Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
J Biol Chem ; 294(44): 15889-15897, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31300555

RESUMO

The building blocks of DNA, dNTPs, can be produced de novo or can be salvaged from deoxyribonucleosides. However, to what extent the absence of de novo dNTP production can be compensated for by the salvage pathway is unknown. Here, we eliminated de novo dNTP synthesis in the mouse heart and skeletal muscle by inactivating ribonucleotide reductase (RNR), a key enzyme for the de novo production of dNTPs, at embryonic day 13. All other tissues had normal de novo dNTP synthesis and theoretically could supply heart and skeletal muscle with deoxyribonucleosides needed for dNTP production by salvage. We observed that the dNTP and NTP pools in WT postnatal hearts are unexpectedly asymmetric, with unusually high dGTP and GTP levels compared with those in whole mouse embryos or murine cell cultures. We found that RNR inactivation in heart led to strongly decreased dGTP and increased dCTP, dTTP, and dATP pools; aberrant DNA replication; defective expression of muscle-specific proteins; progressive heart abnormalities; disturbance of the cardiac conduction system; and lethality between the second and fourth weeks after birth. We conclude that dNTP salvage cannot substitute for de novo dNTP synthesis in the heart and that cardiomyocytes and myocytes initiate DNA replication despite an inadequate dNTP supply. We discuss the possible reasons for the observed asymmetry in dNTP and NTP pools in WT hearts.


Assuntos
Desoxirribonucleotídeos/biossíntese , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/metabolismo , Animais , Replicação do DNA , Coração/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo
2.
Biochemistry ; 58(14): 1845-1860, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30855138

RESUMO

Class I ribonucleotide reductases (RNRs) share a common mechanism of nucleotide reduction in a catalytic α subunit. All RNRs initiate catalysis with a thiyl radical, generated in class I enzymes by a metallocofactor in a separate ß subunit. Class Id RNRs use a simple mechanism of cofactor activation involving oxidation of a MnII2 cluster by free superoxide to yield a metal-based MnIIIMnIV oxidant. This simple cofactor assembly pathway suggests that class Id RNRs may be representative of the evolutionary precursors to more complex class Ia-c enzymes. X-ray crystal structures of two class Id α proteins from Flavobacterium johnsoniae ( Fj) and Actinobacillus ureae ( Au) reveal that this subunit is distinctly small. The enzyme completely lacks common N-terminal ATP-cone allosteric motifs that regulate overall activity, a process that normally occurs by dATP-induced formation of inhibitory quaternary structures to prevent productive ß subunit association. Class Id RNR activity is insensitive to dATP in the Fj and Au enzymes evaluated here, as expected. However, the class Id α protein from Fj adopts higher-order structures, detected crystallographically and in solution. The Au enzyme does not exhibit these quaternary forms. Our study reveals structural similarity between bacterial class Id and eukaryotic class Ia α subunits in conservation of an internal auxiliary domain. Our findings with the Fj enzyme illustrate that nucleotide-independent higher-order quaternary structures can form in simple RNRs with truncated or missing allosteric motifs.


Assuntos
Domínio Catalítico , Desoxirribonucleotídeos/química , Conformação Proteica , Ribonucleotídeo Redutases/química , Actinobacillus/enzimologia , Actinobacillus/genética , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Biocatálise , Cristalografia por Raios X , Desoxirribonucleotídeos/biossíntese , Desoxirribonucleotídeos/genética , Flavobacterium/enzimologia , Flavobacterium/genética , Modelos Moleculares , Filogenia , Ribonucleotídeo Redutases/classificação , Ribonucleotídeo Redutases/genética , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Difração de Raios X
3.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931685

RESUMO

HIV-1 infection of noncycling cells, such as dendritic cells (DCs), is impaired due to limited availability of deoxynucleoside triphosphates (dNTPs), which are needed for HIV-1 reverse transcription. The levels of dNTPs are tightly regulated during the cell cycle and depend on the balance between dNTP biosynthesis and degradation. SAMHD1 potently blocks HIV-1 replication in DCs, although the underlying mechanism is still unclear. SAMHD1 has been reported to be able to degrade dNTPs and viral nucleic acids, which may both hamper HIV-1 reverse transcription. The relative contribution of these activities may differ in cycling and noncycling cells. Here, we show that inhibition of HIV-1 replication in monocyte-derived DCs (MDDCs) is associated with an increased expression of p21cip1/waf, a cell cycle regulator that is involved in the differentiation and maturation of DCs. Induction of p21 in MDDCs decreases the pool of dNTPs and increases the antiviral active isoform of SAMHD1. Although both processes are complementary in inhibiting HIV-1 replication, the antiviral activity of SAMHD1 in our primary cell model appears to be, at least partially, independent of its dNTPase activity. The reduction in the pool of dNTPs in MDDCs appears rather mostly due to a p21-mediated suppression of several enzymes involved in dNTP synthesis (i.e., RNR2, TYMS, and TK-1). These results are important to better understand the interplay between HIV-1 and DCs and may inform the design of new therapeutic approaches to decrease viral dissemination and improve immune responses against HIV-1.IMPORTANCE DCs play a key role in the induction of immune responses against HIV. However, HIV has evolved ways to exploit these cells, facilitating immune evasion and virus dissemination. We have found that the expression of p21, a cyclin-dependent kinase inhibitor involved in cell cycle regulation and monocyte differentiation and maturation, potentially can contribute to the inhibition of HIV-1 replication in monocyte-derived DCs through multiple mechanisms. p21 decreased the size of the intracellular dNTP pool. In parallel, p21 prevented SAMHD1 phosphorylation and promoted SAMHD1 dNTPase-independent antiviral activity. Thus, induction of p21 resulted in conditions that allowed the effective inhibition of HIV-1 replication through complementary mechanisms. Overall, p21 appears to be a key regulator of HIV infection in myeloid cells.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Dendríticas/virologia , Desoxirribonucleotídeos/biossíntese , HIV-1/fisiologia , Monócitos/virologia , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Antivirais/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Replicação do DNA , Células Dendríticas/fisiologia , Desoxirribonucleotídeos/química , HIV-1/imunologia , Humanos , Polifosfatos/química , Polifosfatos/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/genética , Replicação Viral
4.
Nucleic Acids Res ; 44(7): 3000-12, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27001521

RESUMO

DNA templates containing a set of base modifications in the major groove (5-substituted pyrimidines or 7-substituted 7-deazapurines bearing H, methyl, vinyl, ethynyl or phenyl groups) were prepared by PCR using the corresponding base-modified 2'-deoxyribonucleoside triphosphates (dNTPs). The modified templates were used in an in vitro transcription assay using RNA polymerase from Bacillus subtilis and Escherichia coli Some modified nucleobases bearing smaller modifications (H, Me in 7-deazapurines) were perfectly tolerated by both enzymes, whereas bulky modifications (Ph at any nucleobase) and, surprisingly, uracil blocked transcription. Some middle-sized modifications (vinyl or ethynyl) were partly tolerated mostly by the E. colienzyme. In all cases where the transcription proceeded, full length RNA product with correct sequence was obtained indicating that the modifications of the template are not mutagenic and the inhibition is probably at the stage of initiation. The results are promising for the development of bioorthogonal reactions for artificial chemical switching of the transcription.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , DNA/química , Transcrição Gênica , Bacillus subtilis/enzimologia , DNA/metabolismo , Desoxirribonucleotídeos/biossíntese , Desoxirribonucleotídeos/química , Escherichia coli/enzimologia , Conformação de Ácido Nucleico , Moldes Genéticos
5.
Semin Cell Dev Biol ; 30: 97-103, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24704278

RESUMO

Synthesis of deoxynucleoside triphosphates (dNTPs) is essential for both DNA replication and repair and a key step in this process is catalyzed by ribonucleotide reductases (RNRs), which reduce ribonucleotides (rNDPs) to their deoxy forms. Tight regulation of RNR is crucial for maintaining the correct levels of all four dNTPs, which is important for minimizing the mutation rate and avoiding genome instability. Although allosteric control of RNR was the first discovered mechanism involved in regulation of the enzyme, other controls have emerged in recent years. These include regulation of expression of RNR genes, proteolysis of RNR subunits, control of the cellular localization of the small RNR subunit, and regulation of RNR activity by small protein inhibitors. This review will focus on these additional mechanisms of control responsible for providing a balanced supply of dNTPs.


Assuntos
Reparo do DNA , Replicação do DNA , Ribonucleotídeo Redutases/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Ciclo Celular , Desoxirribonucleotídeos/biossíntese , Retroalimentação Fisiológica , Instabilidade Genômica , Humanos
6.
Proc Natl Acad Sci U S A ; 110(42): E3997-4006, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24082141

RESUMO

Macrophages are a major target cell for HIV-1, and their infection contributes to HIV pathogenesis. We have previously shown that the cyclin-dependent kinase inhibitor p21 inhibits the replication of HIV-1 and other primate lentiviruses in human monocyte-derived macrophages by impairing reverse transcription of the viral genome. In the attempt to understand the p21-mediated restriction mechanisms, we found that p21 impairs HIV-1 and simian immunodeficiency virus (SIV)mac reverse transcription in macrophages by reducing the intracellular deoxyribonucleotide (dNTP) pool to levels below those required for viral cDNA synthesis by a SAM domain and HD domain-containing protein 1 (SAMHD1)-independent pathway. We found that p21 blocks dNTP biosynthesis by down-regulating the expression of the RNR2 subunit of ribonucleotide reductase, an enzyme essential for the reduction of ribonucleotides to dNTP. p21 inhibits RNR2 transcription by repressing E2F1 transcription factor, its transcriptional activator. Our findings unravel a cellular pathway that restricts HIV-1 and other primate lentiviruses by affecting dNTP synthesis, thereby pointing to new potential cellular targets for anti-HIV therapeutic strategies.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Desoxirribonucleotídeos/biossíntese , Regulação Enzimológica da Expressão Gênica , Infecções por HIV/metabolismo , HIV-1/fisiologia , Macrófagos/metabolismo , Ribonucleotídeo Redutases/biossíntese , Replicação Viral/fisiologia , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , DNA Complementar/biossíntese , DNA Complementar/genética , DNA Viral/biossíntese , DNA Viral/genética , Desoxirribonucleotídeos/genética , Regulação para Baixo/genética , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Infecções por HIV/terapia , Infecções por HIV/virologia , Macrófagos/virologia , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Ribonucleotídeo Redutases/genética , Proteína 1 com Domínio SAM e Domínio HD , Vírus da Imunodeficiência Símia/fisiologia , Transcrição Gênica/genética
7.
Nucleic Acids Res ; 39(4): 1586-94, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20947563

RESUMO

Template independent polymerases, and terminal deoxynucleotidyl transferase (TdT) in particular, have been widely used in enzymatic labeling of DNA 3'-ends, yielding fluorescently-labeled polymers. The majority of fluorescent nucleotides used as TdT substrates contain tethered fluorophores attached to a natural nucleotide, and can be hindered by undesired fluorescence characteristics such as self-quenching. We previously documented the inherent fluorescence of a set of four benzo-expanded deoxynucleoside analogs (xDNA) that maintain Watson-Crick base pairing and base stacking ability; however, their substrate abilities for standard template-dependent polymerases were hampered by their large size. However, it seemed possible that a template-independent enzyme, due to lowered geometric constraints, might be less restrictive of nucleobase size. Here, we report the synthesis and study of xDNA nucleoside triphosphates, and studies of their substrate abilities with TdT. We find that this polymerase can incorporate each of the four xDNA monomers with kinetic efficiencies that are nearly the same as those of natural nucleotides, as measured by steady-state methods. As many as 30 consecutive monomers could be incorporated. Fluorescence changes over time could be observed in solution during the enzymatic incorporation of expanded adenine (dxATP) and cytosine (dxCTP) analogs, and after incorporation, when attached to a glass solid support. For (dxA)(n) polymers, monomer emission quenching and long-wavelength excimer emission was observed. For (dxC)(n), fluorescence enhancement was observed in the polymer. TdT-mediated synthesis may be a useful approach for creating xDNA labels or tags on DNA, making use of the fluorescence and strong hybridization properties of the xDNA.


Assuntos
DNA Nucleotidilexotransferase/metabolismo , Desoxirribonucleotídeos/biossíntese , Corantes Fluorescentes/química , Primers do DNA , Nucleotídeos de Desoxiadenina/análise , Nucleotídeos de Desoxiadenina/metabolismo , Nucleotídeos de Desoxicitosina/análise , Nucleotídeos de Desoxicitosina/metabolismo , Desoxirribonucleotídeos/química , Desoxirribonucleotídeos/metabolismo , Cinética , Microscopia de Fluorescência , Moldes Genéticos
10.
Microbiology (Reading) ; 157(Pt 7): 1955-1967, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21527473

RESUMO

Ribonucleotide reductase (RNR) is the only enzyme specifically required for the synthesis of deoxyribonucleotides (dNTPs). Surprisingly, Escherichia coli cells carrying the nrdA101 allele, which codes for a thermosensitive RNR101, are able to replicate entire chromosomes at 42 °C under RNA or protein synthesis inhibition. Here we show that the RNR101 protein is unstable at 42 °C and that its degradation under restrictive conditions is prevented by the presence of rifampicin. Nevertheless, the mere stability of the RNR protein at 42 °C cannot explain the completion of chromosomal DNA replication in the nrdA101 mutant. We found that inactivation of the DnaA protein by using several dnaAts alleles allows complete chromosome replication in the absence of rifampicin and suppresses the nucleoid segregation and cell division defects observed in the nrdA101 mutant at 42 °C. As both inactivation of the DnaA protein and inhibition of RNA synthesis block the occurrence of new DNA initiations, the consequent decrease in the number of forks per chromosome could be related to those effects. In support of this notion, we found that avoiding multifork replication rounds by the presence of moderate extra copies of datA sequence increases the relative amount of DNA synthesis of the nrdA101 mutant at 42 °C. We propose that a lower replication fork density results in an improvement of the progression of DNA replication, allowing replication of the entire chromosome at the restrictive temperature. The mechanism related to this effect is also discussed.


Assuntos
Proteínas de Bactérias/genética , Replicação do DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , Alelos , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Western Blotting , DNA Bacteriano/biossíntese , DNA Bacteriano/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleotídeos/biossíntese , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Citometria de Fluxo , Temperatura Alta , Estabilidade Proteica , RNA/biossíntese , Rifampina/farmacologia
11.
Hepatology ; 51(5): 1538-46, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20155784

RESUMO

UNLABELLED: Hepatitis B virus (HBV) causes liver diseases from acute hepatitis to cirrhosis and liver cancer. Currently, more than 350 million people are chronic HBV carriers, with devastating prognosis. HBV is a small enveloped noncytopathic virus, containing a circular partially double-stranded DNA genome, and exhibits strong tropism for human liver cells. Infected individuals (acute and chronic) secrete about 10(7) to 10(11) virions per day to the bloodstream, with each infected cell releasing 50-300 viruses per day. HBV infects nondividing hepatocytes and replicates by reverse-transcribing the pregenomic RNA to DNA in the host cells. The level of deoxyribonucleotide triphosphates (dNTPs) in nondividing cells is too low to support viral replication and enable the high yield of secreted virions. Here, we report production of dNTPs by viral-dependent transcription activation of R2, the key component of ribonucleotide reductase (RNR), and show that this process is critical for the HBV life-cycle. This was found in an established HBV-positive cell line and was reproduced by HBV DNA-transduced cells, in both culture and mice. Furthermore, the viral hepatitis B X protein is essential in activating R2 expression by blocking access of Regulatory factor x1, a repressor of the R2 gene. CONCLUSION: Our findings demonstrate that the hepatitis B X protein is critical in infecting nonproliferating hepatocytes, which contain a low dNTP level. In addition, we provide molecular evidence for a new mechanism of HBV-host cell interaction where RNR-R2, a critical cell-cycle gene, is selectively activated in nonproliferating cells. This mechanism may set the stage for formulating a new category of anti-HBV drugs.


Assuntos
Desoxirribonucleotídeos/biossíntese , Vírus da Hepatite B/genética , Hepatócitos/metabolismo , Ribonucleotídeo Redutases/genética , Transativadores/genética , Animais , Proteínas de Ligação a DNA/antagonistas & inibidores , Feminino , Células Hep G2 , Humanos , Camundongos , Células NIH 3T3 , Fatores de Transcrição de Fator Regulador X , Ribonucleotídeo Redutases/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias , Replicação Viral/genética
12.
Nucleic Acids Res ; 37(17): e114, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19553193

RESUMO

We demonstrate a new, efficient and easy-to-use method for enzymatic synthesis of (stereo-)specific and segmental (13)C/(15)N/(2)H isotope-labeled single-stranded DNA in amounts sufficient for NMR, based on the highly efficient self-primed PCR. To achieve this, new approaches are introduced and combined. (i) Asymmetric endonuclease double digestion of tandem-repeated PCR product. (ii) T4 DNA ligase mediated ligation of two ssDNA segments. (iii) In vitro dNTP synthesis, consisting of in vitro rNTP synthesis followed by enzymatic stereo-selective reduction of the C2' of the rNTP, and a one-pot add-up synthesis of dTTP from dUTP. The method is demonstrated on two ssDNAs: (i) a 36-nt three-way junction, selectively (13)C(9)/(15)N(3)/(2)H((1',2'',3',4',5',5''))-dC labeled and (ii) a 39-nt triple-repeat three-way junction, selectively (13)C(9)/(15)N(3)/(2)H((1',2'',3',4',5',5''))-dC and (13)C(9)/(15)N(2)/(2)H((1',2'',3',4',5',5''))-dT labeled in segment C20-C39. Their NMR spectra show the spectral simplification, while the stereo-selective (2)H-labeling in the deoxyribose of the dC-residues, straightforwardly provided assignment of their C1'-H2' and C2'-H2' resonances. The labeling protocols can be extended to larger ssDNA molecules and to more than two segments.


Assuntos
DNA de Cadeia Simples/biossíntese , DNA de Cadeia Simples/química , Ressonância Magnética Nuclear Biomolecular , Reação em Cadeia da Polimerase/métodos , DNA Ligases , Primers do DNA/química , Enzimas de Restrição do DNA , Desoxirribonucleotídeos/biossíntese , Marcação por Isótopo
13.
Biofizika ; 56(4): 748-59, 2011.
Artigo em Russo | MEDLINE | ID: mdl-21950080

RESUMO

The mechanisms of nitric oxide (NO) generation from exogenous and endogenous sources, induced by the addition of the carcinogen diethylnitrosoamine (DENA) to rat organism have been studied. Within 15 h after the addition of DENA, the carcinogen itselt acts as an exogenous NO donor. The products of protein degradation (the process induced by DENA) act as endogenous donors of NO. It was shown that the generation of nitric oxide from diethylnitrosoamine leads to deep hemic and tissue hypoxia and induces the inactivation of oxygen-dependent enzymes, including ribonucleotide reductase, and the inhibition of ATP synthesis. Under these conditions, the protein synthesis and as a consequence the synthesis of deoxyribonucleotides and DNA are strongly suppressed; i.e., diethylnitrosoamine produces the effect similar to the action of the antibiotic cycloheximide, an inhibitor of translation. The administration of cycloheximide to the animal organism also led to the appearance of a considerable amount of nitric oxide in the blood. It is assumed that nitric oxide initiates (on the administration of the carcinogen) or at least enhances (on the administration of cycloheximide) the blockage of the synthesis of the protein, deoxyribonucleotides, and DNA. In response to the disturbance of protein synthesis, the complex of enzymes is activated that accomplish the utilization of the degradation products of proteins, including the inducible form of NO synthase.


Assuntos
Carcinógenos/toxicidade , DNA/biossíntese , Desoxirribonucleotídeos/biossíntese , Dietilnitrosamina/toxicidade , Biossíntese de Proteínas/efeitos dos fármacos , RNA/biossíntese , Alquilantes/efeitos adversos , Alquilantes/farmacologia , Animais , Cicloeximida/farmacologia , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Inibidores da Síntese de Proteínas/farmacologia , Ratos
14.
Sci Rep ; 11(1): 13474, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188151

RESUMO

Deoxyribonucleotide biosynthesis from ribonucleotides supports the growth of active cancer cells by producing building blocks for DNA. Although ribonucleotide reductase (RNR) is known to catalyze the rate-limiting step of de novo deoxyribonucleotide triphosphate (dNTP) synthesis, the biological function of the RNR large subunit (RRM1) in small-cell lung carcinoma (SCLC) remains unclear. In this study, we established siRNA-transfected SCLC cell lines to investigate the anticancer effect of silencing RRM1 gene expression. We found that RRM1 is required for the full growth of SCLC cells both in vitro and in vivo. In particular, the deletion of RRM1 induced a DNA damage response in SCLC cells and decreased the number of cells with S phase cell cycle arrest. We also elucidated the overall changes in the metabolic profile of SCLC cells caused by RRM1 deletion. Together, our findings reveal a relationship between the deoxyribonucleotide biosynthesis axis and key metabolic changes in SCLC, which may indicate a possible link between tumor growth and the regulation of deoxyribonucleotide metabolism in SCLC.


Assuntos
Proliferação de Células , Desoxirribonucleotídeos/biossíntese , Neoplasias Pulmonares/metabolismo , Carcinoma de Pequenas Células do Pulmão/metabolismo , Animais , Linhagem Celular Tumoral , Dano ao DNA , Desoxirribonucleotídeos/genética , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia
15.
Neuromuscul Disord ; 19(2): 147-50, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19138848

RESUMO

This report describes two brothers, both deceased in infancy, with severe depletion of mitochondrial DNA (mtDNA) in muscle tissue. Both had feeding difficulties, failure to thrive, severe muscular hypotonia and lactic acidosis. One of the boys developed a renal proximal tubulopathy. A novel homozygous c.686 G-->T missense mutation in the RRM2B gene, encoding the p53-inducible ribonucleotide reductase subunit (p53R2), was identified. This is the third report on mutations in RRM2B associated with severe mtDNA depletion, which further highlights the importance of de novo synthesis of deoxyribonucleotides (dNTPs) for mtDNA maintenance.


Assuntos
Proteínas de Ciclo Celular/genética , DNA Mitocondrial/genética , Predisposição Genética para Doença/genética , Doenças Mitocondriais/genética , Doenças Musculares/genética , Mutação de Sentido Incorreto/genética , Ribonucleotídeo Redutases/genética , Acidose Láctica/genética , Acidose Láctica/metabolismo , Acidose Láctica/fisiopatologia , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/fisiopatologia , Análise Mutacional de DNA , Desoxirribonucleotídeos/biossíntese , Regulação para Baixo , Evolução Fatal , Marcadores Genéticos/genética , Homozigoto , Humanos , Lactente , Masculino , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/fisiopatologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Hipotonia Muscular/fisiopatologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/metabolismo , Doenças Musculares/fisiopatologia , Homologia de Sequência de Aminoácidos
16.
Biofizika ; 54(2): 311-22, 2009.
Artigo em Russo | MEDLINE | ID: mdl-19402544

RESUMO

The responses of deoxyribonucleotide (dNTP), DNA, and protein synthesis systems in blood-forming organs of animals (dogs, mice) as well as changes in Fe(3+)-transferrin (Fe(3+)-TF) and Cu(2+)-ceruloplasmin (Cu(2+)-CP) pools in blood to gamma-irradiation and the administration of radioprotectors have been studied. It has been shown that changes in Fe(3+)-TF and Cu(2+)-CP pools in blood are indices of changes of body radioresistance and are reliably controlled by the EPR technique. An increase in the Fe(3+)-TF pool promotes the activation of synthesis of dNTP, DNA, and Fe(3+)-containing proteins, which are essential for repair efficiency during early post-irradiation time as well as for the development of compensatory and restorative reactions of cellular systems; i.e., they are responsible for body resistance to DNA-damaging factors. It is important that the intensity of responses depends on the initial state of the organism. Thus, dogs with initial individual characteristics of blood typical for "suppressed" or "activated" states had abnormally high responses to irradiation by low doses of 0.25 and 0.5 Gy. This fact is important for the estimation of consequences of prolonged low-dose irradiation for human population. It has been shown that radioprotectors, efficient in survival test activate the synthesis of dNTP, DNA, and proteins in organs. The intensity of dNTP synthesis and the time when dNTP pools get maximum values determine the efficiency of protectors and the time of irradiation after their administration.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Raios gama/efeitos adversos , Tolerância a Radiação/efeitos da radiação , Animais , Ceruloplasmina/metabolismo , Cobre/sangue , DNA/biossíntese , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Desoxirribonucleotídeos/biossíntese , Cães , Relação Dose-Resposta à Radiação , Ferro/sangue , Masculino , Camundongos , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/efeitos da radiação , Tolerância a Radiação/efeitos dos fármacos , Protetores contra Radiação/farmacologia , Transferrina/metabolismo
17.
Methods Mol Biol ; 1999: 103-127, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31127572

RESUMO

Regulation of dNTP pools in an intracellular environment is not only vital for DNA replication but also plays a major role in maintaining genomic stability. Ribonucleotide reductase (RNR) catalyzes the rate-limiting step in dNTP synthesis and altered regulation of RNR leads to imbalanced dNTP pools. Increased dNTP levels are mutagenic and have the potential to interfere with pathways that are involved in DNA replication, repair and DNA damage control. However, the mechanisms through which altered dNTP pools affect these pathways are poorly understood. Nonetheless, altered dNTP pools have been identified in a number of cellular contexts, including cancer. In order to interpret and analyze the effects of altered dNTP pools, we need quantitative information about dNTP pools in different genetic and environmental contexts in vivo. Here we describe a high-throughput fluorescence-based assay that uses a qPCR-based approach to quantify dNTP levels for use with Saccharomyces cerevisiae extracts.


Assuntos
Desoxirribonucleotídeos/isolamento & purificação , Ensaios de Triagem em Larga Escala/métodos , Saccharomyces cerevisiae/genética , Reparo do DNA , Desoxirribonucleotídeos/biossíntese , Fluorescência , Mutagênese , Reação em Cadeia da Polimerase em Tempo Real/métodos , Ribonucleotídeo Redutases/metabolismo
18.
Cell Cycle ; 18(21): 2817-2827, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31544596

RESUMO

Deoxyribonucleotide metabolites (dNTPs) are the substrates for DNA synthesis. It has been proposed that their availability influences the progression of the cell cycle during development and pathological situations such as tumor growth. The mechanism has remained unclear for the link between cell cycle and dNTP levels beyond their role as substrates. Here, we review recent studies concerned with the dynamics of dNTP levels in early embryos and the role of DNA replication checkpoint as a sensor of dNTP levels.


Assuntos
Ciclo Celular/fisiologia , Desoxirribonucleotídeos/biossíntese , Desoxirribonucleotídeos/química , Drosophila/embriologia , Animais , Divisão Celular/fisiologia , Replicação do DNA/genética , Drosophila/genética , Redes e Vias Metabólicas/fisiologia , Óvulo/crescimento & desenvolvimento
19.
Nat Commun ; 9(1): 1851, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29749372

RESUMO

The thioredoxin-1 (Trx1) system is an important contributor to cellular redox balance and is a sensor of energy and glucose metabolism. Here we show critical c-Myc-dependent activation of the Trx1 system during thymocyte and peripheral T-cell proliferation, but repression during T-cell quiescence. Deletion of thioredoxin reductase-1 (Txnrd1) prevents expansion the CD4-CD8- thymocyte population, whereas Txnrd1 deletion in CD4+CD8+ thymocytes does not affect further maturation and peripheral homeostasis of αßT cells. However, Txnrd1 is critical for expansion of the activated T-cell population during viral and parasite infection. Metabolomics show that TrxR1 is essential for the last step of nucleotide biosynthesis by donating reducing equivalents to ribonucleotide reductase. Impaired availability of 2'-deoxyribonucleotides induces the DNA damage response and cell cycle arrest of Txnrd1-deficient T cells. These results uncover a pivotal function of the Trx1 system in metabolic reprogramming of thymic and peripheral T cells and provide a rationale for targeting Txnrd1 in T-cell leukemia.


Assuntos
Proteínas de Transporte/metabolismo , Proliferação de Células/fisiologia , Reprogramação Celular/fisiologia , DNA/biossíntese , Linfócitos T/fisiologia , Tiorredoxina Redutase 1/fisiologia , Tiorredoxinas/metabolismo , Tiorredoxinas/fisiologia , Animais , Transplante de Medula Óssea , Linhagem Celular , Desoxirribonucleotídeos/biossíntese , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Leishmania major/imunologia , Leishmania major/patogenicidade , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Masculino , Metabolômica , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Quimeras de Transplante
20.
Mol Cell Biol ; 7(1): 532-4, 1987 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-3561401

RESUMO

dCTP pools equilibrated to equivalent specific activities in Chinese hamster ovary cells or in nuclei after incubation of cells with radiolabeled nucleosides, indicating that dCTP in nuclei does not constitute a distinct metabolic pool. In the G1 phase, [5-3H]deoxycytidine labeled dCTP to unexpectedly high specific activities. This may explain reports of replication-excluded DNA precursor pools.


Assuntos
Ciclo Celular , DNA/biossíntese , Desoxirribonucleotídeos/biossíntese , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Cricetinae , Cricetulus , Feminino , Interfase , Cinética , Ovário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA