Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Environ Microbiol ; 21(10): 3953-3964, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31314939

RESUMO

Around the world, several dozen deep sedimentary aquifers are being used for storage of natural gas. Ad hoc studies of the microbial ecology of some of them have suggested that sulfate reducing and methanogenic microorganisms play a key role in how these aquifers' communities function. Here, we investigate the influence of gas storage on these two metabolic groups by using high-throughput sequencing and show the importance of sulfate-reducing Desulfotomaculum and a new monophyletic methanogenic group. Aquifer microbial diversity was significantly related to the geological level. The distance to the stored natural gas affects the ratio of sulfate-reducing Firmicutes to deltaproteobacteria. In only one aquifer, the methanogenic archaea dominate the sulfate-reducers. This aquifer was used to store town gas (containing at least 50% H2 ) around 50 years ago. The observed decrease of sulfates in this aquifer could be related to stimulation of subsurface sulfate-reducers. These results suggest that the composition of the microbial communities is impacted by decades old transient gas storage activity. The tremendous stability of these gas-impacted deep subsurface microbial ecosystems suggests that in situ biotic methanation projects in geological reservoirs may be sustainable over time.


Assuntos
Archaea/metabolismo , Deltaproteobacteria/metabolismo , Desulfotomaculum/metabolismo , Firmicutes/metabolismo , Sedimentos Geológicos/microbiologia , Gás Natural , Sedimentos Geológicos/química , Geologia , Água Subterrânea/microbiologia , Microbiota , RNA Ribossômico 16S/genética , Sulfatos/metabolismo
2.
J Environ Sci (China) ; 76: 238-248, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30528014

RESUMO

Anaerobic sludge from a sewage treatment plant was used to acclimatize microbial colonies capable of anaerobic oxidation of methane (AOM) coupled to sulfate reduction. Clone libraries and fluorescence in situ hybridization were used to investigate the microbial population. Sulfate-reducing bacteria (SRB) (e.g., Desulfotomaculum arcticum and Desulfobulbus propionicus) and anaerobic methanotrophic archaea (ANME) (e.g., Methanosaeta sp. and Methanolinea sp.) coexisted in the enrichment. The archaeal and bacterial cells were randomly or evenly distributed throughout the consortia. Accompanied by sulfate reduction, methane was oxidized anaerobically by the consortia of methane-oxidizing archaea and SRB. Moreover, CH4 and SO42- were consumed by methanotrophs and sulfate reducers with CO2 and H2S as products. The H3CSH produced by methanotrophy was an intermediate product during the process. The methanotrophic enrichment was inoculated in a down-flow biofilter for the treatment of methane and H2S from a landfill site. On average, 93.33% of H2S and 10.71% of methane was successfully reduced in the biofilter. This study tries to provide effective method for the synergistic treatment of waste gas containing sulfur compounds and CH4.


Assuntos
Sulfeto de Hidrogênio/isolamento & purificação , Sulfeto de Hidrogênio/metabolismo , Metano/isolamento & purificação , Metano/metabolismo , Anaerobiose , Biodegradação Ambiental , Deltaproteobacteria/metabolismo , Desulfotomaculum/metabolismo , Methanomicrobiales/metabolismo , Methanosarcinales/metabolismo , Oxirredução
3.
Environ Microbiol ; 20(1): 281-292, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29124868

RESUMO

Mesotoga prima strain PhosAc3 is a mesophilic representative of the phylum Thermotogae comprising only fermentative bacteria so far. We show that while unable to ferment glucose, this bacterium is able to couple its oxidation to reduction of elemental sulfur. We demonstrate furthermore that M. prima strain PhosAc3 as well as M. prima strain MesG1 and Mesotoga infera are able to grow in syntrophic association with sulfate-reducing bacteria (SRB) acting as hydrogen scavengers through interspecies hydrogen transfer. Hydrogen production was higher in M. prima strain PhosAc3 cells co-cultured with SRB than in cells cultured alone in the presence of elemental sulfur. We propose that the efficient sugar-oxidizing metabolism by M. prima strain PhosAc3 in syntrophic association with a hydrogenotrophic sulfate-reducing bacterium can be extrapolated to all members of the Mesotoga genus. Genome comparison of Thermotogae members suggests that the metabolic difference between Mesotoga and Thermotoga species (sugar oxidation versus fermentation) is mainly due to the absence of the bifurcating [FeFe]-hydrogenase in the former. Such an obligate oxidative process for using sugars, unusual within prokaryotes, is the first reported within the Thermotogae. It is hypothesized to be of primary ecological importance for growth of Mesotoga spp. in the environments that they inhabit.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Desulfotomaculum/metabolismo , Desulfovibrio vulgaris/metabolismo , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/metabolismo , Açúcares/metabolismo , Simbiose/fisiologia , Técnicas de Cocultura , Fermentação/fisiologia , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/crescimento & desenvolvimento , Hidrogênio/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sulfatos/metabolismo , Enxofre/metabolismo
4.
RNA Biol ; 15(4-5): 471-479, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29879865

RESUMO

In many organisms, the UGA stop codon is recoded to insert selenocysteine (Sec) into proteins. Sec incorporation in bacteria is directed by an mRNA element, known as the Sec-insertion sequence (SECIS), located downstream of the Sec codon. Unlike other aminoacyl-tRNAs, Sec-tRNASec is delivered to the ribosome by a dedicated elongation factor, SelB. We recently identified a series of tRNASec-like tRNA genes distributed across Bacteria that also encode a canonical tRNASec. These tRNAs contain sequence elements generally recognized by cysteinyl-tRNA synthetase (CysRS). While some of these tRNAs contain a UCA Sec anticodon, most have a GCA Cys anticodon. tRNASec with GCA anticodons are known to recode UGA codons. Here we investigate the clostridial Desulfotomaculum nigrificans tRNASec-like tRNACys, and show that this tRNA is acylated by CysRS, recognized by SelB, and capable of UGA recoding with Cys in Escherichia coli. We named this non-canonical group of tRNACys as 'tRNAReC' (Recoding with Cys). We performed a comprehensive survey of tRNAReC genes to establish their phylogenetic distribution, and found that, in a particular lineage of clostridial Pelotomaculum, the Cys identity elements of tRNAReC had mutated. This novel tRNA, which contains a UCA anticodon, is capable of Sec incorporation in E. coli, albeit with lower efficiency relative to Pelotomaculum tRNASec. We renamed this unusual tRNASec derived from tRNAReC as 'tRNAReU' (Recoding with Sec). Together, our results suggest that tRNAReC and tRNAReU may serve as safeguards in the production of selenoproteins and - to our knowledge - they provide the first example of programmed codon-anticodon mispairing in bacteria.


Assuntos
Aminoacil-tRNA Sintetases/genética , Proteínas de Bactérias/genética , Cisteína/metabolismo , Escherichia coli/genética , RNA de Transferência de Cisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Aminoacil-tRNA Sintetases/metabolismo , Anticódon/genética , Anticódon/metabolismo , Proteínas de Bactérias/metabolismo , Códon de Terminação/química , Códon de Terminação/metabolismo , Desulfotomaculum/genética , Desulfotomaculum/metabolismo , Escherichia coli/metabolismo , Código Genético , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Peptococcaceae/genética , Peptococcaceae/metabolismo , Biossíntese de Proteínas , RNA de Transferência de Cisteína/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Selenoproteínas/biossíntese
5.
Environ Microbiol ; 17(6): 1977-90, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25389064

RESUMO

Understanding of microbial metal reduction is based almost solely on studies of Gram-negative organisms. In this study, we focus on Desulfotomaculum reducens MI-1, a Gram-positive metal reducer whose genome lacks genes with similarity to any characterized metal reductase. Using non-denaturing separations and mass spectrometry identification, in combination with a colorimetric screen for chelated Fe(III)-NTA reduction with NADH as electron donor, we have identified proteins from the D. reducens proteome not previously characterized as iron reductases. Their function was confirmed by heterologous expression in Escherichia coli. Furthermore, we show that these proteins have the capability to reduce soluble Cr(VI) and U(VI) with NADH as electron donor. The proteins identified are NADH : flavin oxidoreductase (Dred_2421) and a protein complex composed of oxidoreductase flavin adenine dinucleotide/NAD(P)-binding subunit (Dred_1685) and dihydroorotate dehydrogenase 1B (Dred_1686). Dred_2421 was identified in the soluble proteome and is predicted to be a cytoplasmic protein. Dred_1685 and Dred_1686 were identified in both the soluble as well as the insoluble protein fraction, suggesting a type of membrane association, although PSORTb predicts both proteins are cytoplasmic. This study is the first functional proteomic analysis of D. reducens and one of the first analyses of metal and radionuclide reduction in an environmentally relevant Gram-positive bacterium.


Assuntos
Desulfotomaculum/metabolismo , FMN Redutase/metabolismo , Compostos Férricos/metabolismo , Metais/metabolismo , Desulfotomaculum/genética , Escherichia coli/genética , Escherichia coli/metabolismo , NAD/metabolismo , Oxirredução , Proteoma/metabolismo , Proteômica
6.
Environ Microbiol ; 17(3): 622-36, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24674078

RESUMO

Microbial community structure, and niche and neutral processes can all influence response to disturbance. Here, we provide experimental evidence for niche versus neutral and founding community effects during a bioremediation-related organic carbon disturbance. Subsurface sediment, partitioned into 22 flow-through columns, was stimulated in situ by the addition of acetate as a carbon and electron donor source. This drove the system into a new transient biogeochemical state characterized by iron reduction and enriched Desulfuromonadales, Comamonadaceae and Bacteroidetes lineages. After approximately 1 month conditions favoured sulfate reduction, and were accompanied by a substantial increase in the relative abundance of Desulfobulbus, Desulfosporosinus, Desulfitobacterium and Desulfotomaculum. Two subsets of four to five columns each were switched from acetate to lactate amendment during either iron (earlier) or sulfate (later) reduction. Hence, subsets had significantly different founding communities. All lactate treatments exhibited lower relative abundances of Desulfotomaculum and Bacteroidetes, enrichments of Clostridiales and Psychrosinus species, and a temporal succession from highly abundant Clostridium sensu stricto to Psychrosinus. Regardless of starting point, lactate-switch communities followed comparable structural trajectories, whereby convergence was evident 9 to 16 days after each switch, and significant after 29 to 34 days of lactate addition. Results imply that neither the founding community nor neutral processes influenced succession following perturbation.


Assuntos
Ácido Acético/metabolismo , Carbono/metabolismo , Sedimentos Geológicos/microbiologia , Ferro/metabolismo , Consórcios Microbianos , Sulfatos/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Biodegradação Ambiental , Biodiversidade , Clostridium/genética , Clostridium/metabolismo , Comamonadaceae/classificação , Comamonadaceae/genética , Comamonadaceae/metabolismo , Deltaproteobacteria/genética , Desulfotomaculum/genética , Desulfotomaculum/metabolismo , Ecossistema , Oxirredução , Filogenia
7.
Mikrobiol Z ; 77(5): 20-8, 2015.
Artigo em Ucraniano | MEDLINE | ID: mdl-26638481

RESUMO

Sulphate-reducing bacteria Desulfomicrobium sp. CrR3 and Desulfotomaculum. sp. are able to use fumarate as electron donor and acceptor. When they use fumarate as an electron acceptor succinate accumulates in the medium. If fumarate serves as electron donor, minor amounts of citrate, isocitrate and acetate are detected except succinate. In the case of simultaneous introduction of fumarate, SO4(2-) and Cr2O7(2-), the last inhibits usage of fumarate and SO4(2-).


Assuntos
Desulfotomaculum/metabolismo , Fumaratos/metabolismo , Técnicas Bacteriológicas , Biomassa , Desulfotomaculum/crescimento & desenvolvimento , Transporte de Elétrons , Dicromato de Potássio/metabolismo , Sulfatos/metabolismo , Bactérias Redutoras de Enxofre/crescimento & desenvolvimento , Bactérias Redutoras de Enxofre/metabolismo
8.
Environ Microbiol ; 14(12): 3271-86, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23116231

RESUMO

Terrestrial mud volcanoes (TMVs) represent geochemically diverse habitats with varying sulfur sources and yet sulfur cycling in these environments remains largely unexplored. Here we characterized the sulfur-metabolizing microorganisms and activity in four TMVs in Azerbaijan. A combination of geochemical analyses, biological rate measurements and molecular diversity surveys (targeting metabolic genes aprA and dsrA and SSU ribosomal RNA) supported the presence of active sulfur-oxidizing and sulfate-reducing guilds in all four TMVs across a range of physiochemical conditions, with diversity of these guilds being unique to each TMV. The TMVs varied in potential sulfate reduction rates (SRR) by up to four orders of magnitude with highest SRR observed in sediments where in situ sulfate concentrations were highest. Maximum temperatures at which SRR were measured was 60°C in two TMVs. Corresponding with these trends in SRR, members of the potentially thermophilic, spore-forming, Desulfotomaculum were detected in these TMVs by targeted 16S rRNA analysis. Additional sulfate-reducing bacterial lineages included members of the Desulfobacteraceae and Desulfobulbaceae detected by aprA and dsrA analyses and likely contributing to the mesophilic SRR measured. Phylotypes affiliated with sulfide-oxidizing Gamma- and Betaproteobacteria were abundant in aprA libraries from low sulfate TMVs, while the highest sulfate TMV harboured 16S rRNA phylotypes associated with sulfur-oxidizing Epsilonproteobacteria. Altogether, the biogeochemical and microbiological data indicate these unique terrestrial habitats support diverse active sulfur-cycling microorganisms reflecting the in situ geochemical environment.


Assuntos
Sedimentos Geológicos/microbiologia , Microbiologia do Solo , Bactérias Redutoras de Enxofre/metabolismo , Enxofre/metabolismo , Erupções Vulcânicas/análise , Azerbaijão , Betaproteobacteria/classificação , Betaproteobacteria/genética , Betaproteobacteria/metabolismo , Biodiversidade , DNA Ribossômico/isolamento & purificação , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Desulfotomaculum/classificação , Desulfotomaculum/genética , Desulfotomaculum/metabolismo , Ecossistema , Epsilonproteobacteria/classificação , Epsilonproteobacteria/genética , Epsilonproteobacteria/metabolismo , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
9.
Folia Biol (Praha) ; 58(1): 44-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22464824

RESUMO

The effects of 50 Hz magnetic fields on sulphate- reducing bacteria viability were studied electrochemically. Two types of graphite electrodes (pyrolytic and glassy carbon) covered with whole bacterial cells behind a dialysis membrane were used for electrochemical measurements. We found about 15% decrease of reduction peak current density (which indicates desulphurization activity of the bacterial cells - their metabolic activity) on cyclic voltammograms after magnetic field exposure compared to the control samples. We suppose that the magnetic field does not influence the metabolic activity (desulphurization) of sulphate-reducing bacteria but most probably causes bacterial death.


Assuntos
Desulfotomaculum/metabolismo , Desulfovibrio/metabolismo , Técnicas Eletroquímicas/métodos , Campos Magnéticos , Sulfatos/metabolismo , Carbono , Eletrodos , Viabilidade Microbiana
10.
Environ Microbiol ; 12(10): 2738-54, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20482743

RESUMO

Spore-forming, Gram-positive sulfate-reducing bacteria (SRB) represent a group of SRB that dominates the deep subsurface as well as niches in which resistance to oxygen and dessication is an advantage. Desulfotomaculum reducens strain MI-1 is one of the few cultured representatives of that group with a complete genome sequence available. The metabolic versatility of this organism is reflected in the presence of genes encoding for the oxidation of various electron donors, including three- and four-carbon fatty acids and alcohols. Synteny in genes involved in sulfate reduction across all four sequenced Gram-positive SRB suggests a distinct sulfate-reduction mechanism for this group of bacteria. Based on the genomic information obtained for sulfate reduction in D. reducens, the transfer of electrons to the sulfite and APS reductases is proposed to take place via the quinone pool and heterodisulfide reductases respectively. In addition, both H(2) -evolving and H(2) -consuming cytoplasmic hydrogenases were identified in the genome, pointing to potential cytoplasmic H(2) cycling in the bacterium. The mechanism of metal reduction remains unknown.


Assuntos
Desulfotomaculum/genética , Desulfotomaculum/metabolismo , Genoma Bacteriano , Metais/metabolismo , Sulfatos/metabolismo , Sequência de Bases , DNA Bacteriano/análise , Desulfotomaculum/classificação , Hidrogênio/metabolismo , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
11.
Environ Microbiol ; 12(4): 1089-104, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20192966

RESUMO

Marine sediments harbour diverse populations of dormant thermophilic bacterial spores that become active in sediment incubation experiments at much higher than in situ temperature. This response was investigated in the presence of natural complex organic matter in sediments of two Arctic fjords, as well as with the addition of freeze-dried Spirulina or individual high-molecular-weight polysaccharides. During 50 degrees C incubation experiments, Arctic thermophiles catalysed extensive mineralization of the organic matter via extracellular enzymatic hydrolysis, fermentation and sulfate reduction. This high temperature-induced food chain mirrors sediment microbial processes occurring at cold in situ temperatures (near 0 degrees C), yet it is catalysed by a completely different set of microorganisms. Using sulfate reduction rates (SRR) as a proxy for organic matter mineralization showed that differences in organic matter reactivity determined the extent of the thermophilic response. Fjord sediments with higher in situ SRR also supported higher SRR at 50 degrees C. Amendment with Spirulina significantly increased volatile fatty acids production and SRR relative to unamended sediment in 50 degrees C incubations. Spirulina amendment also revealed temporally distinct sulfate reduction phases, consistent with 16S rRNA clone library detection of multiple thermophilic Desulfotomaculum spp. enriched at 50 degrees C. Incubations with four different fluorescently labelled polysaccharides at 4 degrees C and 50 degrees C showed that the thermophilic population in Arctic sediments produce a different suite of polymer-hydrolysing enzymes than those used in situ by the cold-adapted microbial community. Over time, dormant marine microorganisms like these are buried in marine sediments and might eventually encounter warmer conditions that favour their activation. Distinct enzymatic capacities for organic polymer degradation could allow specific heterotrophic populations like these to play a role in sustaining microbial metabolism in the deep, warm, marine biosphere.


Assuntos
Bactérias Anaeróbias/metabolismo , Desulfotomaculum/metabolismo , Sedimentos Geológicos/microbiologia , Sulfatos/metabolismo , Regiões Árticas , Desulfotomaculum/genética , Ácidos Graxos Voláteis/biossíntese , Fermentação , Cadeia Alimentar , Temperatura Alta , Hidrólise , Dados de Sequência Molecular , Filogenia , Polissacarídeos/metabolismo , Spirulina/metabolismo
12.
Environ Sci Technol ; 44(24): 9456-62, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21069950

RESUMO

A promising remediation approach to mitigate subsurface uranium contamination is the stimulation of indigenous bacteria to reduce mobile U(VI) to sparingly soluble U(IV). The product of microbial uranium reduction is often reported as the mineral uraninite. Here, we show that the end products of uranium reduction by several environmentally relevant bacteria (Gram-positive and Gram-negative) and their spores include a variety of U(IV) species other than uraninite. U(IV) products were prepared in chemically variable media and characterized using transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) to elucidate the factors favoring/inhibiting uraninite formation and to constrain molecular structure/composition of the non-uraninite reduction products. Molecular complexes of U(IV) were found to be bound to biomass, most likely through P-containing ligands. Minor U(IV)-orthophosphates such as ningyoite [CaU(PO(4))(2)], U(2)O(PO(4))(2), and U(2)(PO(4))(P(3)O(10)) were observed in addition to uraninite. Although factors controlling the predominance of these species are complex, the presence of various solutes was found to generally inhibit uraninite formation. These results suggest a new paradigm for U(IV) in the subsurface, i.e., that non-uraninite U(IV) products may be found more commonly than anticipated. These findings are relevant for bioremediation strategies and underscore the need for characterizing the stability of non-uraninite U(IV) species in natural settings.


Assuntos
Clostridium acetobutylicum/metabolismo , Desulfotomaculum/metabolismo , Shewanella/metabolismo , Poluentes Radioativos do Solo/metabolismo , Compostos de Urânio/metabolismo , Biodegradação Ambiental , Clostridium acetobutylicum/crescimento & desenvolvimento , Desulfotomaculum/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Shewanella/crescimento & desenvolvimento , Poluentes Radioativos do Solo/química , Compostos de Urânio/química , Espectroscopia por Absorção de Raios X
13.
Pol J Microbiol ; 59(4): 249-55, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21466042

RESUMO

Earlier research demonstrated the secretion of benzoate, which must be oxygenated to its 4-hydroxy derivative in order to be included in further sulfate uptake processes. The present study on Desulfotomaculum acetoxidans DSM 771 was designed to determine the activity and catalytic specificity of the enzyme (most probably peroxidase) catalyzing the hydroxylation of secreted benzoate. Peroxidase activity measured with ABTS (2,2'-azino-bis (3-ethylbenzathiazoline-6-sulfonic acid) during cultivation indicated the greatest activity on the third and thirteen days (3.4 and 2.3 nkat per ml sample respectively). The highest (0.7979) correlation coefficient was calculated between peroxidase activity and hydrogen peroxide levels. The cell walls from 3- and 13-day cultures were subjected to an isolation procedure, PIPES (piperazine-N,N'-bis (2-ethane-sulfonic acid) extract followed by preparative electrophoresis. The extracts of a approximately 30 kDa band on the gel were analyzed by Western blotting and the membrane was stained with TMB (3,3',5,5'-tetramethylbenzidine-specific for the presence of peroxidase). This same protein was incubated for 6 h with benzoate, H2O2, Na2SO4. The product formed a complex with Fe3+, whose maximum absorption spectra (501.7 nm) corresponded with a ferric complex of synthetic 4-hydroxy-3-sulfo-benzoate. The H2S level during the cultivation was higher in culture grown with 15.5 mM 4-hydroxy-3-sulfo-benzoate than in culture with lactate supplemented with 15.5 mM sulfate. The role of peroxidase in oxygen utilization and sulfate uptake is discussed.


Assuntos
Desulfotomaculum/enzimologia , Peroxidases/metabolismo , Benzoatos/análise , Benzoatos/metabolismo , Parede Celular/enzimologia , Desulfotomaculum/metabolismo , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/metabolismo , Oxigênio/análise , Oxigênio/metabolismo , Peroxidases/isolamento & purificação , Sulfatos/metabolismo , Fatores de Tempo
14.
Nat Commun ; 11(1): 5075, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033245

RESUMO

Nickel-iron composites are efficient in catalyzing oxygen evolution. Here, we develop a microorganism corrosion approach to construct nickel-iron hydroxides. The anaerobic sulfate-reducing bacteria, using sulfate as the electron acceptor, play a significant role in the formation of iron sulfide decorated nickel-iron hydroxides, which exhibit excellent electrocatalytic performance for oxygen evolution. Experimental and theoretical investigations suggest that the synergistic effect between oxyhydroxides and sulfide species accounts for the high activity. This microorganism corrosion strategy not only provides efficient candidate electrocatalysts but also bridges traditional corrosion engineering and emerging electrochemical energy technologies.


Assuntos
Desulfotomaculum/metabolismo , Hidróxidos/metabolismo , Níquel/metabolismo , Oxigênio/metabolismo , Corrosão , Teoria da Densidade Funcional , Eletroquímica , Eletrodos , Análise Espectral Raman , Espectroscopia por Absorção de Raios X
15.
Environ Microbiol ; 11(12): 3007-17, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19601961

RESUMO

The bioremediation of uranium-contaminated sites is designed to stimulate the activity of microorganisms able to catalyze the reduction of soluble U(VI) to the less soluble mineral UO(2). U(VI) reduction does not necessarily support growth in previously studied bacteria, but it typically involves viable vegetative cells and the presence of an appropriate electron donor. We characterized U(VI) reduction by the sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1 grown fermentatively on pyruvate and observed that spores were capable of U(VI) reduction. Hydrogen gas - a product of pyruvate fermentation - rather than pyruvate, served as the electron donor. The presence of spent growth medium was required for the process, suggesting that an unknown factor produced by the cells was necessary for reduction. Ultrafiltration of the spent medium followed by U(VI) reduction assays revealed that the factor's molecular size was below 3 kDa. Pre-reduced spent medium displayed short-term U(VI) reduction activity, suggesting that the missing factor may be an electron shuttle, but neither anthraquinone-2,6-disulfonic acid nor riboflavin rescued spore activity in fresh medium. Spores of D. reducens also reduced Fe(III)-citrate under experimental conditions similar to those for U(VI) reduction. This is the first report of a bacterium able to reduce metals while in a sporulated state and underscores the novel nature of the mechanism of metal reduction by strain MI-1.


Assuntos
Desulfotomaculum/metabolismo , Esporos Bacterianos/metabolismo , Urânio/metabolismo , Biodegradação Ambiental , Desulfotomaculum/classificação , Desulfotomaculum/crescimento & desenvolvimento , Ferro/metabolismo , Filogenia , Compostos de Urânio/metabolismo
16.
Appl Environ Microbiol ; 75(17): 5621-30, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19561180

RESUMO

Values of Delta(34)S (=delta(34)S(HS)-delta(34)S(SO(4)), where delta(34)S(HS) and delta(34)S(SO(4)) indicate the differences in the isotopic compositions of the HS(-) and SO(4)(2-) in the eluent, respectively) for many modern marine sediments are in the range of -55 to -75 per thousand, much greater than the -2 to -46 per thousand epsilon(34)S (kinetic isotope enrichment) values commonly observed for microbial sulfate reduction in laboratory batch culture and chemostat experiments. It has been proposed that at extremely low sulfate reduction rates under hypersulfidic conditions with a nonlimited supply of sulfate, isotopic enrichment in laboratory culture experiments should increase to the levels recorded in nature. We examined the effect of extremely low sulfate reduction rates and electron donor limitation on S isotope fractionation by culturing a thermophilic, sulfate-reducing bacterium, Desulfotomaculum putei, in a biomass-recycling culture vessel, or "retentostat." The cell-specific rate of sulfate reduction and the specific growth rate decreased progressively from the exponential phase to the maintenance phase, yielding average maintenance coefficients of 10(-16) to 10(-18) mol of SO(4) cell(-1) h(-1) toward the end of the experiments. Overall S mass and isotopic balance were conserved during the experiment. The differences in the delta(34)S values of the sulfate and sulfide eluting from the retentostat were significantly larger, attaining a maximum Delta(34)S of -20.9 per thousand, than the -9.7 per thousand observed during the batch culture experiment, but differences did not attain the values observed in marine sediments.


Assuntos
Desulfotomaculum/metabolismo , Sulfatos/metabolismo , Isótopos de Enxofre/metabolismo , Contagem de Colônia Microbiana , Meios de Cultura/química , Desulfotomaculum/química , Desulfotomaculum/ultraestrutura , Lipídeos/análise , Microscopia Eletrônica de Transmissão , Oxirredução , Sulfetos/metabolismo
17.
Microbiologyopen ; 8(3): e00647, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29877051

RESUMO

Recent studies have shown that interspecies electron transfer between chemoheterotrophic bacteria and methanogenic archaea can be mediated by electric currents flowing through conductive iron oxides, a process termed electric syntrophy. In this study, we conducted enrichment experiments with methanogenic microbial communities from rice paddy soil in the presence of ferrihydrite and/or sulfate to determine whether electric syntrophy could be enabled by biogenic iron sulfides. Although supplementation with either ferrihydrite or sulfate alone suppressed methanogenesis, supplementation with both ferrihydrite and sulfate enhanced methanogenesis. In the presence of sulfate, ferrihydrite was transformed into black precipitates consisting mainly of poorly crystalline iron sulfides. Microbial community analysis revealed that a methanogenic archaeon and iron- and sulfate-reducing bacteria (Methanosarcina, Geobacter, and Desulfotomaculum, respectively) predominated in the enrichment culture supplemented with both ferrihydrite and sulfate. Addition of an inhibitor specific for methanogenic archaea decreased the abundance of Geobacter, but not Desulfotomaculum, indicating that Geobacter acquired energy via syntrophic interaction with methanogenic archaea. Although electron acceptor compounds such as sulfate and iron oxides have been thought to suppress methanogenesis, this study revealed that coexistence of sulfate and iron oxide can promote methanogenesis by biomineralization of (semi)conductive iron sulfides that enable methanogenesis via electric syntrophy.


Assuntos
Desulfotomaculum/metabolismo , Compostos Ferrosos/metabolismo , Geobacter/metabolismo , Metano/metabolismo , Methanosarcina/metabolismo , Consórcios Microbianos , Interações Microbianas , Desulfotomaculum/crescimento & desenvolvimento , Geobacter/crescimento & desenvolvimento , Methanosarcina/crescimento & desenvolvimento , Minerais/metabolismo , Oryza/crescimento & desenvolvimento , Microbiologia da Água
18.
Geobiology ; 16(5): 522-539, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29905980

RESUMO

We established Fe(III)-reducing co-cultures of two species of metal-reducing bacteria, the Gram-positive Desulfotomaculum reducens MI-1 and the Gram-negative Geobacter sulfurreducens PCA. Co-cultures were given pyruvate, a substrate that D. reducens can ferment and use as electron donor for Fe(III) reduction. G. sulfurreducens relied upon products of pyruvate oxidation by D. reducens (acetate, hydrogen) for use as electron donor in the co-culture. Co-cultures reduced Fe(III) to Fe(II) robustly, and Fe(II) was consistently detected earlier in co-cultures than pure cultures. Notably, faster cell growth, and correspondingly faster pyruvate oxidation, was observed by D. reducens in co-cultures. Global comparative proteomic analysis was performed to observe differential protein abundance during co-culture vs. pure culture growth. Proteins previously associated with Fe(III) reduction in G. sulfurreducens, namely c-type cytochromes and type IV pili proteins, were significantly increased in abundance in co-cultures relative to pure cultures. D. reducens ribosomal proteins were significantly increased in co-cultures, likely a reflection of faster growth rates observed for D. reducens cells while in co-culture. Furthermore, we developed multiple reaction monitoring (MRM) assays to quantitate specific biomarker peptides. The assays were validated in pure and co-cultures, and protein abundance ratios from targeted MRM and global proteomic analysis correlate significantly.


Assuntos
Compostos Férricos/metabolismo , Proteômica/métodos , Desulfotomaculum/metabolismo , Geobacter/metabolismo , Oxirredução , Proteoma/metabolismo
19.
Pol J Microbiol ; 56(3): 205-13, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18062655

RESUMO

Three independent 28 or 32-day stationary cultures of Desulfotomaculum acetoxidans DSM 771 strain were carried out under anoxic conditions in acetate or lactate-containing media. The acids were the sole carbon and energy sources in these media. During cultivation the turbidity (for calculation of cell division index) and hydrogen sulfide contents were determined in culture broth and reduced glutathione and protein concentrations were assayed in culture broth supernatant. In these three successive cultures, the bacterium initially grew much faster on lactate than on acetate. However, after two weeks of culture this difference disappeared and in fact the growth rate was higher on acetate than on lactate. The level of H2S formed (product of the dissimilatory pathway of sulfate reduction) demonstrated that this pathway was more effective when lactate was a carbon source and the average H2S concentration was from over 3-fold to about 9-fold greater in lactate than in acetate cultures. Also GSH (glutathione, product of the assimilatory sulfate reduction pathway) average level was about 2-fold higher in lactate-grown cultures. The high negative values of the correlation coefficients between GSH and O2 levels, especially during the first 4 days of cultivation, indicate that GSH is a very important antioxidizing extracellular agent of D. acetoxidans. The rapid increase in GSH level, preceding the release of H2S, indicates the metabolic priority of the assimilation pathway of sulfate reduction. For both carbon sources the highest coefficient of correlation was found between protein and H2S levels. These results suggest that hydrogen sulfide is bound by proteins (which contain cysteinyl residues) secreted by D. acetoxidans cells. Indicated way of H2S bounding could result in its accumulation. This coefficient of correlation increased gradually in the successive cultures. The ratio of H2S concentration to protein concentration increased gradually in the successive cultures, too.


Assuntos
Ácido Acético/metabolismo , Antioxidantes/metabolismo , Meios de Cultura/química , Desulfotomaculum/crescimento & desenvolvimento , Desulfotomaculum/metabolismo , Ácido Láctico/metabolismo , Ácido Acético/química , Proliferação de Células , Glutationa , Sulfeto de Hidrogênio , Ácido Láctico/química , Fatores de Tempo
20.
Nihon Rinsho ; 65(7): 1337-46, 2007 Jul.
Artigo em Japonês | MEDLINE | ID: mdl-17642254

RESUMO

Ulcerative colitis(UC) is colon localized disease. Broad epithelial cell damage, crypt abscesses and accumulation of neutrophils are recognized for UC. Although the cause of UC is indistinct at this time, there is a growing consensus that abnormal intestinal microflora would be related with UC. There have been several evidences that excessive production of hydrogen sulfide by bacteria in colon would be associated with UC. Sulfate reducing bacteria are able to utilize sulfate as an electron receptor for dissimilation of organic substrate and hydrogen gas, resulting in generating toxic hydrogen sulfide. This review is dealt with the association between sulfate reducing bacteria and UC in aetiology and bacterial pathogenesis.


Assuntos
Colite Ulcerativa/microbiologia , Desulfotomaculum/metabolismo , Desulfotomaculum/patogenicidade , Desulfovibrio/metabolismo , Desulfovibrio/patogenicidade , Sulfeto de Hidrogênio/metabolismo , Sulfatos/metabolismo , Animais , Humanos , Sulfeto de Hidrogênio/toxicidade , Mucosa Intestinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA