Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41.979
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(10): 2750-2766.e17, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33861951

RESUMO

Cognitive flexibility, the ability to alter strategy according to changing stimulus-response-reward relationships, is critical for updating learned behavior. Attentional set-shifting, a test of cognitive flexibility, depends on the activity of prefrontal cortex (PFC). It remains unclear, however, what role PFC neurons play to support set-shifting. Using optogenetics and two-photon calcium imaging, we demonstrate that medial PFC activity does not bias sensorimotor responses during set-shifting, but rather enables set-shifting by encoding trial feedback information, a role it has been known to play in other contexts. Unexpectedly, the functional properties of PFC cells did not vary with their efferent projection targets. Instead, representations of trial feedback formed a topological gradient, with cells more strongly selective for feedback information located further from the pial surface, where afferent input from the anterior cingulate cortex was denser. These findings identify a critical role for deep PFC projection neurons in enabling set-shifting through behavioral feedback monitoring.


Assuntos
Cognição/fisiologia , Neurorretroalimentação , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Cell ; 184(2): 489-506.e26, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33338423

RESUMO

Single-cell transcriptomics has been widely applied to classify neurons in the mammalian brain, while systems neuroscience has historically analyzed the encoding properties of cortical neurons without considering cell types. Here we examine how specific transcriptomic types of mouse prefrontal cortex (PFC) projection neurons relate to axonal projections and encoding properties across multiple cognitive tasks. We found that most types projected to multiple targets, and most targets received projections from multiple types, except PFC→PAG (periaqueductal gray). By comparing Ca2+ activity of the molecularly homogeneous PFC→PAG type against two heterogeneous classes in several two-alternative choice tasks in freely moving mice, we found that all task-related signals assayed were qualitatively present in all examined classes. However, PAG-projecting neurons most potently encoded choice in cued tasks, whereas contralateral PFC-projecting neurons most potently encoded reward context in an uncued task. Thus, task signals are organized redundantly, but with clear quantitative biases across cells of specific molecular-anatomical characteristics.


Assuntos
Cognição/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Análise e Desempenho de Tarefas , Animais , Cálcio/metabolismo , Comportamento de Escolha , Sinais (Psicologia) , Imageamento Tridimensional , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Odorantes , Optogenética , Substância Cinzenta Periaquedutal/fisiologia , Recompensa , Análise de Célula Única , Transcriptoma/genética
3.
Cell ; 184(1): 243-256.e18, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417861

RESUMO

Craniosynostosis results from premature fusion of the cranial suture(s), which contain mesenchymal stem cells (MSCs) that are crucial for calvarial expansion in coordination with brain growth. Infants with craniosynostosis have skull dysmorphology, increased intracranial pressure, and complications such as neurocognitive impairment that compromise quality of life. Animal models recapitulating these phenotypes are lacking, hampering development of urgently needed innovative therapies. Here, we show that Twist1+/- mice with craniosynostosis have increased intracranial pressure and neurocognitive behavioral abnormalities, recapitulating features of human Saethre-Chotzen syndrome. Using a biodegradable material combined with MSCs, we successfully regenerated a functional cranial suture that corrects skull deformity, normalizes intracranial pressure, and rescues neurocognitive behavior deficits. The regenerated suture creates a niche into which endogenous MSCs migrated, sustaining calvarial bone homeostasis and repair. MSC-based cranial suture regeneration offers a paradigm shift in treatment to reverse skull and neurocognitive abnormalities in this devastating disease.


Assuntos
Cognição/fisiologia , Suturas Cranianas/fisiopatologia , Craniossinostoses/fisiopatologia , Regeneração/fisiologia , Crânio/fisiopatologia , Animais , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Craniossinostoses/genética , Dura-Máter/patologia , Dura-Máter/fisiopatologia , Gelatina/farmacologia , Perfilação da Expressão Gênica , Força da Mão , Pressão Intracraniana/efeitos dos fármacos , Pressão Intracraniana/fisiologia , Locomoção/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Metacrilatos/farmacologia , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Crânio/patologia , Proteína 1 Relacionada a Twist/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
4.
Cell ; 180(3): 552-567.e25, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004462

RESUMO

Cognitive faculties such as imagination, planning, and decision-making entail the ability to represent hypothetical experience. Crucially, animal behavior in natural settings implies that the brain can represent hypothetical future experience not only quickly but also constantly over time, as external events continually unfold. To determine how this is possible, we recorded neural activity in the hippocampus of rats navigating a maze with multiple spatial paths. We found neural activity encoding two possible future scenarios (two upcoming maze paths) in constant alternation at 8 Hz: one scenario per ∼125-ms cycle. Further, we found that the underlying dynamics of cycling (both inter- and intra-cycle dynamics) generalized across qualitatively different representational correlates (location and direction). Notably, cycling occurred across moving behaviors, including during running. These findings identify a general dynamic process capable of quickly and continually representing hypothetical experience, including that of multiple possible futures.


Assuntos
Comportamento Animal/fisiologia , Cognição/fisiologia , Tomada de Decisões/fisiologia , Hipocampo/fisiologia , Potenciais de Ação/fisiologia , Animais , Locomoção/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Ratos , Ratos Long-Evans , Ritmo Teta/fisiologia
5.
Cell ; 180(3): 536-551.e17, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31955849

RESUMO

Goal-directed behavior requires the interaction of multiple brain regions. How these regions and their interactions with brain-wide activity drive action selection is less understood. We have investigated this question by combining whole-brain volumetric calcium imaging using light-field microscopy and an operant-conditioning task in larval zebrafish. We find global, recurring dynamics of brain states to exhibit pre-motor bifurcations toward mutually exclusive decision outcomes. These dynamics arise from a distributed network displaying trial-by-trial functional connectivity changes, especially between cerebellum and habenula, which correlate with decision outcome. Within this network the cerebellum shows particularly strong and predictive pre-motor activity (>10 s before movement initiation), mainly within the granule cells. Turn directions are determined by the difference neuroactivity between the ipsilateral and contralateral hemispheres, while the rate of bi-hemispheric population ramping quantitatively predicts decision time on the trial-by-trial level. Our results highlight a cognitive role of the cerebellum and its importance in motor planning.


Assuntos
Cerebelo/fisiologia , Tomada de Decisões/fisiologia , Tempo de Reação/fisiologia , Peixe-Zebra/fisiologia , Animais , Comportamento Animal/fisiologia , Mapeamento Encefálico/métodos , Cérebro/fisiologia , Cognição/fisiologia , Condicionamento Operante/fisiologia , Objetivos , Habenula/fisiologia , Temperatura Alta , Larva/fisiologia , Atividade Motora/fisiologia , Movimento , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia , Rombencéfalo/fisiologia
6.
Cell ; 176(3): 597-609.e18, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30661754

RESUMO

Many evolutionary years separate humans and macaques, and although the amygdala and cingulate cortex evolved to enable emotion and cognition in both, an evident functional gap exists. Although they were traditionally attributed to differential neuroanatomy, functional differences might also arise from coding mechanisms. Here we find that human neurons better utilize information capacity (efficient coding) than macaque neurons in both regions, and that cingulate neurons are more efficient than amygdala neurons in both species. In contrast, we find more overlap in the neural vocabulary and more synchronized activity (robustness coding) in monkeys in both regions and in the amygdala of both species. Our findings demonstrate a tradeoff between robustness and efficiency across species and regions. We suggest that this tradeoff can contribute to differential cognitive functions between species and underlie the complementary roles of the amygdala and the cingulate cortex. In turn, it can contribute to fragility underlying human psychopathologies.


Assuntos
Tonsila do Cerebelo/fisiologia , Giro do Cíngulo/fisiologia , Neurônios/fisiologia , Adulto , Animais , Evolução Biológica , Criança , Pré-Escolar , Cognição/fisiologia , Emoções/fisiologia , Feminino , Humanos , Macaca , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/metabolismo , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Especificidade da Espécie
7.
Cell ; 177(2): 256-271.e22, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30879788

RESUMO

We previously reported that inducing gamma oscillations with a non-invasive light flicker (gamma entrainment using sensory stimulus or GENUS) impacted pathology in the visual cortex of Alzheimer's disease mouse models. Here, we designed auditory tone stimulation that drove gamma frequency neural activity in auditory cortex (AC) and hippocampal CA1. Seven days of auditory GENUS improved spatial and recognition memory and reduced amyloid in AC and hippocampus of 5XFAD mice. Changes in activation responses were evident in microglia, astrocytes, and vasculature. Auditory GENUS also reduced phosphorylated tau in the P301S tauopathy model. Furthermore, combined auditory and visual GENUS, but not either alone, produced microglial-clustering responses, and decreased amyloid in medial prefrontal cortex. Whole brain analysis using SHIELD revealed widespread reduction of amyloid plaques throughout neocortex after multi-sensory GENUS. Thus, GENUS can be achieved through multiple sensory modalities with wide-ranging effects across multiple brain areas to improve cognitive function.


Assuntos
Estimulação Acústica/métodos , Doença de Alzheimer/terapia , Cognição/fisiologia , Doença de Alzheimer/patologia , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Percepção Auditiva/fisiologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Ritmo Gama/fisiologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Placa Amiloide/metabolismo
8.
Annu Rev Neurosci ; 46: 381-401, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428602

RESUMO

Primates have evolved diverse cognitive capabilities to navigate their complex social world. To understand how the brain implements critical social cognitive abilities, we describe functional specialization in the domains of face processing, social interaction understanding, and mental state attribution. Systems for face processing are specialized from the level of single cells to populations of neurons within brain regions to hierarchically organized networks that extract and represent abstract social information. Such functional specialization is not confined to the sensorimotor periphery but appears to be a pervasive theme of primate brain organization all the way to the apex regions of cortical hierarchies. Circuits processing social information are juxtaposed with parallel systems involved in processing nonsocial information, suggesting common computations applied to different domains. The emerging picture of the neural basis of social cognition is a set of distinct but interacting subnetworks involved in component processes such as face perception and social reasoning, traversing large parts of the primate brain.


Assuntos
Encéfalo , Cognição Social , Animais , Encéfalo/fisiologia , Primatas/fisiologia , Percepção Social , Cognição/fisiologia
9.
Annu Rev Neurosci ; 45: 533-560, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803587

RESUMO

The neocortex is a complex neurobiological system with many interacting regions. How these regions work together to subserve flexible behavior and cognition has become increasingly amenable to rigorous research. Here, I review recent experimental and theoretical work on the modus operandi of a multiregional cortex. These studies revealed several general principles for the neocortical interareal connectivity, low-dimensional macroscopic gradients of biological properties across cortical areas, and a hierarchy of timescales for information processing. Theoretical work suggests testable predictions regarding differential excitation and inhibition along feedforward and feedback pathways in the cortical hierarchy. Furthermore, modeling of distributed working memory and simple decision-making has given rise to a novel mathematical concept, dubbed bifurcation in space, that potentially explains how different cortical areas, with a canonical circuit organization but gradients of biological heterogeneities, are able to subserve their respective (e.g., sensory coding versus executive control) functions in a modularly organized brain.


Assuntos
Neocórtex , Cognição/fisiologia , Função Executiva , Memória de Curto Prazo/fisiologia , Neocórtex/fisiologia , Rede Nervosa/fisiologia
10.
Nature ; 630(8017): 575-586, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898296

RESUMO

Language is a defining characteristic of our species, but the function, or functions, that it serves has been debated for centuries. Here we bring recent evidence from neuroscience and allied disciplines to argue that in modern humans, language is a tool for communication, contrary to a prominent view that we use language for thinking. We begin by introducing the brain network that supports linguistic ability in humans. We then review evidence for a double dissociation between language and thought, and discuss several properties of language that suggest that it is optimized for communication. We conclude that although the emergence of language has unquestionably transformed human culture, language does not appear to be a prerequisite for complex thought, including symbolic thought. Instead, language is a powerful tool for the transmission of cultural knowledge; it plausibly co-evolved with our thinking and reasoning capacities, and only reflects, rather than gives rise to, the signature sophistication of human cognition.


Assuntos
Encéfalo , Cognição , Comunicação , Idioma , Pensamento , Animais , Humanos , Encéfalo/fisiologia , Cognição/fisiologia , Cultura , Pensamento/fisiologia , Linguística
11.
Nature ; 628(8008): 590-595, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480889

RESUMO

Distinct brain and behavioural states are associated with organized neural population dynamics that are thought to serve specific cognitive functions1-3. Memory replay events, for example, occur during synchronous population events called sharp-wave ripples in the hippocampus while mice are in an 'offline' behavioural state, enabling cognitive mechanisms such as memory consolidation and planning4-11. But how does the brain re-engage with the external world during this behavioural state and permit access to current sensory information or promote new memory formation? Here we found that the hippocampal dentate spike, an understudied population event that frequently occurs between sharp-wave ripples12, may underlie such a mechanism. We show that dentate spikes are associated with distinctly elevated brain-wide firing rates, primarily observed in higher order networks, and couple to brief periods of arousal. Hippocampal place coding during dentate spikes aligns to the mouse's current spatial location, unlike the memory replay accompanying sharp-wave ripples. Furthermore, inhibiting neural activity during dentate spikes disrupts associative memory formation. Thus, dentate spikes represent a distinct brain state and support memory during non-locomotor behaviour, extending the repertoire of cognitive processes beyond the classical offline functions.


Assuntos
Ondas Encefálicas , Cognição , Hipocampo , Animais , Camundongos , Hipocampo/fisiologia , Consolidação da Memória/fisiologia , Nível de Alerta/fisiologia , Potenciais de Ação , Inibição Neural , Cognição/fisiologia , Ondas Encefálicas/fisiologia , Masculino , Feminino
12.
Nature ; 630(8017): 704-711, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867051

RESUMO

A cognitive map is a suitably structured representation that enables novel computations using previous experience; for example, planning a new route in a familiar space1. Work in mammals has found direct evidence for such representations in the presence of exogenous sensory inputs in both spatial2,3 and non-spatial domains4-10. Here we tested a foundational postulate of the original cognitive map theory1,11: that cognitive maps support endogenous computations without external input. We recorded from the entorhinal cortex of monkeys in a mental navigation task that required the monkeys to use a joystick to produce one-dimensional vectors between pairs of visual landmarks without seeing the intermediate landmarks. The ability of the monkeys to perform the task and generalize to new pairs indicated that they relied on a structured representation of the landmarks. Task-modulated neurons exhibited periodicity and ramping that matched the temporal structure of the landmarks and showed signatures of continuous attractor networks12,13. A continuous attractor network model of path integration14 augmented with a Hebbian-like learning mechanism provided an explanation of how the system could endogenously recall landmarks. The model also made an unexpected prediction that endogenous landmarks transiently slow path integration, reset the dynamics and thereby reduce variability. This prediction was borne out in a reanalysis of firing rate variability and behaviour. Our findings link the structured patterns of activity in the entorhinal cortex to the endogenous recruitment of a cognitive map during mental navigation.


Assuntos
Cognição , Córtex Entorrinal , Macaca mulatta , Modelos Neurológicos , Navegação Espacial , Animais , Masculino , Cognição/fisiologia , Córtex Entorrinal/fisiologia , Córtex Entorrinal/citologia , Macaca mulatta/fisiologia , Neurônios/fisiologia , Navegação Espacial/fisiologia , Aprendizagem/fisiologia
13.
Nature ; 629(8011): 393-401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632400

RESUMO

Retaining information in working memory is a demanding process that relies on cognitive control to protect memoranda-specific persistent activity from interference1,2. However, how cognitive control regulates working memory storage is unclear. Here we show that interactions of frontal control and hippocampal persistent activity are coordinated by theta-gamma phase-amplitude coupling (TG-PAC). We recorded single neurons in the human medial temporal and frontal lobe while patients maintained multiple items in their working memory. In the hippocampus, TG-PAC was indicative of working memory load and quality. We identified cells that selectively spiked during nonlinear interactions of theta phase and gamma amplitude. The spike timing of these PAC neurons was coordinated with frontal theta activity when cognitive control demand was high. By introducing noise correlations with persistently active neurons in the hippocampus, PAC neurons shaped the geometry of the population code. This led to higher-fidelity representations of working memory content that were associated with improved behaviour. Our results support a multicomponent architecture of working memory1,2, with frontal control managing maintenance of working memory content in storage-related areas3-5. Within this framework, hippocampal TG-PAC integrates cognitive control and working memory storage across brain areas, thereby suggesting a potential mechanism for top-down control over sensory-driven processes.


Assuntos
Hipocampo , Memória de Curto Prazo , Neurônios , Adulto , Feminino , Humanos , Masculino , Potenciais de Ação , Cognição/fisiologia , Lobo Frontal/fisiologia , Lobo Frontal/citologia , Ritmo Gama/fisiologia , Hipocampo/fisiologia , Hipocampo/citologia , Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Lobo Temporal/fisiologia , Lobo Temporal/citologia , Ritmo Teta/fisiologia , Pessoa de Meia-Idade
14.
Nature ; 617(7959): 125-131, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37046088

RESUMO

The hippocampus is a mammalian brain structure that expresses spatial representations1 and is crucial for navigation2,3. Navigation, in turn, intricately depends on locomotion; however, current accounts suggest a dissociation between hippocampal spatial representations and the details of locomotor processes. Specifically, the hippocampus is thought to represent mainly higher-order cognitive and locomotor variables such as position, speed and direction of movement4-7, whereas the limb movements that propel the animal can be computed and represented primarily in subcortical circuits, including the spinal cord, brainstem and cerebellum8-11. Whether hippocampal representations are actually decoupled from the detailed structure of locomotor processes remains unknown. To address this question, here we simultaneously monitored hippocampal spatial representations and ongoing limb movements underlying locomotion at fast timescales. We found that the forelimb stepping cycle in freely behaving rats is rhythmic and peaks at around 8 Hz during movement, matching the approximately 8 Hz modulation of hippocampal activity and spatial representations during locomotion12. We also discovered precisely timed coordination between the time at which the forelimbs touch the ground ('plant' times of the stepping cycle) and the hippocampal representation of space. Notably, plant times coincide with hippocampal representations that are closest to the actual position of the nose of the rat, whereas between these plant times, the hippocampal representation progresses towards possible future locations. This synchronization was specifically detectable when rats approached spatial decisions. Together, our results reveal a profound and dynamic coordination on a timescale of tens of milliseconds between central cognitive representations and peripheral motor processes. This coordination engages and disengages rapidly in association with cognitive demands and is well suited to support rapid information exchange between cognitive and sensory-motor circuits.


Assuntos
Hipocampo , Locomoção , Navegação Espacial , Animais , Ratos , Membro Anterior/fisiologia , Hipocampo/fisiologia , Locomoção/fisiologia , Navegação Espacial/fisiologia , Tomada de Decisões , Fatores de Tempo , Cognição/fisiologia , Vias Eferentes
15.
Nature ; 622(7981): 112-119, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704727

RESUMO

The molecular mechanisms and evolutionary changes accompanying synapse development are still poorly understood1,2. Here we generate a cross-species proteomic map of synapse development in the human, macaque and mouse neocortex. By tracking the changes of more than 1,000 postsynaptic density (PSD) proteins from midgestation to young adulthood, we find that PSD maturation in humans separates into three major phases that are dominated by distinct pathways. Cross-species comparisons reveal that human PSDs mature about two to three times slower than those of other species and contain higher levels of Rho guanine nucleotide exchange factors (RhoGEFs) in the perinatal period. Enhancement of RhoGEF signalling in human neurons delays morphological maturation of dendritic spines and functional maturation of synapses, potentially contributing to the neotenic traits of human brain development. In addition, PSD proteins can be divided into four modules that exert stage- and cell-type-specific functions, possibly explaining their differential associations with cognitive functions and diseases. Our proteomic map of synapse development provides a blueprint for studying the molecular basis and evolutionary changes of synapse maturation.


Assuntos
Proteômica , Sinapses , Adolescente , Animais , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Camundongos , Adulto Jovem , Cognição/fisiologia , Espinhas Dendríticas , Idade Gestacional , Macaca , Neurônios/metabolismo , Densidade Pós-Sináptica/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Especificidade da Espécie , Sinapses/metabolismo , Sinapses/fisiologia
16.
Nature ; 620(7976): 1071-1079, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587343

RESUMO

Identifying therapeutics to delay, and potentially reverse, age-related cognitive decline is critical in light of the increased incidence of dementia-related disorders forecasted in the growing older population1. Here we show that platelet factors transfer the benefits of young blood to the ageing brain. Systemic exposure of aged male mice to a fraction of blood plasma from young mice containing platelets decreased neuroinflammation in the hippocampus at the transcriptional and cellular level and ameliorated hippocampal-dependent cognitive impairments. Circulating levels of the platelet-derived chemokine platelet factor 4 (PF4) (also known as CXCL4) were elevated in blood plasma preparations of young mice and humans relative to older individuals. Systemic administration of exogenous PF4 attenuated age-related hippocampal neuroinflammation, elicited synaptic-plasticity-related molecular changes and improved cognition in aged mice. We implicate decreased levels of circulating pro-ageing immune factors and restoration of the ageing peripheral immune system in the beneficial effects of systemic PF4 on the aged brain. Mechanistically, we identified CXCR3 as a chemokine receptor that, in part, mediates the cellular, molecular and cognitive benefits of systemic PF4 on the aged brain. Together, our data identify platelet-derived factors as potential therapeutic targets to abate inflammation and rescue cognition in old age.


Assuntos
Envelhecimento , Cognição , Disfunção Cognitiva , Doenças Neuroinflamatórias , Nootrópicos , Fator Plaquetário 4 , Animais , Masculino , Camundongos , Envelhecimento/sangue , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Doenças Neuroinflamatórias/sangue , Doenças Neuroinflamatórias/complicações , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/prevenção & controle , Fator Plaquetário 4/sangue , Fator Plaquetário 4/metabolismo , Fator Plaquetário 4/farmacologia , Fator Plaquetário 4/uso terapêutico , Nootrópicos/sangue , Nootrópicos/metabolismo , Nootrópicos/farmacologia , Nootrópicos/uso terapêutico , Plasma/química , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Disfunção Cognitiva/sangue , Disfunção Cognitiva/complicações , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Transcrição Gênica/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos
17.
Nat Rev Neurosci ; 24(2): 98-112, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36347942

RESUMO

Humans are able to rapidly perform novel tasks, but show pervasive performance costs when attempting to do two things at once. Traditionally, empirical and theoretical investigations into the sources of such multitasking interference have largely focused on multitasking in isolation to other cognitive functions, characterizing the conditions that give rise to performance decrements. Here we instead ask whether multitasking costs are linked to the system's capacity for knowledge generalization, as is required to perform novel tasks. We show how interrogation of the neurophysiological circuitry underlying these two facets of cognition yields further insights for both. Specifically, we demonstrate how a system that rapidly generalizes knowledge may induce multitasking costs owing to sharing of task contingencies between contexts in neural representations encoded in frontoparietal and striatal brain regions. We discuss neurophysiological insights suggesting that prolonged learning segregates such representations by refining the brain's model of task-relevant contingencies, thereby reducing information sharing between contexts and improving multitasking performance while reducing flexibility and generalization. These proposed neural mechanisms explain why the brain shows rapid task understanding, multitasking limitations and practice effects. In short, multitasking limits are the price we pay for behavioural flexibility.


Assuntos
Cognição , Desempenho Psicomotor , Humanos , Desempenho Psicomotor/fisiologia , Cognição/fisiologia , Encéfalo/fisiologia , Aprendizagem
18.
Nat Rev Neurosci ; 24(3): 173-189, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36456807

RESUMO

The posterior cingulate cortex (PCC) is one of the least understood regions of the cerebral cortex. By contrast, the anterior cingulate cortex has been the subject of intensive investigation in humans and model animal systems, leading to detailed behavioural and computational theoretical accounts of its function. The time is right for similar progress to be made in the PCC given its unique anatomical and physiological properties and demonstrably important contributions to higher cognitive functions and brain diseases. Here, we describe recent progress in understanding the PCC, with a focus on convergent findings across species and techniques that lay a foundation for establishing a formal theoretical account of its functions. Based on this converging evidence, we propose that the broader PCC region contains three major subregions - the dorsal PCC, ventral PCC and retrosplenial cortex - that respectively support the integration of executive, mnemonic and spatial processing systems. This tripartite subregional view reconciles inconsistencies in prior unitary theories of PCC function and offers promising new avenues for progress.


Assuntos
Córtex Cerebral , Giro do Cíngulo , Animais , Humanos , Giro do Cíngulo/fisiologia , Córtex Cerebral/fisiologia , Cognição/fisiologia , Memória , Imageamento por Ressonância Magnética/métodos
19.
Nature ; 608(7922): 381-389, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35896749

RESUMO

Working memory-the brain's ability to internalize information and use it flexibly to guide behaviour-is an essential component of cognition. Although activity related to working memory has been observed in several brain regions1-3, how neural populations actually represent working memory4-7 and the mechanisms by which this activity is maintained8-12 remain unclear13-15. Here we describe the neural implementation of visual working memory in mice alternating between a delayed non-match-to-sample task and a simple discrimination task that does not require working memory but has identical stimulus, movement and reward statistics. Transient optogenetic inactivations revealed that distributed areas of the neocortex were required selectively for the maintenance of working memory. Population activity in visual area AM and premotor area M2 during the delay period was dominated by orderly low-dimensional dynamics16,17 that were, however, independent of working memory. Instead, working memory representations were embedded in high-dimensional population activity, present in both cortical areas, persisted throughout the inter-stimulus delay period, and predicted behavioural responses during the working memory task. To test whether the distributed nature of working memory was dependent on reciprocal interactions between cortical regions18-20, we silenced one cortical area (AM or M2) while recording the feedback it received from the other. Transient inactivation of either area led to the selective disruption of inter-areal communication of working memory. Therefore, reciprocally interconnected cortical areas maintain bound high-dimensional representations of working memory.


Assuntos
Córtex Cerebral , Retroalimentação Fisiológica , Memória de Curto Prazo , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Cognição/fisiologia , Lobo Frontal/citologia , Lobo Frontal/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos , Neocórtex/citologia , Neocórtex/fisiologia , Optogenética , Recompensa , Córtex Visual/citologia , Córtex Visual/fisiologia , Percepção Visual
20.
Annu Rev Neurosci ; 42: 407-432, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31283895

RESUMO

The brain's function is to enable adaptive behavior in the world. To this end, the brain processes information about the world. The concept of representation links the information processed by the brain back to the world and enables us to understand what the brain does at a functional level. The appeal of making the connection between brain activity and what it represents has been irresistible to neuroscience, despite the fact that representational interpretations pose several challenges: We must define which aspects of brain activity matter, how the code works, and how it supports computations that contribute to adaptive behavior. It has been suggested that we might drop representational language altogether and seek to understand the brain, more simply, as a dynamical system. In this review, we argue that the concept of representation provides a useful link between dynamics and computational function and ask which aspects of brain activity should be analyzed to achieve a representational understanding. We peel the onion of brain representations in search of the layers (the aspects of brain activity) that matter to computation. The article provides an introduction to the motivation and mathematics of representational models, a critical discussion of their assumptions and limitations, and a preview of future directions in this area.


Assuntos
Mapeamento Encefálico , Encéfalo/patologia , Cognição/fisiologia , Modelos Neurológicos , Humanos , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA