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38013429

RESUMO

The study investigated the adaptability of Moringa oleifera to saline conditions, focusing on its hormesis behavior. It also examined how various plant growth regulators affected growth, physiological parameters, and bioactive compounds of moringa. In the first phase, different NaCl stress levels (0, 50, 100, 150, 200, and 250 mM) were applied. Notably, significant stimulation was observed at 100 mM stress for growth, total phenolics, total flavonoids and total chlorophyll content while 150 mM stress had a marked inhibitory effect, with survival decreasing at 200 and 250 mM NaCl levels. A 38% reduction in root attributes and shoot length, along with a 55% decrease in leaf score, was observed at 150 mM stress. Total phenolics showed a positive correlation with growth attributes. In the second phase, moringa plants grown under 50, 100, and 150 mM NaCl stress were treated with various plant growth regulators, including cytokinin (50 mg L-1), thiourea (5 mM), bezyl amino purine (BAP @50 mg L-1), salicylic acid (50 mg L-1), hydrogen peroxide (H2O2@120 µM), or ascorbic acid (50 mg L-1) to mitigate adverse effects of salinity. Cytokinin, BAP, and salicylic acid applications improved salinity tolerance, enhancing enzymatic, and non-enzymatic antioxidants, and the abundance of kaempferol, quercetin, hydroxybenzoic, and hydroxycinnamic acids. Pearson correlation and principal component analysis manifested relationships among growth parameters, antioxidant activities, flavonoids, and phenolic acids. This study provides new insights into hormesis management for moringa plants and the influence of plant growth regulators on flavonoids and phenolic acid levels in moringa leaves under saline conditions.


This study represents the first exploration of hormesis management in Moringa oleifera dual influence of changing soil conditions and foliar application of plant growth regulators. Additionally, this research fills a gap examining the variations in flavonoids (kaempferol and quercetin), hydroxycinnamic acids and hydroxybenzoic acids in moringa leaves concerning varying salinity levels and the exogenous application of plant growth regulators. Further, the study underscores the correlation among secondary metabolites, antioxidant activities and plant growth behavior.


Assuntos
Hidroxibenzoatos , Moringa oleifera , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Cloreto de Sódio/farmacologia , Peróxido de Hidrogênio/análise , Hormese , Extratos Vegetais , Biodegradação Ambiental , Antioxidantes/análise , Antioxidantes/farmacologia , Fenóis/análise , Flavonoides/análise , Solução Salina , Citocininas/análise , Salicilatos/análise , Folhas de Planta/química
2.
Mikrochim Acta ; 190(5): 191, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099040

RESUMO

An immobilized metal affinity (IMAC) adsorbent was prepared for selective enrichment of adenine type CKs, via grafting polymer chain pendant with iminodiacetic acid (IDA) from polydopamine (PDA)/polyethyleneimine (PEI)-coated magnetic graphene oxide (magGO) via surface-initiated-atom transfer radical polymerization (SI-ATRP). The prepared IMAC sorbent exhibited remarkable adsorption performances and good selectivity for adenine-type CKs and was utilized as a sorbent of magnetic solid-phase extraction (MSPE) for effective enrichment of four adenine-type CKs in bean sprouts. Under the optimized extraction conditions, an analytical method for four adenine type CKs in bean sprouts was established by combining the MSPE combined with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The recoveries of the analytes were between 80.4 ± 1.9% and 114.6 ± 1.5% (n = 3). The limits of detection (LODs) range from 0.63 to 2.30 pg⋅mL-1. The relative standard deviations of intra-day and inter-day were less than 12.6%. The established method was successfully applied to the selective extraction and sensitive detection of trace adenine-type CKs in plant samples.


Assuntos
Citocininas , Polietilenoimina , Citocininas/análise , Citocininas/química , Polietilenoimina/química , Espectrometria de Massas em Tandem/métodos , Plantas , Polímeros/química , Fenômenos Magnéticos
3.
Plant J ; 105(2): 542-557, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33231903

RESUMO

Plant hormones play important roles in plant growth and development and physiology, and in acclimation to environmental changes. The hormone signaling networks are highly complex and interconnected. It is thus important to not only know where the hormones are produced, how they are transported and how and where they are perceived, but also to monitor their distribution quantitatively, ideally in a non-invasive manner. Here we summarize the diverse set of tools available for quantifying and visualizing hormone distribution and dynamics. We provide an overview over the tools that are currently available, including transcriptional reporters, degradation sensors, and luciferase and fluorescent sensors, and compare the tools and their suitability for different purposes.


Assuntos
Técnicas Biossensoriais , Reguladores de Crescimento de Plantas/análise , Ácido Abscísico/análise , Ácido Abscísico/metabolismo , Técnicas Biossensoriais/métodos , Brassinosteroides/análise , Brassinosteroides/metabolismo , Ciclopentanos/análise , Ciclopentanos/metabolismo , Citocininas/análise , Citocininas/metabolismo , Etilenos/análise , Etilenos/metabolismo , Corantes Fluorescentes , Giberelinas/análise , Giberelinas/metabolismo , Compostos Heterocíclicos com 3 Anéis/análise , Compostos Heterocíclicos com 3 Anéis/metabolismo , Ácidos Indolacéticos/análise , Ácidos Indolacéticos/metabolismo , Lactonas/análise , Lactonas/metabolismo , Oxilipinas/análise , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Plantas/química , Plantas/metabolismo
4.
BMC Microbiol ; 22(1): 49, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135483

RESUMO

BACKGROUND: Symbiotic Methylobacterium strains comprise a significant part of plant microbiomes. Their presence enhances plant productivity and stress resistance, prompting classification of these strains as plant growth-promoting bacteria (PGPB). Methylobacteria can synthesize unusually high levels of plant hormones, called cytokinins (CKs), including the most active form, trans-Zeatin (tZ). RESULTS: This study provides a comprehensive inventory of 46 representatives of Methylobacterium genus with respect to phytohormone production in vitro, including 16 CK forms, abscisic acid (ABA) and indole-3-acetic acid (IAA). High performance-liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analyses revealed varying abilities of Methylobacterium strains to secrete phytohormones that ranged from 5.09 to 191.47 pmol mL-1 for total CKs, and 0.46 to 82.16 pmol mL-1 for tZ. Results indicate that reduced methanol availability, the sole carbon source for bacteria in the medium, stimulates CK secretion by Methylobacterium. Additionally, select strains were able to transform L-tryptophan into IAA while no ABA production was detected. CONCLUSIONS: To better understand features of CKs in plants, this study uncovers CK profiles of Methylobacterium that are instrumental in microbe selection for effective biofertilizer formulations.


Assuntos
Citocininas/análise , Citocininas/metabolismo , Methylobacterium/química , Methylobacterium/genética , Cromatografia Líquida de Alta Pressão/métodos , Methylobacterium/classificação , Methylobacterium/metabolismo , Espectrometria de Massas em Tandem/métodos
5.
Plant J ; 101(5): 1075-1090, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31628879

RESUMO

Wheat awn plays a vital role in photosynthesis, grain production, and drought tolerance. However, the systematic identification or cloning of genes controlling wheat awn development is seldom reported. Here, we conducted a genome-wide association study (GWAS) with 364 wheat accessions and identified 26 loci involved in awn length development, including previously characterized B1, B2, Hd, and several rice homologs. The dominant awn suppressor B1 was fine mapped to a 125-kb physical interval, and a C2 H2 zinc finger protein Awn Length Inhibitor 1 (ALI-1) was confirmed to be the underlying gene of the B1 locus through the functional complimentary test with native awnless allele. ALI-1 expresses predominantly in the developing spike of awnless individuals, transcriptionally suppressing downstream genes. ALI-1 reduces cytokinin content and simultaneously restrains cytokinin signal transduction, leading to a stagnation of cell proliferation and reduction of cell numbers during awn development. Polymorphisms of four single nucleotide polymorphisms (SNPs) located in ALI-1 promoter region are diagnostic for the B1/b1 genotypes, and these SNPs are associated with awn length (AL), grain length (GL) and thousand-grain weight (TGW). More importantly, ali-1 was observed to increase grain length in wheat, which is a valuable attribute of awn on grain weight, aside from photosynthesis. Therefore, ALI-1 pleiotropically regulates awn and grain development, providing an alternative for grain yield improvement and addressing future climate changes.


Assuntos
Variação Genética , Proteínas de Plantas/genética , Triticum/genética , Alelos , Dedos de Zinco CYS2-HIS2/genética , Citocininas/análise , Grão Comestível , Estudo de Associação Genômica Ampla , Genótipo , Regiões Promotoras Genéticas/genética , Triticum/crescimento & desenvolvimento
6.
Plant Cell Physiol ; 61(8): 1438-1448, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32294217

RESUMO

Agronomically important traits often develop during the later stages of crop growth as consequences of various plant-environment interactions. Therefore, the temporal physiological states that change and accumulate during the crop's life course can significantly affect the eventual phenotypic differences in agronomic traits among crop varieties. Thus, to improve productivity, it is important to elucidate the associations between temporal physiological responses during the growth of different crop varieties and their agronomic traits. However, data representing the dynamics and diversity of physiological states in plants grown under field conditions are sparse. In this study, we quantified the endogenous levels of five phytohormones - auxin, cytokinins (CKs), ABA, jasmonate and salicylic acid - in the leaves of eight diverse barley (Hordeum vulgare) accessions grown under field conditions sampled weekly over their life course to assess the ongoing fluctuations in hormone levels in the different accessions under field growth conditions. Notably, we observed enormous changes over time in the development-related plant hormones, such as auxin and CKs. Using 3' RNA-seq-based transcriptome data from the same samples, we investigated the expression of barley genes orthologous to known hormone-related genes of Arabidopsis throughout the life course. These data illustrated the dynamics and diversity of the physiological states of these field-grown barley accessions. Together, our findings provide new insights into plant-environment interactions, highlighting that there is cultivar diversity in physiological responses during growth under field conditions.


Assuntos
Hordeum/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Ácido Abscísico/análise , Ciclopentanos/análise , Citocininas/análise , Citocininas/fisiologia , Hordeum/química , Hordeum/crescimento & desenvolvimento , Ácidos Indolacéticos/análise , Oxilipinas/análise , Reguladores de Crescimento de Plantas/análise , Ácido Salicílico/análise
7.
Physiol Plant ; 169(2): 276-290, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32072645

RESUMO

In the context of future climate change new habitats will be threatened and unique species will be forced to develop different strategies to survive. Saxifraga longifolia Lapeyr. is an endemic species from the Pyrenees with a very particular habitat. We explored the capacity and strategies of S. longifolia plants to face different severities of drought stress under both natural conditions and controlled water stress followed by a re-watering period of 20 days. Our results showed a role for abscisic acid (ABA), salicylic acid (SA) and cytokinins (CKs) in plant survival from drought stress, and as the stress increased, ABA lost significance and SA appeared to be more associated with the response mechanisms. Moreover, photo-oxidative stress markers revealed that both xanthophyll cycles played a photoprotection role with a stronger participation of the lutein epoxide cycle as the stress was more intense. Severe drought decreased the maximum efficiency of photosystem II (Fv /Fm ) below 0.45, being this the limit to survive upon rewatering. Overall, our results proved different strategies of S. longifolia plants to cope with drought stress and suggested a Fv /Fm threshold to predict plant survival in high-mountain environments.


Assuntos
Secas , Saxifragaceae/fisiologia , Ácido Abscísico/análise , Citocininas/análise , Complexo de Proteína do Fotossistema II/fisiologia , Ácido Salicílico/análise , Estresse Fisiológico , Água
8.
Anal Chem ; 91(23): 15049-15056, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31660717

RESUMO

Cytokinins (CKs) are adenine derivatives that act as phytohormones. These signaling molecules control plant cell division and differentiation, organ growth, and senescence, and they orchestrate plant interactions with biotic and abiotic environments. While CKs are predominately recognized as plant-based substances, CKs have been found across different domains of life, including microorganisms, insects, mammals, and humans. In plants, CKs act at trace, often low femtomolar concentrations; therefore, sensitive and precise analytical techniques are required to accurately detect and quantify them from complex biological matrices. Here, we report the first comprehensive CK quantification method using a QExactive Orbitrap mass spectrometer in high-resolution with a parallel reaction monitoring (PRM)-based approach. The current method progresses upon multiple reaction monitoring (MRM) methods, previously used for CK profiling on triple quadrupole mass spectrometers. This method offers improved mass accuracy and the complete product ion mass spectra (MS/MS) for compound determination with increased specificity, and sensitivity comparable with triple quadrupole instruments. The presented PRM approach was successfully applied to quantify 32 CKs in several biological samples.


Assuntos
Citocininas/análise , Espectrometria de Massas/instrumentação , Animais , Misturas Complexas/análise , Humanos , Espectrometria de Massas/métodos , Reguladores de Crescimento de Plantas/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
9.
Planta ; 250(1): 145-162, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30949762

RESUMO

MAIN CONCLUSION: The possible molecular mechanisms regulating strawberry fruit ripening were revealed by plant hormone quantification, exogenous hormone application, and RNA-sequencing. Fruit ripening involves a complex interplay among plant hormones. Strawberry is a model for studies on non-climacteric fruit ripening. However, the knowledge on how plant hormones are involved in strawberry ripening is still limited. To understand hormonal actions in the ripening process, we performed genome-wide transcriptome and hormonal analysis for the five major hormones (abscisic acid and catabolites, auxins, cytokinins, gibberellins, and ethylene) in achenes and receptacles (flesh) at different ripening stages of the woodland strawberry Fragaria vesca. Our results demonstrate that the pre-turning stage (a stage with white flesh and red achenes defined in this study) is the transition stage from immature to ripe fruits. The combinatorial analyses of hormone content, transcriptome data, and exogenous hormone treatment indicate that auxin is synthesized predominantly in achenes, while abscisic acid (ABA), bioactive free base cytokinins, gibberellins, and ethylene are mainly produced in receptacles. Furthermore, gibberellin may delay ripening, while ethylene and cytokinin are likely involved at later stages of the ripening process. Our results also provide additional evidence that ABA promotes ripening, while auxin delays it. Although our hormone analysis demonstrates that the total auxin in receptacles remains relatively low and unchanged during ripening, our experimental evidence further indicates that ABA likely enhances expression of the endoplasmic reticulum-localized auxin efflux carrier PIN-LIKES, which may subsequently reduce the auxin level in nucleus. This study provides a global picture for hormonal regulation of non-climacteric strawberry fruit ripening and also evidence for a possible mechanism of ABA and auxin interaction in the ripening process.


Assuntos
Fragaria/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma , Ácido Abscísico/análise , Ácido Abscísico/metabolismo , Citocininas/análise , Citocininas/metabolismo , Etilenos/análise , Etilenos/metabolismo , Fragaria/fisiologia , Frutas/genética , Frutas/fisiologia , Giberelinas/análise , Giberelinas/metabolismo , Ácidos Indolacéticos/análise , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/análise , Proteínas de Plantas/genética
10.
Analyst ; 144(17): 5186-5192, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31343643

RESUMO

A reliable, highly sensitive and highly selective method of high performance liquid chromatography associated with resonance Rayleigh scattering (HPLC-RRS) was developed to detect three cytokinins, namely, 6-benzylaminopurine (BA), kinetin (KT) and zeatin (ZT). In this work, Pd(ii) is added into the system to form ternary ion association complexes for the first time, which results in a lower limit of detection and extends the application of HPLC-RRS. The experimental conditions were optimized. In order to investigate the reaction mechanism, the ternary ion association complexes were characterized by ultraviolet-visible spectrophotometry, dynamic light scattering, scanning electron microscopy and density functional theory calculations. In a HAc-NaAc buffer solution (pH = 4.1), a ternary complex of cytokinin : Pd(ii) : EryB (1 : 1 : 2) was formed. The detection limits (S/N = 3) of BA, KT, and ZT were 0.9, 1.5 and 2.3 ng mL-1, respectively. In addition, this method was applied for the simultaneous detection of cytokinins in real samples with satisfactory results.


Assuntos
Citocininas/análise , Compostos de Benzil/análise , Cromatografia Líquida de Alta Pressão , Difusão Dinâmica da Luz , Eritrosina/análise , Cinetina/análise , Limite de Detecção , Purinas/análise , Glycine max/química , Zeatina/análise
11.
Plant Cell Environ ; 41(9): 2080-2092, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29469230

RESUMO

Legume-Rhizobium symbiosis results in root nodules where rhizobia fix atmospheric nitrogen into plant usable forms in exchange for plant-derived carbohydrates. The development of these specialized root organs involves a set of carefully orchestrated plant hormone signalling. In particular, a spatio-temporal balance between auxin and cytokinin appears to be crucial for proper nodule development. We put together a construct that carried nuclear localized fluorescence sensors for auxin and cytokinin and used two photon induced fluorescence microscopy for concurrent quantitative 3-dimensional imaging to determine cellular level auxin and cytokinin outputs and ratios in root and nodule tissues of soybean. The use of nuclear localization signals on the markers and nuclei segmentation during image processing enabled accurate monitoring of outputs in 3D image volumes. The ratiometric method used here largely compensates for variations in individual outputs due to sample turbidity and scattering, an inherent issue when imaging thick root and nodule samples typical of many legumes. Overlays of determined auxin/cytokinin ratios on specific root zones and cell types accurately reflected those predicted based on previously reported outputs for each hormone individually. Importantly, distinct auxin/cytokinin ratios corresponded to distinct nodule cell types indicating a key role for these hormones in nodule cell type identity.


Assuntos
Citocininas/metabolismo , Glycine max/citologia , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo , Citocininas/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imageamento Tridimensional , Ácidos Indolacéticos/análise , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Células Vegetais/metabolismo , Raízes de Plantas/citologia , Plantas Geneticamente Modificadas , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo
12.
Int J Mol Sci ; 19(12)2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30551560

RESUMO

Hormonal dynamics after Plasmodiophora brassicae infection were compared in two Brassica napus cultivars-more resistant SY Alister and more sensitive Hornet, in order to elucidate responses associated with efficient defense. Both cultivars responded to infection by the early transient elevation of active cytokinins (predominantly cis-zeatin) and auxin indole-3-acetic acid (IAA) in leaves and roots, which was longer in Hornet. Moderate IAA levels in Hornet roots coincided with a high expression of biosynthetic gene nitrilase NIT1 (contrary to TAA1, YUC8, YUC9). Alister had a higher basal level of salicylic acid (SA), and it stimulated its production (via the expression of isochorismate synthase (ICS1)) in roots earlier than Hornet. Gall formation stimulated cytokinin, auxin, and SA levels-with a maximum 22 days after inoculation (dai). SA marker gene PR1 expression was the most profound at the time point where gall formation began, in leaves, roots, and especially in galls. Jasmonic acid (JA) was higher in Hornet than in Alister during the whole experiment. To investigate SA and JA function, SA was applied before infection, and twice (before infection and 15 dai), and JA at 15 dai. Double SA application diminished gall formation in Alister, and JA promoted gall formation in both cultivars. Activation of SA/JA pathways reflects the main differences in clubroot resistance.


Assuntos
Brassica napus/crescimento & desenvolvimento , Doenças das Plantas/parasitologia , Reguladores de Crescimento de Plantas/análise , Proteínas de Plantas/genética , Plasmodioforídeos/patogenicidade , Aminoidrolases/genética , Brassica napus/metabolismo , Brassica napus/parasitologia , Ciclopentanos/análise , Citocininas/análise , Resistência à Doença , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/análise , Transferases Intramoleculares/genética , Oxilipinas/análise , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia
13.
Ann Bot ; 119(1): 151-166, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27707748

RESUMO

BACKGROUND AND AIMS: The metabolism of cytokinins (CKs) and auxins in vascular plants is relatively well understood, but data concerning their metabolic pathways in non-vascular plants are still rather rare. With the aim of filling this gap, 20 representatives of taxonomically major lineages of cyanobacteria and algae from Cyanophyceae, Xanthophyceae, Eustigmatophyceae, Porphyridiophyceae, Chlorophyceae, Ulvophyceae, Trebouxiophyceae, Zygnematophyceae and Klebsormidiophyceae were analysed for endogenous profiles of CKs and auxins and some of them were used for studies of the metabolic fate of exogenously applied radiolabelled CK, [3H]trans-zeatin (transZ) and auxin ([3H]indole-3-acetic acid (IAA)), and the dynamics of endogenous CK and auxin pools during algal growth and cell division. METHODS: Quantification of phytohormone levels was performed by high-performance or ultrahigh-performance liquid chromatography-electrospray tandem mass spectrometry (HPLC-MS/MS, UHPLC-MS/MS). The dynamics of exogenously applied [3H]transZ and [3H]IAA in cell cultures were monitored by HPLC with on-line radioactivity detection. KEY RESULTS: The comprehensive screen of selected cyanobacteria and algae for endogenous CKs revealed a predominance of bioactive and phosphate CK forms while O- and N-glucosides evidently did not contribute greatly to the total CK pool. The abundance of cis-zeatin-type CKs and occurrence of CK 2-methylthio derivatives pointed to the tRNA pathway as a substantial source of CKs. The importance of the tRNA biosynthetic pathway was proved by the detection of tRNA-bound CKs during the course of Scenedesmus obliquus growth. Among auxins, free IAA and its oxidation catabolite 2-oxindole-3-acetic acid represented the prevailing endogenous forms. After treatment with [3H]IAA, IAA-aspartate and indole-3-acetyl-1-glucosyl ester were detected as major auxin metabolites. Moreover, different dynamics of endogenous CKs and auxin profiles during S. obliquus culture clearly demonstrated diverse roles of both phytohormones in algal growth and cell division. CONCLUSIONS: Our data suggest the existence and functioning of a complex network of metabolic pathways and activity control of CKs and auxins in cyanobacteria and algae that apparently differ from those in vascular plants.


Assuntos
Clorófitas/metabolismo , Cianobactérias/metabolismo , Citocininas/metabolismo , Homeostase/fisiologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Estreptófitas/metabolismo , Clorófitas/química , Clorófitas/fisiologia , Cromatografia Líquida de Alta Pressão/métodos , Cianobactérias/química , Cianobactérias/fisiologia , Citocininas/análise , Ácidos Indolacéticos/análise , Filogenia , Reguladores de Crescimento de Plantas/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Estreptófitas/química , Estreptófitas/fisiologia , Espectrometria de Massas em Tandem/métodos
14.
Rapid Commun Mass Spectrom ; 31(17): 1396-1404, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28569011

RESUMO

RATIONALE: Using mass spectrometry, the analysis of known metabolite structures has become feasible in a systematic high-throughput fashion. Nevertheless, the identification of previously unknown structures remains challenging, partially because many unidentified variants originate from known molecules that underwent unexpected modifications. Here, we present a method for the discovery of unknown metabolite modifications and conjugate metabolite isoforms in a high-throughput fashion. METHODS: The method is based on user-controlled in-source fragmentation which is used to induce loss of weakly bound modifications. This is followed by the comparison of product ions from in-source fragmentation and collision-induced dissociation (CID). Diagonal MS2 -MS3 matching allows the detection of unknown metabolite modifications, as well as substructure similarities. As the method relies heavily on the advantages of in-source fragmentation and its ability to 'magically' elucidate unknown modification, we have named it inSourcerer as a portmanteau of in-source and sorcerer. RESULTS: The method was evaluated using a set of 15 different cytokinin standards. Product ions from in-source fragmentation and CID were compared. Hierarchical clustering revealed that good matches are due to the presence of common substructures. Plant leaf extract, spiked with a mix of all 15 standards, was used to demonstrate the method's ability to detect these standards in a complex mixture, as well as confidently identify compounds already present in the plant material. CONCLUSIONS: Here we present a method that incorporates a classic liquid chromatography/mass spectrometry (LC/MS) workflow with fragmentation models and computational algorithms. The assumptions upon which the concept of the method was built were shown to be valid and the method showed that in-source fragmentation can be used to pinpoint structural similarities and indicate the occurrence of a modification.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Espectrometria de Massas/métodos , Modelos Químicos , Biologia Computacional , Citocininas/análise , Citocininas/química , Ensaios de Triagem em Larga Escala/normas , Espectrometria de Massas/normas , Metaboloma , Extratos Vegetais/química , Folhas de Planta/química
15.
Anal Chem ; 88(7): 4055-62, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26977773

RESUMO

Cytokinins play a critical role in controlling plant growth and development, but it is difficult to be determined in plant samples due to the extremely low concentration level of picomole/gram. So it is important for efficient sample preparation with selective enrichment and rapid separation for accurate analysis of cytokinins. Herein, a supramolecular perhydroxy-cucurbit[8]uril (PCB[8]) was fabricated into the Fe3O4 magnetic particles via chemical bonding assembly and magnetic perhydroxy-cucurbit[8]uril (MPC) materials were obtained. The MPC had good enrichment capability to cytokinins and the enrichment factors were more than 208. The interaction of MPC and cytokinins was investigated by adsorption test and density functional theory (DFT) calculation, the results showed that the main drive forces were the host-guest interaction and hydrogen-bonding interaction between the perhydroxy-cucurbit[8]uril with analytes. Combined with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), the MPC was used as a sorbent of magnetic solid-phase extraction for the analysis of cytokinins in plant samples. A sensitive and selective UPLC-MS/MS method was developed with low detection limits of 0.14-0.32 ng/L for cytokinins analysis. Five cytokinins including zeatin riboside, meta-topolin, kinetin, kinetin riboside, and zip with 6.12-87.3 ng/kg were determined in the soybean sprout and Arabidopsis thaliana. The recoveries were in the range of 76.2-110% with relative standard deviations (n = 5) of 2.3-9.7%. On the basis of these results, magnetic perhydroxy-cucurbit[8]uril materials with selective enrichment capability have good potential on the analysis of ultratrace targets from complicated sample matrixes.


Assuntos
Arabidopsis/química , Hidrocarbonetos Aromáticos com Pontes/química , Citocininas/análise , Glycine max/química , Imidazóis/química , Microesferas , Nanopartículas/química , Peróxidos/química , Magnetismo , Teoria Quântica
16.
Plant Cell Rep ; 35(1): 227-38, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26521209

RESUMO

KEY MESSAGE: The current evidence of regulatory effect of smoke-water (SW) and karrikinolide (KAR(1)) on the concentrations of endogenous cytokinins in plants partly explain the basis for their growth stimulatory activity. Karrikinolide (KAR1) which is derived from smoke-water (SW) is involved in some physiological aspects in the life-cycle of plants. This suggests a potential influence on the endogenous pool (quantity and quality) of phytohormones such as cytokinins (CKs). In the current study, the effect of SW (1:500; 1:1000; 1:1500 v/v dilutions) and KAR1 (10(-7); 10(-8); 10(-9) M) applied during micropropagation of Eucomis autumnalis subspecies autumnalis on the ex vitro growth and CKs after 4 months post-flask duration was evaluated. The interactions of SW and KAR(1) with benzyladenine (BA), α-naphthaleneacetic acid (NAA) or BA+NAA were also assessed. Plants treated with SW (1:500) and KAR1 (10(-8) M) demonstrated superior growth in terms of the rooting, leaf and bulb sizes and fresh biomass than the control and plants treated with BA and BA+NAA. However, plant growth was generally inhibited with either SW (1:500) or KAR1 (10(-8) M) and BA when compared to BA (alone) treatment. Relative to NAA treatment, the presence of KAR(1) (10(-7) M) with NAA significantly increased the leaf area and fresh biomass. Both SW and KAR1-treated plants accumulated more total CKs, mainly isoprenoid-type than the control and NAA-treated plants. The highest CK content was also accumulated in SW (1:500) with BA+NAA treatments. Similar stimulatory effects were observed with increasing concentrations of KAR(1) and BA. The current findings establish that SW and KAR1 exert significant influence on the endogenous CK pools. However, the better growth of plants treated with SW and KAR1 treatments was not exclusively related to the endogenous CKs.


Assuntos
Aclimatação , Asparagaceae/efeitos dos fármacos , Citocininas/análise , Furanos/farmacologia , Reguladores de Crescimento de Plantas/análise , Piranos/farmacologia , Asparagaceae/crescimento & desenvolvimento , Asparagaceae/fisiologia , Biomassa , Citocininas/metabolismo , Ácidos Naftalenoacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Plantas Medicinais , Poaceae , Fumaça , Água/química
17.
Anal Bioanal Chem ; 407(20): 6071-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26025552

RESUMO

High-internal-phase-emulsion polymers (polyHIPEs) show great promise as solid-phase-extraction (SPE) materials because of the tremendous porosity and highly interconnected framework afforded by the high-internal-phase-emulsion (HIPE) technique. In this work, polyHIPE monolithic columns as novel SPE materials were prepared and applied to trace enrichment of cytokinins (CKs) from complex plant samples. The polyHIPE monoliths were synthesized via the in-situ polymerization of the continuous phase of a HIPE containing styrene (STY) and divinylbenzene (DVB) in a stainless column, and revealed highly efficient and selective enrichment ability for aromatic compounds. Under the optimized experimental conditions, a method using a monolithic polyHIPE column combined with liquid chromatography-electrospray tandem mass spectrometry (LC-MS-MS) was developed for the simultaneous extraction and sensitive determination of trans-zeatin (tZ), meta-topolin (mT), kinetin (K), and kinetin riboside (KR). The proposed method had good linearity, with correlation coefficients (R (2)) from 0.9957 to 0.9984, and low detection limits (LODs, S/N = 3) in the range 2.4-47 pg mL(-1) for the four CKs. The method was successfully applied to the determination of CKs in real plant samples, and obtained good recoveries ranging from 68.8 % to 103.0 % and relative standard deviations (RSDs) lower than 16 %.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Citocininas/análise , Fabaceae/química , Nicotiana/química , Extração em Fase Sólida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Citocininas/isolamento & purificação , Emulsões/química , Limite de Detecção , Folhas de Planta/química , Polímeros/química , Estirenos/química , Espectrometria de Massas em Tandem/métodos , Compostos de Vinila/química
18.
Mycologia ; 107(2): 245-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25572099

RESUMO

The phytohormones, abscisic acid and cytokinin, once were thought to be present uniquely in plants, but increasing evidence suggests that these hormones are present in a wide variety of organisms. Few studies have examined fungi for the presence of these "plant" hormones or addressed whether their levels differ based on the nutrition mode of the fungus. This study examined 20 temperate forest fungi of differing nutritional modes (ectomycorrhizal, wood-rotting, saprotrophic). Abscisic acid and cytokinin were present in all fungi sampled; this indicated that the sampled fungi have the capacity to synthesize these two classes of phytohormones. Of the 27 cytokinins analyzed by HPLC-ESI MS/MS, seven were present in all fungi sampled. This suggested the existence of a common cytokinin metabolic pathway in fungi that does not vary among different nutritional modes. Predictions regarding the source of isopentenyl, cis-zeatin and methylthiol CK production stemming from the tRNA degradation pathway among fungi are discussed.


Assuntos
Ácido Abscísico/biossíntese , Citocininas/biossíntese , Fungos/metabolismo , Reguladores de Crescimento de Plantas/biossíntese , Árvores/microbiologia , Ácido Abscísico/análise , Cromatografia Líquida de Alta Pressão , Citocininas/análise , Florestas , Fungos/química , Fungos/classificação , Fungos/isolamento & purificação , Reguladores de Crescimento de Plantas/análise , Espectrometria de Massas em Tandem
19.
Plant Cell Physiol ; 55(2): 269-80, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24401956

RESUMO

Biomass allocation between shoots and roots is an important strategy used by plants to optimize growth in various environments. Root to shoot mass ratios typically increase in response to high CO2, a trend particularly evident under abiotic stress. We investigated this preferential root growth (PRG) in Arabidopsis thaliana plants cultivated under low pH/high CO2 or low nitrogen (N)/high CO2 conditions. Previous studies have suggested that changes in plant hormone, carbon (C) and N status may be related to PRG. We therefore examined the mechanisms underlying PRG by genetically modifying cytokinin (CK) levels, C and N status, and sugar signaling, performing sugar application experiments and determining primary metabolites, plant hormones and expression of related genes. Both low pH/high CO2 and low N/high CO2 stresses induced increases in lateral root (LR) number and led to high C/N ratios; however, under low pH/high CO2 conditions, large quantities of C were accumulated, whereas under low N/high CO2 conditions, N was severely depleted. Analyses of a CK-deficient mutant and a starchless mutant, in conjunction with sugar application experiments, revealed that these stresses induce PRG via different mechanisms. Metabolite and hormone profile analysis indicated that under low pH/high CO2 conditions, excess C accumulation may enhance LR number through the dual actions of increased auxin and decreased CKs.


Assuntos
Arabidopsis/fisiologia , Dióxido de Carbono/farmacologia , Nitrogênio/deficiência , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Biomassa , Carboidratos/análise , Dióxido de Carbono/metabolismo , Citocininas/análise , Citocininas/metabolismo , Concentração de Íons de Hidrogênio , Ácidos Indolacéticos/análise , Ácidos Indolacéticos/metabolismo , Nitrogênio/metabolismo , Reguladores de Crescimento de Plantas/análise , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Transdução de Sinais , Solo , Estresse Fisiológico
20.
Tsitologiia ; 56(11): 816-21, 2014.
Artigo em Russo | MEDLINE | ID: mdl-25707208

RESUMO

Identification of cytokinins in differentiated leaf cells has received little attention. We have carried out immunohistochemical localization of cytokinins in leaves of transgenic tobacco plants in which the level of increased due to induced in their roots the expression of ipt-gene controlling cytokinin synthesis. Immuno-labeling of cytokinins with the help of antibodies raised against zeatin riboside was characteristic of mesophyll cells. The label was localized in cytoplasm adjacent to cell walls and was absent in vacuoles. Immunohistochemical staining also revealed the presence of cytokinins in guard cells. Induction of cytokinin synthesis enhanced the immunohistochemical staining of both mesophyll cells and guard cells, which was accompanied by elevated stomatal conductance. The possibility of a direct effect of cytokinins on stomatal conductance and their indirect influence through photosynthesis in the mesophyll cells is discussed.


Assuntos
Alquil e Aril Transferases/genética , Citocininas/biossíntese , Células do Mesofilo/metabolismo , Nicotiana/metabolismo , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Alquil e Aril Transferases/metabolismo , Anticorpos/química , Parede Celular/química , Parede Celular/metabolismo , Citocininas/análise , Condutividade Elétrica , Regulação da Expressão Gênica de Plantas , Imuno-Histoquímica , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/análise , Isopenteniladenosina/química , Células do Mesofilo/química , Fotossíntese/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estômatos de Plantas/química , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA