Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Mol Microbiol ; 112(3): 854-865, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31162841

RESUMO

The GC-rich genome of Deinococcus radiodurans contains a very high density of putative guanine quadruplex (G4) DNA motifs and its RecQ (drRecQ) was earlier characterized as a 3'→5' dsDNA helicase. We saw that N-Methyl mesoporphyrin IX (NMM), a G4 DNA binding drug affected normal growth as well as the gamma radiation resistance of the wild-type bacterium. Interestingly, NMM treatment and recQ deletion showed additive effect on normal growth but there was no effect of NMM on gamma radiation resistance of recQ mutant. The recombinant drRecQ showed ~400 times higher affinity to G4 DNA (Kd  = 11.74 ± 1.77 nM) as compared to dsDNA (Kd  = 4.88 ± 1.30 µM). drRecQ showed ATP independent helicase function on G4 DNA, which was higher than ATP-dependent helicase activity on dsDNA. Unlike wild-type cells that sparingly stained for G4 structure with Thioflavin T (ThT), recQ mutant showed very high-density of ThT fluorescence foci on DNA indicating an important role of drRecQ in regulation of G4 DNA structure dynamics in vivo. These results together suggested that drRecQ is an ATP independent G4 DNA helicase that plays an important role in the regulation of G4 DNA structure dynamics and its impact on radioresistance in D. radiodurans.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/química , Deinococcus/enzimologia , Deinococcus/efeitos da radiação , Regulação Bacteriana da Expressão Gênica , RecQ Helicases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Deinococcus/genética , Deinococcus/crescimento & desenvolvimento , Quadruplex G , Viabilidade Microbiana/efeitos da radiação , RecQ Helicases/química , RecQ Helicases/genética , Especificidade por Substrato
2.
Arch Microbiol ; 202(9): 2355-2366, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31570971

RESUMO

The principal objective of this study is to determine the resistance of Deinococcus radiodurans to hydrogen peroxide (H2O2) induced oxidative stress by inhibiting its thioredoxin reductase (TrxR) antioxidant system. Treatment of D. radiodurans with different TrxR inhibitors such as ebselen, epigallocatechin gallate and auranofin displayed this organism sensitivity to H2O2 treatment in a concentration-dependent manner. We observed that D. radiodurans showed greater resistance to H2O2 treatment. Further, it has also been noticed that TrxR redox system was suppressed by TrxR inhibitors and that this response might be associated with the oxidative stress-mediated cell death in D. radiodurans. Thus, TrxR inhibitors affect the resistance of the D. radiodurans through suppression of its thioredoxin redox pathway via the inhibition of TrxR. Results from this study proved that TrxR plays an important role as an antioxidant enzyme by scavenging intracellular ROS, and thus contributing to the resistance of D. radiodurans towards oxidative stress.


Assuntos
Deinococcus/enzimologia , Estresse Oxidativo , Tiorredoxina Dissulfeto Redutase/metabolismo , Deinococcus/efeitos dos fármacos , Deinococcus/crescimento & desenvolvimento , Deinococcus/metabolismo , Peróxido de Hidrogênio/farmacologia , Viabilidade Microbiana , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Dissulfeto Redutase/genética
3.
J Bacteriol ; 201(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30692176

RESUMO

In previous work (D. R. Harris et al., J Bacteriol 191:5240-5252, 2009, https://doi.org/10.1128/JB.00502-09; B. T. Byrne et al., Elife 3:e01322, 2014, https://doi.org/10.7554/eLife.01322), we demonstrated that Escherichia coli could acquire substantial levels of resistance to ionizing radiation (IR) via directed evolution. Major phenotypic contributions involved adaptation of organic systems for DNA repair. We have now undertaken an extended effort to generate E. coli populations that are as resistant to IR as Deinococcus radiodurans After an initial 50 cycles of selection using high-energy electron beam IR, four replicate populations exhibit major increases in IR resistance but have not yet reached IR resistance equivalent to D. radiodurans Regular deep sequencing reveals complex evolutionary patterns with abundant clonal interference. Prominent IR resistance mechanisms involve novel adaptations to DNA repair systems and alterations in RNA polymerase. Adaptation is highly specialized to resist IR exposure, since isolates from the evolved populations exhibit highly variable patterns of resistance to other forms of DNA damage. Sequenced isolates from the populations possess between 184 and 280 mutations. IR resistance in one isolate, IR9-50-1, is derived largely from four novel mutations affecting DNA and RNA metabolism: RecD A90E, RecN K429Q, and RpoB S72N/RpoC K1172I. Additional mechanisms of IR resistance are evident.IMPORTANCE Some bacterial species exhibit astonishing resistance to ionizing radiation, with Deinococcus radiodurans being the archetype. As natural IR sources rarely exceed mGy levels, the capacity of Deinococcus to survive 5,000 Gy has been attributed to desiccation resistance. To understand the molecular basis of true extreme IR resistance, we are using experimental evolution to generate strains of Escherichia coli with IR resistance levels comparable to Deinococcus Experimental evolution has previously generated moderate radioresistance for multiple bacterial species. However, these efforts could not take advantage of modern genomic sequencing technologies. In this report, we examine four replicate bacterial populations after 50 selection cycles. Genomic sequencing allows us to follow the genesis of mutations in populations throughout selection. Novel mutations affecting genes encoding DNA repair proteins and RNA polymerase enhance radioresistance. However, more contributors are apparent.


Assuntos
Evolução Biológica , Escherichia coli/genética , Escherichia coli/efeitos da radiação , Tolerância a Radiação , Radiação Ionizante , Seleção Genética , Análise Mutacional de DNA , Enzimas Reparadoras do DNA/genética , RNA Polimerases Dirigidas por DNA/genética , Deinococcus/crescimento & desenvolvimento , Deinococcus/efeitos da radiação , Escherichia coli/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Mutação
4.
Curr Microbiol ; 76(12): 1435-1442, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31494741

RESUMO

Bacteria under stress increase the proportion of dormant cells to ensure their survival. Cold and osmotic stress are similar, because in both the availability of water is reduced. Glycine betaine (GB) is one of the most common osmoprotectants in bacteria and possesses cryoprotectant properties. Our aim was to determine whether GB modifies the proportion of dormant Deinococcus sp. UDEC-P1 and Psychrobacter sp. UDEC-A5 cells exposed to osmotic stress. Both bacterial strains were incubated in the presence of up to 1 M NaCl with or without GB. Active and dormant cells were evaluated by both spectrophotometric and flow cytometry analysis. Without GB, Deinococcus sp. UDEC-P1 grew in the presence of 0.05 M NaCl, but with 5 mM GB grew at 0.1 M NaCl. Psychrobacter sp. UDEC-A5 grew in the presence of up to 0.25 M NaCl, but with 5 mM GB grew at 0.5 M NaCl. Under osmotic stress, the proportion of dormant cells of Deinococcus sp. UDEC-P1 and Psychrobacter sp. UDEC-A5 increased significantly (about eightfold and fivefold, respectively). The addition of GB (5 mM) exerted a different effect on the two strains, since it avoided the entrance into the dormancy of Psychrobacter sp. UDEC-A5 cells, but not of Deinococcus sp. UDEC-P1 cells. Our results suggest that the effect of GB on bacterial metabolism is strain dependent. For bacteria in which GB avoids dormancy, such as Psychrobacter sp. UDEC-A5, it could be a "double-edged sword" by reducing the "seed bank" available to recover the active population when favorable conditions return.


Assuntos
Betaína/metabolismo , Deinococcus/crescimento & desenvolvimento , Psychrobacter/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Deinococcus/fisiologia , Pressão Osmótica , Psychrobacter/fisiologia , Cloreto de Sódio/metabolismo , Estresse Fisiológico
5.
Nucleic Acids Res ; 45(7): 3812-3821, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28126918

RESUMO

Deinococcus radiodurans RNA ligase (DraRnl) seals 3΄-OH/5΄-PO4 nicks in duplex nucleic acids in which the 3΄-OH nick terminus consists of two or more ribonucleotides. DraRnl exemplifies a widely distributed Rnl5 family of nick-sealing RNA ligases, the physiological functions of which are uncharted. Here we show via gene knockout that whereas DraRnl is inessential for growth of D. radiodurans, its absence sensitizes the bacterium to killing by ionizing radiation (IR). DraRnl protein is present in exponentially growing and stationary phase cells, but is depleted during the early stages of recovery from 10 kGy of IR and subsequently replenished during the late phase of post-IR genome reassembly. Absence of DraRnl elicts a delay in reconstitution of the 10 kGy IR-shattered D. radiodurans replicons that correlates with the timing of DraRnl replenishment in wild-type cells. Complementation with a catalytically dead mutant highlights that nick sealing activity is important for the radioprotective function of DraRnl. Our findings suggest a scenario in which DraRnl acts at genomic nicks resulting from gap-filling by a ribonucleotide-incorporating repair polymerase.


Assuntos
Proteínas de Bactérias/metabolismo , Deinococcus/enzimologia , RNA Ligase (ATP)/metabolismo , Deinococcus/genética , Deinococcus/crescimento & desenvolvimento , Deinococcus/efeitos da radiação , Raios gama , Deleção de Genes , Genoma Bacteriano , Óperon , RNA Ribossômico/efeitos da radiação , Tolerância a Radiação
6.
Bioprocess Biosyst Eng ; 42(4): 631-642, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30607611

RESUMO

Deinococcus xibeiensis R13 was isolated from an extreme environment in Xinjiang, China, and can resist gamma-radiation and UV-irradiation. In this study, D. xibeiensis R13 was shown to be capable of efficiently producing carotenoids in culture, and factors influencing its productivity were identified. The maximum carotenoid yield was observed at an initial temperature of 30 °C and pH 7.0 in the presence of fructose, tryptone at a C/N ratio of 1:5, and 10 µM Fe2+. The carotenoid yield under modified culture conditions was 6.64 mg/L after fermentation for 48 h, representing an increase of 84% compared to the original conditions. The biomass reached 7.22 g/L, which was 2.19-fold higher than under non-optimized conditions. The produced carotenoids were extracted from R13 and analyzed by UPLC-MS. This is the first study of carotenoid production by the new strain D. xibeiensis R13, which provides a new source for the microbial fermentation of natural carotenoids, and also provides a good reference for industrial production of other carotenoids and other terpenoid products.


Assuntos
Biomassa , Carotenoides/biossíntese , Deinococcus/crescimento & desenvolvimento , Raios Ultravioleta , Microbiologia Industrial/métodos
7.
Microbiology (Reading) ; 164(11): 1361-1371, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30222092

RESUMO

While the cell wall strictly controls cell size and morphology in bacteria, spheroplasts lack cell walls and can become enlarged in growth medium under optimal conditions. Optimal conditions depend on the bacterial species. We frequently observed extreme enlargement of spheroplasts of the radiation-resistant bacterium Deinococcus grandis in Difco Marine Broth 2216, but not in TGY broth (a commonly used growth medium for Deinococcus). Thorough investigation of media components showed that the presence of Mg2+ or Ca2+ promoted extreme spheroplast enlargement, synthesizing the outer membrane. Our findings strongly suggest that Mg2+ or Ca2+ enlarges spheroplasts, which could change the lipid composition of the spheroplast membrane.


Assuntos
Cálcio/metabolismo , Deinococcus/crescimento & desenvolvimento , Magnésio/metabolismo , Lipídeos de Membrana/metabolismo , Esferoplastos/crescimento & desenvolvimento , Meios de Cultura/metabolismo
8.
Microbiology (Reading) ; 164(10): 1266-1275, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30052171

RESUMO

To understand the effects triggered by Mn2+ on Deinococcus radiodurans, the proteome patterns associated with different growth phases were investigated. In particular, under physiological conditions we tested the growth rate and the biomass yield of D. radiodurans cultured in rich medium supplemented or not with MnCl2. The addition of 2.5-5.0 µM MnCl2 to the medium neither altered the growth rate nor the lag phase, but significantly increased the biomass yield. When higher MnCl2 concentrations were used (10-250 µM), biomass was again found to be positively affected, although we did observe a concentration-dependent lag phase increase. The in vivo concentration of Mn2+ was determined in cells grown in rich medium supplemented or not with 5 µM MnCl2. By atomic absorption spectroscopy, we estimated 0.2 and 0.75 mM Mn2+ concentrations in cells grown in control and enriched medium, respectively. We qualitatively confirmed this observation using a fluorescent turn-on sensor designed to selectively detect Mn2+in vivo. Finally, we investigated the proteome composition of cells grown for 15 or 19 h in medium to which 5 µM MnCl2 was added, and we compared these proteomes with those of cells grown in the control medium. The presence of 5 µM MnCl2 in the culture medium was found to alter the pI of some proteins, suggesting that manganese affects post-translational modifications. Further, we observed that Mn2+ represses enzymes linked to nucleotide recycling, and triggers overexpression of proteases and enzymes linked to the metabolism of amino acids.


Assuntos
Cloretos/metabolismo , Deinococcus/crescimento & desenvolvimento , Deinococcus/metabolismo , Compostos de Manganês/metabolismo , Manganês/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biomassa , Cloretos/química , Cloretos/farmacologia , Meios de Cultura/química , Deinococcus/química , Deinococcus/efeitos dos fármacos , Manganês/farmacologia , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Nucleotídeos/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteoma/química , Proteoma/metabolismo
9.
Proteomics ; 17(13-14)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28608649

RESUMO

Deinococcus radiodurans is a robust bacterium best known for its capacity to resist to radiation. In this study, the SDS-PAGE coupled with high-precision LC-MS/MS was used to study the D. radiodurans proteome. A total of 1951 proteins were identified which covers 63.18% protein-coding genes. Comparison of the identified proteins to the key enzymes in amino acid biosyntheses from KEGG database showed the methionine biosynthesis module is incomplete while other amino acid biosynthesis modules are complete, which indicated methionine auxotrophy in D. radiodurans. The subsequent amino acid-auxotrophic screening has verified methionine instead of other amino acids is essential for the growth of D. radiodurans. With molecular evolutionary genetic analysis, we found the divergence in methionine biosynthesis during the evolution of the common ancestor of bacteria. We also found D. radiodurans lost the power of synthesizing methionine because of the missing metA and metX in two types of methionine biosyntheses. For the first time, this study used high-coverage proteome analysis to identify D. radiodurans amino acid auxotrophy, which provides the important reference for the development of quantitative proteomics analysis using stable isotope labeling in metabolomics of D. radiodurans and in-depth analysis of the molecular mechanism of radiation resistance.


Assuntos
Proteínas de Bactérias/metabolismo , Deinococcus/metabolismo , Metionina/metabolismo , Proteômica/métodos , Cromatografia Líquida/métodos , Deinococcus/crescimento & desenvolvimento , Deinococcus/fisiologia , Filogenia , Espectrometria de Massas em Tandem/métodos
10.
Appl Environ Microbiol ; 83(18)2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28687649

RESUMO

The biological synthesis of metal nanoparticles has been examined in a wide range of organisms, due to increased interest in green synthesis and environmental remediation applications involving heavy metal ion contamination. Deinococcus radiodurans is particularly attractive for environmental remediation involving metal reduction, due to its high levels of resistance to radiation and other environmental stresses. However, few studies have thoroughly examined the relationships between environmental stresses and the resulting effects on nanoparticle biosynthesis. In this work, we demonstrate cell-free nanoparticle production and study the effects of metal stressor concentrations and identity, temperature, pH, and oxygenation on the production of extracellular silver nanoparticles by D. radiodurans R1. We also report the synthesis of bimetallic silver and gold nanoparticles following the addition of a metal stressor (silver or gold), highlighting how production of these particles is enabled through the application of environmental stresses. Additionally, we found that both the morphology and size of monometallic and bimetallic nanoparticles were dependent on the environmental stresses imposed on the cells. The nanoparticles produced by D. radiodurans exhibited antimicrobial activity comparable to that of pure silver nanoparticles and displayed catalytic activity comparable to that of pure gold nanoparticles. Overall, we demonstrate that biosynthesized nanoparticle properties can be partially controlled through the tuning of applied environmental stresses, and we provide insight into how their application may affect nanoparticle production in D. radiodurans during bioremediation.IMPORTANCE Biosynthetic production of nanoparticles has recently gained prominence as a solution to rising concerns regarding increased bacterial resistance to antibiotics and a desire for environmentally friendly methods of bioremediation and chemical synthesis. To date, a range of organisms have been utilized for nanoparticle formation. The extremophile D. radiodurans, which can withstand significant environmental stresses and therefore is more robust for metal reduction applications, has yet to be exploited for this purpose. Thus, this work improves our understanding of the impact of environmental stresses on biogenic nanoparticle morphology and composition during metal reduction processes in this organism. This work also contributes to enhancing the controlled synthesis of nanoparticles with specific attributes and functions using biological systems.


Assuntos
Deinococcus/metabolismo , Ouro/metabolismo , Nanopartículas Metálicas/análise , Prata/metabolismo , Deinococcus/química , Deinococcus/crescimento & desenvolvimento , Ouro/análise , Prata/análise , Temperatura
11.
Mol Microbiol ; 96(5): 1069-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25754115

RESUMO

Deinococcus radiodurans is known for its extreme radioresistance. Comparative genomics identified a radiation-desiccation response (RDR) regulon comprising genes that are highly induced after DNA damage and containing a conserved motif (RDRM) upstream of their coding region. We demonstrated that the RDRM sequence is involved in cis-regulation of the RDR gene ddrB in vivo. Using a transposon mutagenesis approach, we showed that, in addition to ddrO encoding a predicted RDR repressor and irrE encoding a positive regulator recently shown to cleave DdrO in Deinococcus deserti, two genes encoding α-keto-glutarate dehydrogenase subunits are involved in ddrB regulation. In wild-type cells, the DdrO cell concentration decreased transiently in an IrrE-dependent manner at early times after irradiation. Using a conditional gene inactivation system, we showed that DdrO depletion enhanced expression of three RDR proteins, consistent with the hypothesis that DdrO acts as a repressor of the RDR regulon. DdrO-depleted cells loose viability and showed morphological changes evocative of an apoptotic-like response, including membrane blebbing, defects in cell division and DNA fragmentation. We propose that DNA repair and apoptotic-like death might be two responses mediated by the same regulators, IrrE and DdrO, but differently activated depending on the persistence of IrrE-dependent DdrO cleavage.


Assuntos
Deinococcus/genética , Deinococcus/efeitos da radiação , Regulação Bacteriana da Expressão Gênica , Regulon , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA , Desidratação , Deinococcus/crescimento & desenvolvimento , Deinococcus/ultraestrutura , Genômica , Complexo Cetoglutarato Desidrogenase/genética , Mutagênese , Fases de Leitura Aberta , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína
12.
Microbiology (Reading) ; 162(8): 1321-1334, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27368754

RESUMO

The Deinococcus radiodurans genome encodes many of the known components of divisome as well as four sets of genome partitioning proteins, ParA and ParB on its multipartite genome. Interdependent regulation of cell division and genome segregation is not understood. In vivo interactions of D. radiodurans' sdivisome, segrosome and other cell division regulatory proteins expressed on multicopy plasmids were studied in Escherichia coli using a bacterial two-hybrid system and confirmed by co-immunoprecipitation with the proteins made in E. coli. Many of these showed interactions both with the self and with other proteins. For example, DrFtsA, DrFtsZ, DrMinD, DrMinC, DrDivIVA and all four ParB proteins individually formed at least homodimers, while DrFtsA interacted with DrFtsZ, DrFtsW, DrFtsE, DrFtsK and DrMinD. DrMinD also showed interaction with DrFtsW, DrFtsE and DrMinC. Interestingly, septum site determining protein, DrDivIVA showed interactions with secondary genome ParAs as well as ParB1, ParB3 and ParB4 while DrMinC interacted with ParB1 and ParB3. PprA, a pleiotropic protein recently implicated in cell division regulation, neither interacted with divisome proteins nor ParBs but interacted at different levels with all four ParAs. These results suggest the formation of independent multiprotein complexes of 'DrFts' proteins, segrosome proteins and cell division regulatory proteins, and these complexes could interact with each other through DrMinC and DrDivIVA, and PprA in D. radiodurans.


Assuntos
Proteínas de Bactérias/genética , Divisão Celular/genética , Segregação de Cromossomos/genética , Deinococcus/crescimento & desenvolvimento , Deinococcus/genética , Escherichia coli/crescimento & desenvolvimento , Divisão Celular/fisiologia , Segregação de Cromossomos/fisiologia , Escherichia coli/genética , Imunoprecipitação , Plasmídeos/genética , Técnicas do Sistema de Duplo-Híbrido
13.
Curr Microbiol ; 70(5): 651-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25572493

RESUMO

The release of extracellular DNA molecules (eDNA) contributes to various biological processes, such as biofilm formation, virulence, and stress tolerance. The quantity of eDNA released by bacteria is usually regulated by extracellular nucleases that are secreted by different systems. In this study, we show that high concentrations of eDNA inhibit the growth of two strains of Deinococcaceae, Deinococcus radiodurans, and Deinococcus radiopugnans, but have no effect on other selected organisms, such as Escherichia coli. In D. radiodurans, an extracellular nuclease was shown to be secreted through the Sec pathway. Disruption of one member of this pathway, SecD/F, inhibited cell growth, suggesting that the Sec pathway plays an important role in growth rate. However, the Sec pathway mutant exhibited a greater deficiency in growth rate compared with the extracellular nuclease mutant, indicating that the pathway not only secretes the extracellular nuclease, but has other unknown functions as well.


Assuntos
DNA Bacteriano/metabolismo , Deinococcus/crescimento & desenvolvimento , Deinococcus/metabolismo , Desoxirribonucleases/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Redes e Vias Metabólicas/genética , Deinococcus/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Técnicas de Inativação de Genes , Proteínas de Membrana Transportadoras/genética
14.
Extremophiles ; 18(6): 1009-21, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25209745

RESUMO

Few studies concerning the nutritional requirements of Deinococcus geothermalis DSM 11300 have been conducted to date. Three defined media compositions have been published for the growth of this strain but they were found to be inadequate to achieve growth without limitation. Furthermore, growth curves, biomass concentration and growth rates were generally not available. Analysis in Principal Components was used in this work to compare and consequently to highlight the main compounds which differ between published chemically defined media. When available, biomass concentration, and/or growth rate were superimposed to the PCA analysis. The formulations of the media were collected from existing literature; media compositions designed for the growth of several strains of Deinococcaceae or Micrococcaceae were included. The results showed that a defined medium adapted from Holland et al. (Appl Microbiol Biotechnol 72:1074-1082, 2006) was the best basal medium and was chosen for further studies. A growth rate of 0.03 h(-1) and a final OD600nm of 0.55 were obtained, but the growth was linear. Then, the effects of several medium components on oxygen uptake and biomass production by Deinococcus geothermalis DSM 11300 were studied using a respirometry-based method, to search for the nutritional limitation. The results revealed that the whole yeast extract in the medium with glucose is necessary to obtain a non-limiting growth of Deinococcus geothermalis DSM 11300 at a maximum growth rate of 0.64 h(-1) at 45 °C.


Assuntos
Meios de Cultura/química , Deinococcus/crescimento & desenvolvimento , Microbiologia Industrial/métodos , Biomassa , Deinococcus/metabolismo , Fermentação , Glucose/metabolismo , Temperatura Alta , Oxigênio/metabolismo
15.
Appl Microbiol Biotechnol ; 98(3): 1281-90, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24323286

RESUMO

Deinococcus geothermalis metabolism has been scarcely studied to date, although new developments on its utilization for bioremediation have been carried out. So, large-scale production of this strain and a better understanding of its physiology are required. A fed-batch experiment was conducted to achieve a high cell density non-limiting culture of D. geothermalis DSM 11302. A co-substrate nutritional strategy using glucose and yeast extract was carried out in a 20-L bioreactor in order to maintain a non-limited growth at a maximal growth rate of 1 h(-1) at 45 °C. Substrate supplies were adjusted by monitoring online culture parameters and physiological data (dissolved oxygen, gas analyses, respiratory quotient, biomass concentration). The results showed that yeast extract could serve as both carbon and nitrogen sources, although glucose and ammonia were consumed too. Yeast extract carbon-specific uptake rate reached a value 4.5 times higher than glucose carbon-specific uptake rate. Cell concentration of 9.6 g L(-1) dry cell weight corresponding to 99 g of biomass was obtained using glucose and yeast extract as carbon and nitrogen sources.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos/microbiologia , Deinococcus/crescimento & desenvolvimento , Deinococcus/metabolismo , Carbono/metabolismo , Meios de Cultura/química , Glucose/metabolismo , Nitrogênio/metabolismo , Peptonas/metabolismo , Temperatura
16.
Mol Cell Proteomics ; 11(1): M111.011734, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21989019

RESUMO

The extraordinary radioresistance of Deinococcus radiodurans primarily originates from its efficient DNA repair ability. The kinetics of proteomic changes induced by a 6-kGy dose of gamma irradiation was mapped during the post-irradiation growth arrest phase by two-dimensional protein electrophoresis coupled with mass spectrometry. The results revealed that at least 37 proteins displayed either enhanced or de novo expression in the first 1 h of post-irradiation recovery. All of the radiation-responsive proteins were identified, and they belonged to the major functional categories of DNA repair, oxidative stress alleviation, and protein translation/folding. The dynamics of radiation-responsive protein levels throughout the growth arrest phase demonstrated (i) sequential up-regulation and processing of DNA repair proteins such as single-stranded DNA-binding protein (Ssb), DNA damage response protein A (DdrA), DNA damage response protein B (DdrB), pleiotropic protein promoting DNA repair (PprA), and recombinase A (RecA) substantiating stepwise genome restitution by different DNA repair pathways and (ii) concurrent early up-regulation of proteins involved in both DNA repair and oxidative stress alleviation. Among DNA repair proteins, Ssb was found to be the first and most abundant radiation-induced protein only to be followed by alternate Ssb, DdrB, indicating aggressive protection of single strand DNA fragments as the first line of defense by D. radiodurans, thereby preserving genetic information following radiation stress. The implications of both qualitative or quantitative and sequential or co-induction of radiation-responsive proteins for envisaged DNA repair mechanism in D. radiodurans are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Reparo do DNA , Deinococcus/efeitos da radiação , Raios gama , Estresse Oxidativo , DNA Bacteriano/genética , Deinococcus/crescimento & desenvolvimento , Deinococcus/metabolismo , Eletroforese em Gel Bidimensional , Proteoma , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Prep Biochem Biotechnol ; 44(7): 645-52, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24215305

RESUMO

Decreases in cell division at the stationary phase in bacterial cultures are often due to the depletion of nutrients and/or accumulation of toxic waste products. Yet, during the stationary phase, the highly radiation-resistant bacterium Deinococcus radiodurans undergoes new rounds of cell division when Mn(II) is added to the medium in a phenomenon known as manganese-induced cell division (MnCD). When cells were cultured in medium without Mn(II)-enrichment, a heat-resistant, proteinase K-resistant factor (or factors) with a molecular mass less than 10 kD accumulated in the spent medium. Inclusion of the concentrated spent medium in fresh medium could inhibit the growth of D. radiodurans significantly, and the degree of inhibition was dose dependent. However, the relative stimulatory effect of MnCD was also dose dependent-the higher the inhibition, the stronger was the MnCD response. Previous studies have shown that nutrients were not limiting and deinococcal cells would continue metabolizing its nutrients at stationary phase. Cells became more sensitive to radiation when nutrients in the medium eventually became depleted. We speculated that D. radiodurans might produce this factor in the medium to control its population density. The reduction in cell population would conserve the nutrients that in turn might enhance the survival of the species.


Assuntos
Deinococcus/efeitos dos fármacos , Deinococcus/crescimento & desenvolvimento , Manganês/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Meios de Cultivo Condicionados/farmacologia , Deinococcus/citologia , Relação Dose-Resposta a Droga , Endopeptidase K , Peso Molecular
18.
Proc Natl Acad Sci U S A ; 107(9): 4022-7, 2010 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-20160119

RESUMO

Cellular adaptations to stress often involve changes in RNA metabolism. One RNA-binding protein that has been implicated in RNA handling during environmental stress in both animal cells and prokaryotes is the Ro autoantigen. However, the function of Ro in stress conditions has been unknown. We report that a Ro protein in the radiation-resistant eubacterium Deinococcus radiodurans participates in ribosomal RNA (rRNA) degradation during growth in stationary phase, a form of starvation. Levels of the Ro ortholog Rsr increase dramatically during growth in stationary phase and the presence of Rsr confers a growth advantage. Examination of rRNA profiles reveals that Rsr, the 3' to 5' exoribonuclease polynucleotide phosphorylase (PNP) and additional nucleases are all involved in the extensive rRNA decay that occurs during starvation of this bacterium. We show that Rsr, PNP, and an Rsr-PNP complex exhibit increased sedimentation with ribosomal subunits during stationary phase. As the fractionation of PNP with ribosomal subunits is strongly enhanced in the presence of Rsr, we propose that Ro proteins function as cofactors to increase the association of exonucleases with certain substrates during stress.


Assuntos
Deinococcus/fisiologia , RNA Bacteriano/metabolismo , RNA Ribossômico/metabolismo , Ribonucleoproteínas/fisiologia , Northern Blotting , Deinococcus/genética , Deinococcus/crescimento & desenvolvimento
19.
Bioprocess Biosyst Eng ; 36(6): 781-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23355081

RESUMO

Bacteria are able to adapt to changes in the environment using two-component signal transduction systems (TCSs) composed of a histidine kinase (HK) and a response regulator (RR). Deinococcus radiodurans, one of the most resistant organisms to ionizing radiation, has 20 putative HKs and 25 putative RRs. In this study, we constructed 12 D. radiodurans mutant strains lacking a gene encoding a HK and surveyed their resistance to γ-radiation, UV-B radiation (302 nm), mitomycin C (MMC), and H(2)O(2). Five (dr0860 (-), dr1174 (-), dr1556 (-), dr2244 (-), and dr2419 (-)) of the 12 mutant strains showed at least a one-log cycle reduction in γ-radiation resistance. The mutations (1) dr1174, dr1227, and dr2244 and (2) dr0860, dr2416, and dr2419 caused decreases in resistance to UV radiation and MMC, respectively. Only the dr2416 and dr2419 mutant strains showed higher sensitivity to H(2)O(2) than the wild-type. Reductions in the resistance to γ-radiation and H(2)O(2), but not to UV and MMC, were observed in the absence of DR2415, which seems to be a cognate RR of DR2416. This result suggests that DR2415/DR2416 (DrtR/S: DNA damage response TCS) may be another TCS responsible for the extreme resistance of D. radiodurans to DNA-damaging agents.


Assuntos
Proteínas de Bactérias , Reagentes de Ligações Cruzadas/farmacologia , Deinococcus , Raios gama , Peróxido de Hidrogênio/farmacologia , Mitomicina/farmacologia , Mutação , Oxidantes/farmacologia , Proteínas Quinases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dano ao DNA , Deinococcus/genética , Deinococcus/crescimento & desenvolvimento , Deinococcus/metabolismo , Histidina Quinase , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
20.
J Bacteriol ; 194(6): 1552-61, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22228732

RESUMO

This dynamic proteome study describes the physiology of growth and survival of Deinococcus geothermalis, in conditions simulating paper machine waters being aerobic, warm, and low in carbon and manganese. The industrial environment of this species differs from its natural habitats, geothermal springs and deep ocean subsurfaces, by being highly exposed to oxygen. Quantitative proteome analysis using two-dimensional gel electrophoresis and bioinformatic tools showed expression change for 165 proteins, from which 47 were assigned to a function. We propose that D. geothermalis grew and survived in aerobic conditions by channeling central carbon metabolism to pathways where mainly NADPH rather than NADH was retrieved from the carbon source. A major part of the carbon substrate was converted into succinate, which was not a fermentation product but likely served combating reactive oxygen species (ROS). Transition from growth to nongrowth resulted in downregulation of the oxidative phosphorylation observed as reduced expression of V-type ATPase responsible for ATP synthesis in D. geothermalis. The battle against oxidative stress was seen as upregulation of superoxide dismutase (Mn dependent) and catalase, as well as several protein repair enzymes, including FeS cluster assembly proteins of the iron-sulfur cluster assembly protein system, peptidylprolyl isomerase, and chaperones. Addition of soluble Mn reinitiated respiration and proliferation with concomitant acidification, indicating that aerobic metabolism was restricted by access to manganese. We conclude that D. geothermalis prefers to combat ROS using manganese-dependent enzymes, but when manganese is not available central carbon metabolism is used to produce ROS neutralizing metabolites at the expense of high utilization of carbon substrate.


Assuntos
Meios de Cultura/química , Deinococcus/fisiologia , Manganês/metabolismo , Aerobiose , Proteínas de Bactérias/análise , Biologia Computacional , Deinococcus/crescimento & desenvolvimento , Deinococcus/metabolismo , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Viabilidade Microbiana , Estresse Oxidativo , Proteoma/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA