Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Plant J ; 119(3): 1353-1368, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38829920

RESUMO

Cucumber plants are highly susceptible to the hemibiotroph oomycete Phytophthora melonis. However, the mechanism of resistance to cucumber blight remains poorly understood. Here, we demonstrated that cucumber plants with impairment in the biosynthesis of brassinosteroids (BRs) or gibberellins (GAs) were more susceptible to P. melonis. By contrast, increasing levels of endogenous BRs or exogenously application of 24-epibrassinolide enhanced the resistance of cucumber plants against P. melonis. Furthermore, we found that both knockout and overexpression of the BR biosynthesis gene CYP85A1 reduced the endogenous GA3 content compared with that of wild-type plants under the condition of inoculation with P. melonis, and the enhancement of disease resistance conferred by BR was inhibited in plants with silencing of the GA biosynthetic gene GA20ox1 or KAO. Together, these findings suggest that GA homeostasis is an essential factor mediating BRs-induced disease resistance. Moreover, BZR6, a key regulator of BR signaling, was found to physically interact with GA20ox1, thereby suppressing its transcription. Silencing of BZR6 promoted endogenous GA biosynthesis and compromised GA-mediated resistance. These findings reveal multifaceted crosstalk between BR and GA in response to pathogen infection, which can provide a new approach for genetically controlling P. melonis damage in cucumber production.


Assuntos
Brassinosteroides , Cucumis sativus , Resistência à Doença , Giberelinas , Phytophthora , Doenças das Plantas , Phytophthora/fisiologia , Brassinosteroides/metabolismo , Cucumis sativus/microbiologia , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/parasitologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Giberelinas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais
2.
Plant Cell Environ ; 47(12): 5330-5342, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39189930

RESUMO

The availability of high-throughput sequencing technologies increased our understanding of different genomes. However, the genomes of all living organisms still have many unidentified coding sequences. The increased number of missing small open reading frames (sORFs) is due to the length threshold used in most gene identification tools, which is true in the genic and, more importantly and surprisingly, in the intergenic regions. Scanning the cucumber genome intergenic regions revealed 420 723 sORF. We excluded 3850 sORF with similarities to annotated cucumber proteins. To propose the functionality of the remaining 416 873 sORF, we calculated their codon adaptation index (CAI). We found 398 937 novel sORF (nsORF) with CAI ≥ 0.7 that were further used for downstream analysis. Searching against the Rfam database revealed 109 nsORFs similar to multiple RNA families. Using SignalP-5.0 and NLS, identified 11 592 signal peptides. Five predicted proteins interacting with Meloidogyne incognita and Powdery mildew proteins were selected using published transcriptome data of host-pathogen interactions. Gene ontology enrichment interpreted the function of those proteins, illustrating that nsORFs' expression could contribute to the cucumber's response to biotic and abiotic stresses. This research highlights the importance of previously overlooked nsORFs in the cucumber genome and provides novel insights into their potential functions.


Assuntos
Cucumis sativus , Genoma de Planta , Fases de Leitura Aberta , Estresse Fisiológico , Cucumis sativus/genética , Cucumis sativus/parasitologia , Cucumis sativus/fisiologia , Fases de Leitura Aberta/genética , Estresse Fisiológico/genética , Simulação por Computador , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , DNA Intergênico/genética , Tylenchoidea/fisiologia
3.
Int J Mol Sci ; 25(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39273159

RESUMO

Southern root-knot nematodes are among the most pernicious phytoparasites; they are responsible for substantial yield losses in agricultural crops worldwide. The limited availability of nematicides for the prevention and control of plant-parasitic nematodes necessitates the urgent development of novel nematicides. Natural products have always been a key source for the discovery of pesticides. Waltherione A, an alkaloid, exhibits potent nematocidal activity. In this study, we designed and synthesized a series of quinoline and quinolone derivatives from Waltherione A, leveraging a strategy of structural simplification. Bioassays have revealed that the quinoline derivatives exhibit better activity than quinolone derivatives in terms of both nematocidal and fungicidal activities. Notably, compound D1 demonstrated strong nematocidal activity, with a 72 h LC50 of 23.06 µg/mL, and it effectively controlled the infection of root-knot nematodes on cucumbers. The structure-activity relationship suggests that the quinoline moiety is essential for the nematocidal efficacy of Waltherione A. Additionally, compound D1 exhibited broad-spectrum fungicidal activity, with an EC50 of 2.98 µg/mL against Botrytis cinerea. At a concentration of 200 µg/mL, it significantly inhibited the occurrence of B. cinerea on tomato fruits, with an inhibitory effect of 96.65%, which is slightly better than the positive control (90.30%).


Assuntos
Antinematódeos , Antinematódeos/farmacologia , Antinematódeos/síntese química , Antinematódeos/química , Relação Estrutura-Atividade , Animais , Desenho de Fármacos , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Cucumis sativus/parasitologia , Cucumis sativus/microbiologia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Quinolinas/química , Quinolinas/farmacologia , Quinolinas/síntese química , Nematoides/efeitos dos fármacos , Tylenchoidea/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Quinolonas/farmacologia , Quinolonas/química , Quinolonas/síntese química , Estrutura Molecular
4.
Exp Appl Acarol ; 93(3): 627-644, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39177713

RESUMO

Two-spotted spider mite (Tetranychus urticae) is an important greenhouse pest. In cucumbers, heavy infestations lead to the complete loss of leaf assimilation surface, resulting in plant death. Symptoms caused by spider mite feeding alter the light reflection of leaves and could therefore be optically detected. Machine learning methods have already been employed to analyze spectral information in order to differentiate between healthy and spider mite-infested leaves of crops such as tomatoes or cotton. In this study, machine learning methods were applied to cucumbers. Hyperspectral data of leaves were recorded under controlled conditions. Effective wavelengths were identified using three feature selection methods. Subsequently, three supervised machine learning algorithms were used to classify healthy and spider mite-infested leaves. All combinations of feature selection and classification methods yielded accuracy of over 80%, even when using ten or five wavelengths. These results suggest that machine learning methods are a powerful tool for image-based detection of spider mites in cucumbers. In addition, due to the limited number of wavelengths, there is also substantial potential for practical application.


Assuntos
Cucumis sativus , Aprendizado de Máquina , Folhas de Planta , Tetranychidae , Animais , Tetranychidae/fisiologia , Tetranychidae/classificação , Cucumis sativus/parasitologia , Imageamento Hiperespectral/métodos
5.
Microb Ecol ; 81(2): 523-534, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32968841

RESUMO

Maintaining an adaptive seasonality is a basic ecological requisite for cold-blooded organism insects which usually harbor various symbionts. However, how coexisting symbionts coordinate in insects during seasonal progress is still unknown. The whitefly Bemisia tabaci in China harbors the obligate symbiont Portiera that infects each individual, as well as various facultative symbionts. In this study, we investigated whitefly populations in cucumber and cotton fields from May to December 2019, aiming to reveal the fluctuations of symbiont infection frequencies, symbiont coordination in multiple infected individuals, and host plants effects on symbiont infections. The results indicated that the facultative symbionts Hamiltonella (H), Rickettsia (R), and Cardinium (C) exist in field whiteflies, with single (H) and double (HC and HR) infections occurring frequently. Infection frequencies of Hamiltonella (always 100%) and Cardinium (29.50-34.38%) remained steady during seasonal progression. Rickettsia infection frequency in the cucumber whitefly population decreased from 64.47% in summer to 35.29% in winter. Significantly lower Rickettsia infection frequency (15.55%) was identified in cotton whitefly populations and was not subject to seasonal fluctuation. Nevertheless, Rickettsia had a significantly quantitative advantage in the symbiont community of whitefly individuals and populations from both cucumber and cotton field all through the seasons. Moreover, higher Portiera and Hamiltonella densities were found in HC and HR whitefly than in H whitefly, suggesting these symbionts may contribute to producing nutrients for their symbiont partners. These results provide ample cues to further explore the interactions between coexisting symbionts, the coevolutionary relationship between symbionts and host symbiont-induced effects on host plant use.


Assuntos
Hemípteros/microbiologia , Microbiota , Rickettsia/isolamento & purificação , Simbiose , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , China , Cucumis sativus/parasitologia , Gossypium/parasitologia , Interações Microbianas , Rickettsia/classificação , Rickettsia/genética , Estações do Ano
6.
Food Microbiol ; 95: 103704, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33397622

RESUMO

Fresh vegetables are essential components of a healthy and nutritious diet, but if consumed raw without proper washing and/or disinfection, can be important agents of transmission of enteric pathogens. This study aimed to determine the prevalence of zoonotic parasites on vegetables freshly harvested and "ready to eat" vegetables from greengrocers and markets in northwestern Iran. In addition, the effect of cropping system and season on contamination levels were assessed as well as the efficacy of washing procedures to remove parasites from the vegetables. A total of 2757 samples composed of field (n = 1, 600) and "ready to eat" (n = 1157) vegetables were analyzed. Vegetables included leek, parsley, basil, coriander, savory, mint, lettuce, cabbage, radish, dill, spinach, mushroom, carrot, tomato, cucumber and pumpkin. Normal physiological saline washings from 200 g samples were processed using standard parasitological techniques and examined microscopically. A total of 53.14% of vegetable samples obtained from different fields and 18.23% of "ready to eat" vegetables purchased from greengrocers and markets were contaminated with different parasitic organisms including; Entamoeba coli cysts, Giardia intestinalis cysts, Cryptosporidium parvum oocysts, Fasciola hepatica eggs, Dicrocoelium dendriticum eggs, Taenia spp. eggs, Hymenolepis nana eggs, Ancylostoma spp. eggs, Toxocara cati eggs, Toxocara canis eggs, Strongyloides stercoralis larvae, and Ascaris lumbricoides eggs. In both field and "ready to eat" vegetables, the highest parasitic contamination was observed in lettuce with a rate of 91.1% and 55.44%, respectively. The most common parasitic organism was Fasciola hepatica. A seasonal difference in contamination with parasitic organisms was found for field and "ready to eat" vegetables (P < 0.05). There was a significant difference in the recovery of parasitic organisms depending on the washing method with water and dishwashing liquid being the least effective. Proper washing of vegetables is imperative for a healthy diet as the results of this study showed the presence of zoonotic parasites from field and ready to eat vegetables in Iran.


Assuntos
Zoonoses Bacterianas/parasitologia , Contaminação de Alimentos/análise , Parasitos/isolamento & purificação , Verduras/parasitologia , Animais , Cucumis sativus/parasitologia , Manipulação de Alimentos , Humanos , Irã (Geográfico) , Lactuca/parasitologia , Solanum lycopersicum/parasitologia , Parasitos/classificação , Parasitos/genética , Parasitos/crescimento & desenvolvimento , Petroselinum/parasitologia
7.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206764

RESUMO

Plant-parasitic nematodes cause severe economic losses annually which has been a persistent problem worldwide. As current nematicides are highly toxic, prone to drug resistance, and have poor stability, there is an urgent need to develop safe, efficient, and green strategies. Natural active polysaccharides such as chitin and chitosan with good biocompatibility and biodegradability and inducing plant disease resistance have attracted much attention, but their application is limited due to their poor solubility. Here, we prepared 6-oxychitin with good water solubility by introducing carboxylic acid groups based on retaining the original skeleton of chitin and evaluated its potential for nematode control. The results showed that 6-oxychitin is a better promoter of the nematicidal potential of Purpureocillium lilacinum than other water-soluble chitin derivatives. After treatment, the movement of J2s and egg hatching were obviously inhibited. Further plant experiments found that it can destroy the accumulation and invasion of nematodes, and has a growth-promoting effect. Therefore, 6-oxychitin has great application potential in the nematode control area.


Assuntos
Antinematódeos/farmacologia , Quitina/análogos & derivados , Hypocreales/química , Tylenchoidea/efeitos dos fármacos , Animais , Antinematódeos/química , Cucumis sativus/parasitologia , Locomoção , Reprodução , Tylenchoidea/patogenicidade , Tylenchoidea/fisiologia
8.
Plant Mol Biol ; 103(4-5): 489-505, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32306368

RESUMO

KEY MESSAGE: Cucumber plants adapt their transcriptome and metabolome as result of spider mite infestation with opposite consequences for direct and indirect defences in two genotypes. Plants respond to arthropod attack with the rearrangement of their transcriptome which lead to subsequent phenotypic changes in the plants' metabolome. Here, we analysed transcriptomic and metabolite responses of two cucumber (Cucumis sativus) genotypes to chelicerate spider mites (Tetranychus urticae) during the first 3 days of infestation. Genes associated with the metabolism of jasmonates, phenylpropanoids, terpenoids and L-phenylalanine were most strongly upregulated. Also, genes involved in the biosynthesis of precursors for indirect defence-related terpenoids were upregulated while those involved in the biosynthesis of direct defence-related cucurbitacin C were downregulated. Consistent with the observed transcriptional changes, terpenoid emission increased and cucurbitacin C content decreased during early spider-mite herbivory. To further study the regulatory network that underlies induced defence to spider mites, differentially expressed genes that encode transcription factors (TFs) were analysed. Correlation analysis of the expression of TF genes with metabolism-associated genes resulted in putative identification of regulators of herbivore-induced terpenoid, green-leaf volatiles and cucurbitacin biosynthesis. Our data provide a global image of the transcriptional changes in cucumber leaves in response to spider-mite herbivory and that of metabolites that are potentially involved in the regulation of induced direct and indirect defences against spider-mite herbivory.


Assuntos
Cucumis sativus/imunologia , Cucumis sativus/metabolismo , Metaboloma , Infestações por Ácaros/imunologia , Infestações por Ácaros/metabolismo , Tetranychidae , Transcriptoma , Animais , Vias Biossintéticas/genética , Cucumis sativus/genética , Cucumis sativus/parasitologia , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genoma de Planta , Genótipo , Herbivoria , Oxilipinas/metabolismo , Fenilalanina/metabolismo , Fenilpropionatos/metabolismo , Doenças das Plantas , Folhas de Planta/metabolismo , Metabolismo Secundário/genética , Terpenos/metabolismo , Fatores de Transcrição/genética , Triterpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo
9.
Genome ; 63(4): 225-238, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32027525

RESUMO

Plant lipid transfer proteins (LTPs) are small basic proteins that play important roles in the regulation of various plant biological processes as well as the response to biotic and abiotic stresses. However, knowledge is limited on how this family of proteins is regulated in response to nematode infection in cucumber. In the present study, a total of 39 CsLTP_2 genes were identified by querying databases for cucumber-specific LTP_2 using a Hidden Markov Model approach and manual curation. The family has a five-cysteine motif (5CM) with the basic form CC-Xn-CXC-Xn-C, which differentiates it from typical nsLTPs. The members of CsLTP_2 were grouped into six families according to their structure and their phylogenetic relationships. Expression data of CsLTP_2 genes in 10 cucumber tissues indicated that they were tissue-specific genes. Two genes showed significant expression change in roots of resistant and susceptible lines during nematode infection, indicating their involvement in response to Meloidogyne incognita. This systematic analysis provides a foundation of knowledge for future studies of the biological roles of CsLTP_2 genes in cucumber in response to nematode infection and may help in the efforts to improve M. incognita-resistance breeding in cucumber.


Assuntos
Antígenos de Plantas/metabolismo , Proteínas de Transporte/metabolismo , Cucumis sativus/genética , Resistência à Doença/genética , Genoma de Planta/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Tylenchoidea/fisiologia , Motivos de Aminoácidos , Animais , Antígenos de Plantas/genética , Proteínas de Transporte/genética , Cucumis sativus/imunologia , Cucumis sativus/parasitologia , Perfilação da Expressão Gênica , Especificidade de Órgãos , Filogenia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Alinhamento de Sequência , Sintenia
10.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187355

RESUMO

Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is an important agricultural pest worldwide. Uridine diphosphate (UDP)-glucuronosyltransferases (UGTs) are one of the largest and most ubiquitous groups of proteins. Because of their role in detoxification, insect UGTs are attracting increasing attention. In this study, we identified and analyzed UGT genes in B. tabaci MEAM1 to investigate their potential roles in host adaptation and reproductive capacity. Based on phylogenetic and structural analyses, we identified 76 UGT genes in the B. tabaci MEAM1 genome. RNA-seq and real-time quantitative PCR (RT-qPCR) revealed differential expression patterns of these genes at different developmental stages and in association with four host plants (cabbage, cucumber, cotton and tomato). RNA interference results of selected UGTs showed that, when UGT352A1, UGT352B1, and UGT354A1 were respectively silenced by feeding on dsRNA, the fecundity of B. tabaci MEAM1 was reduced, suggesting that the expressions of these three UGT genes in this species may be associated with host-related fecundity. Together, our results provide detailed UGTs data in B.tabaci and help guide future studies on the mechanisms of host adaptation by B.tabaci.


Assuntos
Glucuronosiltransferase/genética , Hemípteros/genética , Difosfato de Uridina/genética , Animais , Brassica/parasitologia , Cucumis sativus/parasitologia , Estudo de Associação Genômica Ampla , Gossypium/parasitologia , Proteínas de Insetos/genética , Solanum lycopersicum/parasitologia , Filogenia , RNA de Cadeia Dupla/genética
11.
Plant Mol Biol ; 99(6): 535-544, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30707394

RESUMO

KEY MESSAGE: In this study, we first linked the signal molecule H2S with cucurbitacin C, which can cause the bitter taste of cucumber leaves and fruit, and specifically discuss its molecular mechanism. Cucurbitacin C (CuC), a triterpenoid secondary metabolite, enhances the resistance of cucumber plants to pathogenic bacteria and insect herbivores, but results in bitter-tasting fruits. CuC can be induced in some varieties of cucumber on exposure to plant stressors. The gasotransmitter hydrogen sulfide (H2S) participates in multiple physiological processes relating to plant stress resistance. This study focused on the effect of H2S on low temperature-induced CuC synthesis in cucumber. The results showed that treatment of cucumber leaves at 4 °C for 12 h enhanced the content and production rate of H2S and increased the expression of genes encoding enzymes involved in H2S generation, Csa2G034800.1 (CsaLCD), Csa1G574800.1 (CsaDES1), and Csa1G574810.1 (CsaDES2). In addition, treatment at 4 °C or with exogenous H2S upregulated the expression of CuC synthetase-encoding genes and the resulting CuC content in cucumber leaves, whereas pretreatment with hypotaurine (HT, a H2S scavenger) before treatment at 4 °C offset these effects. In vitro, H2S could increase the S-sulfhydration level of His-Csa5G156220 and His-Csa5G157230 (both bHLH transcription factors), as well as their binding activity to the promoter of Csa6G088690, which encodes the key synthetase for CuC generation. H2S pretreatment enhanced the cucumber leaves resistance to the Phytophthora melonis. Together, these results demonstrated that H2S acts as a positive regulator of CuC synthesis as a result of the modification of proteins by S-sulfhydration, also providing indirect evidence for the role of H2S in improving the resistance of plants to abiotic stresses and biotic stresses by regulating the synthesis of secondary metabolites.


Assuntos
Temperatura Baixa , Cucumis sativus/metabolismo , Sulfeto de Hidrogênio/metabolismo , Triterpenos/metabolismo , Cucumis sativus/genética , Cucumis sativus/parasitologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Phytophthora/patogenicidade , Folhas de Planta/metabolismo , Metabolismo Secundário/genética , Estresse Fisiológico
12.
J Plant Res ; 132(6): 813-823, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31654247

RESUMO

The southern root-knot nematode (RKN), Meloidogyne incognita (Kofoid & White) Chitwood, is one of most destructive species of plant parasitic nematodes, causing significant economic losses to numerous crops including cucumber (Cucumis sativus L. 2n = 14). No commercial cultivar is currently available with resistance to RKN, severely hindering the genetic improvement of RKN resistance in cucumber. An introgression line, IL10-1, derived from the interspecific hybridization between the wild species Cucumis hystrix Chakr. (2n = 24, HH) and cucumber, was identified with resistance to RKN. In this study, an ultrahigh-density genetic linkage bin-map, composed of high-quality single-nucleotide polymorphisms (SNPs), was constructed based on low-coverage sequences of the F2:6 recombinant inbred lines derived from the cross between inbred line IL10-1 and cultivar 'Beijingjietou' CC3 (hereinafter referred to as CC3). Three QTLs were identified accounting for 13.36% (qRKN1-1), 9.07% and 9.58% (qRKN5-1 and qRKN5-2) of the resistance variation, respectively. Finally, four genes with nonsynonymous SNPs from chromosome 5 were speculated to be the candidate RKN-resistant related genes, with annotation involved in disease resistance. Though several gaps still exist on the bin-map, our results could potentially be used in breeding programs and establish an understanding of the associated mechanisms underlying RKN resistance in cucumber.


Assuntos
Cucumis sativus/genética , Genes de Plantas , Doenças das Plantas/genética , Tylenchoidea/fisiologia , Animais , Cucumis sativus/parasitologia , Resistência à Doença/genética , Hibridização Genética , Doenças das Plantas/parasitologia , Locos de Características Quantitativas , Análise de Sequência de DNA
13.
Plant Dis ; 103(11): 2877-2883, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31490089

RESUMO

Some diseases are caused by coinfection of several pathogens in the same plant. However, studies on the complexity of these coinfection events under different environmental conditions are scarce. Our ongoing research involves late wilting disease of cucumber caused by coinfection of Cucumber green mottle mosaic virus (CGMMV) and Pythium spp. We specifically investigated the role of various temperatures (18, 25, 32°C) on the coinfection by CGMMV and two predominant Pythium species occurring in cucumber greenhouses under Middle Eastern climatic conditions. During the summer months, Pythium aphanidermatum was most common, whereas P. spinosum predominated during the winter-spring period. P. aphanidermatum preferred higher temperatures while P. spinosum preferred low temperatures and caused very low levels of disease at 32°C when the 6-day-old seedlings were infected with P. spinosum alone. Nevertheless, after applying a later coinfection with CGMMV on the 14-day-old plants, a synergistic effect was detected for both Pythium species at optimal and suboptimal temperatures, with P. spinosum causing high mortality incidence even at 32°C. The symptoms caused by CGMMV infection appeared earlier as the temperature increased. However, within each temperature, no significant influence of the combined infection was detected. Our results demonstrate the complexity of coinfection in changing environmental conditions and indicate its involvement in disease development and severity as compared with infection by each of the pathogens alone.


Assuntos
Cucumis sativus , Meio Ambiente , Doenças das Plantas , Pythium , Tobamovirus , Cucumis sativus/parasitologia , Cucumis sativus/virologia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Pythium/fisiologia , Tobamovirus/fisiologia
14.
Plant Dis ; 103(12): 3161-3165, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31545697

RESUMO

The southern root-knot nematode (RKN), Meloidogyne incognita, is particularly difficult to manage because of high susceptibility of all commercial cucumber (Cucumis sativus) cultivars to this nematode. Growers have conventionally relied on nematicide applications to control RKN. Two microplot experiments were conducted in which four nonfumigant nematicides, oxamyl, fluopyram, fluensulfone, and fluazaindolizine, were examined for their efficacy in reducing gall severity and postharvest soil nematode numbers in microplots inoculated with increasing inoculation densities (1,000, 5,000, 10,000, and 20,000 nematodes/microplot), and improving growth and yield of cucumber. Nematicides were applied 1 day prior to transplanting cucumber seedlings, except fluensulfone, which was applied 7 days before transplanting. At harvest, root gall indices differed significantly (P < 0.0001) among nematode inoculation densities and nematicides. All four nematicides were effective in reducing the root gall index when compared with the untreated control on a consistent basis at all M. incognita inoculation densities. At the lowest inoculation density, no significant difference in gall index or final population density was observed among nematicides; however, gall index increased with increasing nematode inoculation densities in nematicide-treated microplots. Correlations between gall index and inoculation density clearly showed that soil treatment with fluensulfone, fluazaindolizine, or fluopyram was more effective in reducing gall severity than treatment with oxamyl. Regression analysis also indicated no significant effect of nematode inoculation densities on yield of cucumber treated with these nematicides. Results of this study will provide guidance for improving nematicide efficiencies in soil with varying inoculation densities of RKN.


Assuntos
Antinematódeos , Cucumis sativus , Tylenchoidea , Animais , Antinematódeos/farmacologia , Cucumis sativus/parasitologia , Densidade Demográfica , Solo/parasitologia , Tylenchoidea/efeitos dos fármacos
15.
Int J Mol Sci ; 20(10)2019 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-31130701

RESUMO

Foliage diseases are prevalent in cucumber production and cause serious yield reduction across the world. Identifying resistance or susceptible genes under foliage-disease stress is essential for breeding resistant varieties, of which leaf-specific expressed susceptible genes are extremely important but rarely studied in crops. This study performed an in-depth mining of public transcriptome data both in different cucumber tissues and under downy mildew (DM) inoculation, and found that the expression of leaf-specific expressed transcription factor CsTCP14 was significantly increased after treatment with DM, as well as being upregulated under stress from another foliage disease, watermelon mosaic virus (WMV), in susceptible cucumbers. Furthermore, the Pearson correlation analysis identified genome-wide co-expressed defense genes with CsTCP14. A potential target CsNBS-LRR gene, Csa6M344280.1, was obtained as obviously reduced and was negatively correlated with the expression of the susceptible gene CsTCP14. Moreover, the interaction experiments of electrophoretic mobility shift assay (EMSA) and yeast one-hybrid assay (Y1H) were successfully executed to prove that CsTCP14 could transcriptionally repress the expression of the CsNBS-LRR gene, Csa6M344280.1, which resulted in inducing susceptibility to foliage diseases in cucumber. As such, we constructed a draft model showing that the leaf-specific expressed gene CsTCP14 was negatively regulating the defense gene Csa6M344280.1 to induce susceptibility to foliage diseases in cucumber. Therefore, this study explored key susceptible genes in response to foliage diseases based on a comprehensive analysis of public transcriptome data and provided an opportunity to breed new varieties that can resist foliage diseases in cucumber, as well as in other crops.


Assuntos
Cucumis sativus/genética , Doenças das Plantas/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Cucumis sativus/parasitologia , Cucumis sativus/virologia , Resistência à Doença , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oomicetos/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Folhas de Planta/parasitologia , Folhas de Planta/virologia , Potyvirus/fisiologia , Transcriptoma
16.
BMC Genomics ; 19(1): 583, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30075750

RESUMO

BACKGROUND: Meloidogyne incognita is a devastating nematode that causes significant losses in cucumber production worldwide. Although numerous studies have emphasized on the susceptible response of plants after nematode infection, the exact regulation mechanism of M. incognita-resistance in cucumber remains elusive. Verification of an introgression line, 'IL10-1', with M. incognita-resistance provides the opportunity to unravel the resistance mechanism of cucumber against M. incognita. RESULTS: In the present study, analyses of physiological responses and transcriptional events between IL10-1 (resistant line) and CC3 (susceptible line) were conducted after M. incognita infection. Physiological observations showed abnormal development of giant cells and M. incognita in IL10-1, which were the primary differences compared with CC3. Furthermore, Gene ontology (GO) analysis revealed that genes encoding cell wall proteins were up-regulated in IL10-1 and that the highly expressed lipid transfer protein gene (Csa6G410090) might be the principal regulator of this up-regulation. Simultaneously, analyses of gene expression profiles revealed more auxin-related genes were suppressed in IL10-1 than in those of CC3, which corresponded with the lower level of indole acetic acid (IAA) in the roots of IL10-1 than in those of CC3. Additionally, poor nucleus development as a clear indication of abnormal giant cells in IL10-1 was related to inhibition of the cell cycle. Of those genes related to the cell cycle, the F-box domain Skp2-like genes were down-regulated in IL10-1, whereas more of these genes were up-regulated in CC3. CONCLUSIONS: All of these findings indicate that suppressed expression of genes related to auxin and the cell cycle and highly expressed cell wall proteins play important roles in the abnormal development of giant cells, which hinders the development of M. incognita, thereby causing resistance to M. incognita in IL10-1. Knowledge from this research will provide a useful foundation for developing effective strategies in M. incognita-resistance breeding.


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Resistência à Doença , Perfilação da Expressão Gênica/métodos , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Animais , Ciclo Celular , Cucumis sativus/genética , Cucumis sativus/parasitologia , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Melhoramento Vegetal , Doenças das Plantas/genética , Tylenchoidea/fisiologia
17.
Food Microbiol ; 75: 95-102, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30056969

RESUMO

This study estimates illness (diarrhea) risks from fecal pathogens that can be transmitted via fecal-contaminated fresh produce. To do this, a quantitative microbial risk assessment (QMRA) framework was developed in National Capital Region, India based on bacterial indicator and pathogen data from fresh produce wash samples collected at local markets. Produce wash samples were analyzed for fecal indicator bacteria (Escherichia coli, total Bacteroidales) and pathogens (Salmonella, Shiga-toxin producing E. coli (STEC), enterohemorrhagic E. coli (EHEC)). Based on the E. coli data and on literature values for Cryptosporidium and norovirus, the annual mean diarrhea risk posed by ingestion of fresh produce ranged from 18% in cucumbers to 59% in cilantro for E. coli O157:H7, and was <0.0001% for Cryptosporidium; for norovirus the risk was 11% for cucumbers and up to 46% for cilantro. The risks were drastically reduced, from 59% to 4% for E. coli O157:H7, and from 46% to 2% for norovirus for cilantro in post-harvest washing and disinfection scenario. The present QMRA study revealed the potential hazards of eating raw produce and how post-harvest practices can reduce the risk of illness. The results may lead to better food safety surveillance systems and use of hygienic practices pre- and post-harvest.


Assuntos
Coriandrum , Cucumis sativus , Diarreia/epidemiologia , Contaminação de Alimentos/análise , Doenças Transmitidas por Alimentos/epidemiologia , Medição de Risco , Coriandrum/metabolismo , Coriandrum/microbiologia , Coriandrum/parasitologia , Coriandrum/virologia , Cryptosporidium/isolamento & purificação , Cucumis sativus/metabolismo , Cucumis sativus/microbiologia , Cucumis sativus/parasitologia , Cucumis sativus/virologia , Diarreia/microbiologia , Diarreia/parasitologia , Diarreia/virologia , Escherichia coli/isolamento & purificação , Escherichia coli O157 , Fezes/microbiologia , Fezes/parasitologia , Fezes/virologia , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/parasitologia , Doenças Transmitidas por Alimentos/virologia , Humanos , Índia , Norovirus/isolamento & purificação
18.
Plant Dis ; 102(3): 628-639, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30673494

RESUMO

To identify new bacterial antagonists for cucurbit downy mildew (CDM) caused by Pseudoperonospora cubensis, 163 bacterial isolates were recovered from different microenvironments of field-grown cucumber plants. In the greenhouse, 19 representative isolates were applied to cucumber plants as a foliar spray (FS); 7 isolates achieved the efficacy over 60% against CDM, with 5 (DS22, HS10, DP14, HP4, and DS57) identified as Bacillus pumilus, B. licheniformis, Enterobacter sp., Bacillus sp., and Stenotrophomonas maltophilia, respectively. Strains DP14, DS22, and HS10 were assessed for their biocontrol effect on naturally occurring CDM in 2-year field trials (2010 and 2011), in which their overall efficacy relative to that of propamocarb was 106.25 to 117.17% with foliar spray plus root drench (FS+RD) but only 70.98 to 84.03% with FS. Coincidently, DP14 and HS10 applied as root drench (RD) alone also significantly reduced CDM. Under field conditions, DP14, DS22, and HS10 all successfully colonized cucumber leaves and the rhizosphere, and also significantly increased fruit yield by 37.60 to 51.03%, as well as nutrient levels. Taken together, Enterobacter sp. DP14, B. licheniformis HS10, and B. pumilus DS22 are plant-growth-promoting rhizobacteria effective in controlling CDM in the field, whose efficacy increased with FS+RD compared with FS alone.


Assuntos
Antibiose , Bacillus/fisiologia , Cucumis sativus/microbiologia , Enterobacter/fisiologia , Oomicetos/microbiologia , Doenças das Plantas/prevenção & controle , Bacillus/isolamento & purificação , Cucumis sativus/parasitologia , Enterobacter/isolamento & purificação , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Folhas de Planta/microbiologia , Folhas de Planta/parasitologia
19.
Int J Mol Sci ; 19(2)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389847

RESUMO

Most effective nematicides for the control of root-knot nematodes are banned, which demands a better understanding of the plant-nematode interaction. Understanding how gene expression in the nematode-feeding sites relates to morphological features may assist a better characterization of the interaction. However, nematode-induced galls resulting from cell-proliferation and hypertrophy hinders such observation, which would require tissue sectioning or clearing. We demonstrate that a method based on the green auto-fluorescence produced by glutaraldehyde and the tissue-clearing properties of benzyl-alcohol/benzyl-benzoate preserves the structure of the nematode-feeding sites and the plant-nematode interface with unprecedented resolution quality. This allowed us to obtain detailed measurements of the giant cells' area in an Arabidopsis line overexpressing CHITINASE-LIKE-1 (CTL1) from optical sections by confocal microscopy, assigning a role for CTL1 and adding essential data to the scarce information of the role of gene repression in giant cells. Furthermore, subcellular structures and features of the nematodes body and tissues from thick organs formed after different biotic interactions, i.e., galls, syncytia, and nodules, were clearly distinguished without embedding or sectioning in different plant species (Arabidopsis, cucumber or Medicago). The combination of this method with molecular studies will be valuable for a better understanding of the plant-biotic interactions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/parasitologia , Células Gigantes/parasitologia , Glicosídeo Hidrolases/metabolismo , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Tylenchoidea/fisiologia , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/parasitologia , Células Gigantes/metabolismo , Glicosídeo Hidrolases/genética , Interações Hospedeiro-Parasita , Medicago/genética , Medicago/metabolismo , Medicago/parasitologia , Microscopia Confocal , Fenótipo , Doenças das Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Tumores de Planta/genética , Tumores de Planta/parasitologia , Plantas Geneticamente Modificadas
20.
Phytopathology ; 107(3): 313-321, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27841962

RESUMO

During the past two decades, a resurgence of cucurbit downy mildew has occurred around the world, resulting in severe disease epidemics. In the United States, resurgence of the disease occurred in 2004 and several hypotheses, including introduction of a new genetic recombinant or pathotype of the pathogen, have been suggested as potential causes for this resurgence. Occurrence and distribution of mating types of Pseudoperonospora cubensis in the United States were investigated using 40 isolates collected from cucurbits across 11 states from 2005 to 2013. Pairing of unknown isolates with known mating-type tester strains on detached leaves of cantaloupe or cucumber resulted in oospore formation 8 to 10 days after inoculation. Isolates differed in their ability to form oospores across all coinoculation pairings, with oospore numbers ranging from 280 to 1,000 oospores/cm2 of leaf tissue. Oospores were hyaline to golden-yellow, spherical, and approximately 36 µm in diameter. Of the 40 isolates tested, 24 were found to be of the A1 mating type, while 16 were of the A2 mating type. Mating type was significantly (P < 0.0001) associated with host type, whereby all isolates collected from cucumber were of the A1 mating type, while isolates from squash and watermelon were of the A2 mating type. Similarly, mating type was significantly (P = 0.0287) associated with geographical region, where isolates from northern-tier states of Michigan, New Jersey, New York, and Ohio were all A1, while isolates belonging to either A1 or A2 mating type were present in equal proportions in southern-tier states of Alabama, Florida, Georgia, North Carolina, South Carolina, and Texas. Viability assays showed that oospores were viable and, on average, approximately 40% of the oospores produced were viable as determined by the plasmolysis method. This study showed that A1 and A2 mating types of P. cubensis are present and the pathogen could potentially reproduce sexually in cucurbits within the United States. In addition, the production of viable oospores reported in this study suggests that oospores could have an important role in the biology of P. cubensis and could potentially influence the epidemiology of cucurbit downy mildew in the United States.


Assuntos
Cucumis melo/parasitologia , Cucumis sativus/parasitologia , Oomicetos/genética , Doenças das Plantas/parasitologia , Oomicetos/isolamento & purificação , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA