Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 98(9): e0104724, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39194238

RESUMO

Little is known regarding the molecular mechanisms that highly pathogenic Marburg virus (MARV) utilizes to transcribe and replicate its genome. Previous studies assumed that dephosphorylation of the filoviral transcription factor VP30 supports transcription, while phosphorylated VP30 reduces transcription. Here, we focused on the role of the host protein phosphatase 2A (PP2A) for VP30 dephosphorylation and promotion of viral transcription. We could show that MARV NP interacts with the subunit B56 of PP2A, as previously shown for the Ebola virus, and that this interaction is important for MARV transcription activity. Inhibition of the interaction between PP2A and NP either by mutating the B56 binding motif encoded on NP, or the use of a PP2A inhibitor, induced VP30 hyperphosphorylation, and as a consequence a decrease of MARV transcription as well as viral growth. These results suggest that NP plays a key role in the dephosphorylation of VP30 by recruiting PP2A. Generation of recombinant (rec) MARV lacking the PP2A-B56 interaction motif on NP was not possible suggesting an essential role of PP2A-mediated VP30 dephosphorylation for the MARV replication cycle. Likewise, we were not able to generate recMARV containing VP30 phosphomimetic mutants indicating that dynamic cycles of VP30 de- and rephosphorylation are a prerequisite for an efficient viral life cycle. As the specific binding motifs of PP2A-B56 and VP30 within NP are highly conserved among the filoviral family, our data suggest a conserved mechanism for filovirus VP30 dephosphorylation by PP2A, revealing the host factor PP2A as a promising target for pan-filoviral therapies. IMPORTANCE: Our study elucidates the crucial role of host protein phosphatase 2A (PP2A) in Marburg virus (MARV) transcription. The regulatory subunit B56 of PP2A facilitates VP30 dephosphorylation, and hence transcription activation, via binding to NP. Our results, together with previous data, reveal a conserved mechanism of filovirus VP30 dephosphorylation by host factor PP2A at the NP interface and provide novel insights into potential pan-filovirus therapies.


Assuntos
Marburgvirus , Proteína Fosfatase 2 , Transcrição Gênica , Marburgvirus/fisiologia , Marburgvirus/genética , Marburgvirus/metabolismo , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Humanos , Fosforilação , Replicação Viral , Células HEK293 , Animais , Interações Hospedeiro-Patógeno , Proteínas Virais/metabolismo , Proteínas Virais/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Doença do Vírus de Marburg/virologia , Doença do Vírus de Marburg/metabolismo , Ligação Proteica , Linhagem Celular
2.
Mol Ther ; 31(1): 269-281, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36114672

RESUMO

Marburg virus (MARV) infection results in severe viral hemorrhagic fever with mortalities up to 90%, and there is a pressing need for effective therapies. Here, we established a small interfering RNA (siRNA) conjugate platform that enabled successful subcutaneous delivery of siRNAs targeting the MARV nucleoprotein. We identified a hexavalent mannose ligand with high affinity to macrophages and dendritic cells, which are key cellular targets of MARV infection. This ligand enabled successful siRNA conjugate delivery to macrophages both in vitro and in vivo. The delivered hexa-mannose-siRNA conjugates rendered substantial target gene silencing in macrophages when supported by a mannose functionalized endosome release polymer. This hexa-mannose-siRNA conjugate was further evaluated alongside our hepatocyte-targeting GalNAc-siRNA conjugate, to expand targeting of infected liver cells. In MARV-Angola-infected guinea pigs, these platforms offered limited survival benefit when used as individual agents. However, in combination, they achieved up to 100% protection when dosed 24 h post infection. This novel approach, using two different ligands to simultaneously deliver siRNA to multiple cell types relevant to infection, provides a convenient subcutaneous route of administration for treating infection by these dangerous pathogens. The mannose conjugate platform has potential application to other diseases involving macrophages and dendritic cells.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Viroses , Animais , Cobaias , RNA Interferente Pequeno/genética , Manose , Ligantes , RNA de Cadeia Dupla , Marburgvirus/genética , Doença do Vírus de Marburg/metabolismo , Doença do Vírus de Marburg/prevenção & controle
3.
J Biol Chem ; 296: 100796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34019871

RESUMO

Marburg virus (MARV) is a lipid-enveloped virus harboring a negative-sense RNA genome, which has caused sporadic outbreaks of viral hemorrhagic fever in sub-Saharan Africa. MARV assembles and buds from the host cell plasma membrane where MARV matrix protein (mVP40) dimers associate with anionic lipids at the plasma membrane inner leaflet and undergo a dynamic and extensive self-oligomerization into the structural matrix layer. The MARV matrix layer confers the virion filamentous shape and stability but how host lipids modulate mVP40 oligomerization is mostly unknown. Using in vitro and cellular techniques, we present a mVP40 assembly model highlighting two distinct oligomerization interfaces: the (N-terminal domain [NTD] and C-terminal domain [CTD]) in mVP40. Cellular studies of NTD and CTD oligomerization interface mutants demonstrate the importance of each interface in matrix assembly. The assembly steps include protein trafficking to the plasma membrane, homo-multimerization that induced protein enrichment, plasma membrane fluidity changes, and elongations at the plasma membrane. An ascorbate peroxidase derivative (APEX)-transmission electron microscopy method was employed to closely assess the ultrastructural localization and formation of viral particles for wildtype mVP40 and NTD and CTD oligomerization interface mutants. Taken together, these studies present a mechanistic model of mVP40 oligomerization and assembly at the plasma membrane during virion assembly that requires interactions with phosphatidylserine for NTD-NTD interactions and phosphatidylinositol-4,5-bisphosphate for proper CTD-CTD interactions. These findings have broader implications in understanding budding of lipid-enveloped viruses from the host cell plasma membrane and potential strategies to target protein-protein or lipid-protein interactions to inhibit virus budding.


Assuntos
Doença do Vírus de Marburg/virologia , Marburgvirus/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas da Matriz Viral/metabolismo , Vírion/metabolismo , Animais , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Doença do Vírus de Marburg/metabolismo , Marburgvirus/química , Lipídeos de Membrana/química , Modelos Moleculares , Multimerização Proteica , Proteínas da Matriz Viral/química , Vírion/química , Montagem de Vírus
4.
J Infect Dis ; 218(suppl_5): S403-S408, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30165526

RESUMO

Protein kinase R (PKR) is a key antiviral protein involved in sensing and restricting viral infections. Here we analyzed the ability of Marburg virus (MARV) viral protein 35 (VP35) to inhibit PKR activation in human and bat cells. Similar to the related Ebola and Lloviu viruses, MARV VP35 was able to inhibit PKR activation in 293T cells. In contrast, we found that MARV VP35 did not inhibit human or bat PKR activation in human glioblastoma U-251-MG cells or a Rousettus aegyptiacus cell line. Additional experiments revealed that PACT, a known PKR regulator, was insufficient to rescue the ability of VP35 to inhibit PKR activation in these cells. Taken together, this study indicates that the ability of VP35 to inhibit PKR is cell type specific, potentially explaining discrepancies between the ability of filoviruses to potently block innate immune responses, and the high levels of interferon and interferon-stimulated genes observed in filovirus patients.


Assuntos
Marburgvirus/metabolismo , Proteínas Quinases/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Animais , Linhagem Celular , Quirópteros , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/imunologia , Doença do Vírus de Marburg/imunologia , Doença do Vírus de Marburg/metabolismo , Marburgvirus/imunologia , Proteínas Quinases/imunologia , Proteínas Virais/imunologia , Proteínas Virais Reguladoras e Acessórias/imunologia
5.
Nature ; 477(7364): 340-3, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21866103

RESUMO

Infections by the Ebola and Marburg filoviruses cause a rapidly fatal haemorrhagic fever in humans for which no approved antivirals are available. Filovirus entry is mediated by the viral spike glycoprotein (GP), which attaches viral particles to the cell surface, delivers them to endosomes and catalyses fusion between viral and endosomal membranes. Additional host factors in the endosomal compartment are probably required for viral membrane fusion; however, despite considerable efforts, these critical host factors have defied molecular identification. Here we describe a genome-wide haploid genetic screen in human cells to identify host factors required for Ebola virus entry. Our screen uncovered 67 mutations disrupting all six members of the homotypic fusion and vacuole protein-sorting (HOPS) multisubunit tethering complex, which is involved in the fusion of endosomes to lysosomes, and 39 independent mutations that disrupt the endo/lysosomal cholesterol transporter protein Niemann-Pick C1 (NPC1). Cells defective for the HOPS complex or NPC1 function, including primary fibroblasts derived from human Niemann-Pick type C1 disease patients, are resistant to infection by Ebola virus and Marburg virus, but remain fully susceptible to a suite of unrelated viruses. We show that membrane fusion mediated by filovirus glycoproteins and viral escape from the vesicular compartment require the NPC1 protein, independent of its known function in cholesterol transport. Our findings uncover unique features of the entry pathway used by filoviruses and indicate potential antiviral strategies to combat these deadly agents.


Assuntos
Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Ebolavirus/fisiologia , Glicoproteínas de Membrana/metabolismo , Internalização do Vírus , Animais , Transporte Biológico , Proteínas de Transporte/genética , Linhagem Celular , Endossomos/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/virologia , Genoma Humano/genética , Glicoproteínas/metabolismo , Haploidia , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lisossomos/metabolismo , Doença do Vírus de Marburg/tratamento farmacológico , Doença do Vírus de Marburg/metabolismo , Marburgvirus/fisiologia , Fusão de Membrana/genética , Fusão de Membrana/fisiologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/deficiência , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação/genética , Proteína C1 de Niemann-Pick , Doenças de Niemann-Pick/patologia , Doenças de Niemann-Pick/virologia , Receptores Virais/metabolismo , Proteínas de Transporte Vesicular , Proteínas Virais de Fusão/metabolismo
6.
J Infect Dis ; 212 Suppl 2: S258-70, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092858

RESUMO

BACKGROUND: Phylogenetic comparisons of known Marburg virus (MARV) strains reveal 2 distinct genetic lineages: Ravn and the Lake Victoria Marburg complex (eg, Musoke, Popp, and Angola strains). Nucleotide variances of >20% between Ravn and other MARV genomes suggest that differing virulence between lineages may accompany this genetic divergence. To date, there exists limited systematic experimental evidence of pathogenic differences between MARV strains. METHODS: Uniformly lethal outbred guinea pig models of MARV-Angola (MARV-Ang) and MARV-Ravn (MARV-Rav) were developed by serial adaptation. Changes in genomic sequence, weight, temperature, histopathologic findings, immunohistochemical findings, hematologic profiles, circulating biochemical enzyme levels, coagulation parameters, viremia levels, cytokine levels, eicanosoid levels, and nitric oxide production were compared between strains. RESULTS: MARV-Rav infection resulted in delayed increases in circulating inflammatory and prothrombotic elements, notably lower viremia levels, less severe histologic alterations, and a delay in mean time to death, compared with MARV-Ang infection. Both strains produced more marked coagulation abnormalities than previously seen in MARV-infected mice or inbred guinea pigs. CONCLUSIONS: Although both strains exhibit great similarity to pathogenic markers of human and nonhuman primate MARV infection, these data highlight several key differences in pathogenicity that may serve to guide the choice of strain and model used for development of vaccines or therapeutics for Marburg hemorrhagic fever.


Assuntos
Doença do Vírus de Marburg/virologia , Marburgvirus/patogenicidade , Virulência/genética , Angola , Animais , Coagulação Sanguínea/fisiologia , Citocinas/metabolismo , Feminino , Ligação Genética/genética , Variação Genética/genética , Cobaias , Doença do Vírus de Marburg/metabolismo , Marburgvirus/genética , Óxido Nítrico/metabolismo , Viremia/metabolismo
7.
J Infect Dis ; 212 Suppl 2: S219-25, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25926685

RESUMO

Marburg viruses (MARVs) cause highly lethal infections in humans and nonhuman primates. Mice are not generally susceptible to MARV infection; however, if the strain is first adapted to mice through serial passaging, it becomes able to cause disease in this animal. A previous study correlated changes accrued during mouse adaptation in the VP40 gene of a MARV strain known as Ravn virus (RAVV) with an increased capacity to inhibit interferon (IFN) signaling in mouse cell lines. The MARV strain Ci67, which belongs to a different phylogenetic clade than RAVV, has also been adapted to mice and in the process the Ci67 VP40 acquired a different collection of genetic changes than did RAVV VP40. Here, we demonstrate that the mouse-adapted Ci67 VP40 more potently antagonizes IFN-α/ß-induced STAT1 and STAT2 tyrosine phosphorylation, gene expression, and antiviral activity in both mouse and human cell lines, compared with the parental Ci67 VP40. Ci67 VP40 is also demonstrated to target the activation of kinase Jak1. A single change at VP40 residue 79 was found to be sufficient for the increased VP40 IFN antagonism. These data argue that VP40 IFN-antagonist activity plays a key role in MARV pathogenesis in mice.


Assuntos
Aminoácidos/metabolismo , Marburgvirus/metabolismo , Marburgvirus/patogenicidade , Proteínas da Matriz Viral/metabolismo , Animais , Linhagem Celular , Células HEK293 , Humanos , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Janus Quinase 1/metabolismo , Doença do Vírus de Marburg/metabolismo , Doença do Vírus de Marburg/virologia , Camundongos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo
8.
J Infect Dis ; 212 Suppl 2: S154-9, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25926686

RESUMO

BACKGROUND: Marburg virus (MARV) is an emerging zoonotic pathogen that causes hemorrhagic fever. MARV VP24 (mVP24) protein interacts with the host cell protein Kelch-like-ECH-associated protein 1 (Keap1). Keap1 interacts with and promotes the degradation of IκB kinase ß (IKKß), a component of the IκB kinase (IKK) complex that regulates nuclear factor-κB (NF-κB) activity. We studied whether mVP24 could relieve Keap1 repression of the NF-κB pathway. METHODS: Coimmunoprecipitation assays were used to examine the interaction between Keap1 and IKKß in the presence of wild-type mVP24 and mutants of mVP24 defective for binding to Keap1. Western blotting was used to determine levels of IKKß expression in the presence of Keap1 and mVP24. NF-κB promoter-luciferase assays were used to determine the effect of mVP24 on Keap1-induced repression of activity. RESULTS: Expression of wild-type mVP24 disrupted the interaction of IKKß and Keap1, whereas weakly interacting and noninteracting mVP24 mutants did not disrupt the interaction between Keap1 and IKKß. The interaction of mVP24 with Keap1 enhanced IKKß levels in the presence of Keap1. The interaction of mVP24 with Keap1 also relieved Keap1 repression of NF-κB reporter activity. CONCLUSIONS: mVP24 can relieve Keap1 repression of the NF-κB pathway through its interaction with Keap1.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Marburgvirus/metabolismo , NF-kappa B/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Células HEK293 , Humanos , Quinase I-kappa B/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Doença do Vírus de Marburg/metabolismo , Doença do Vírus de Marburg/virologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Transdução de Sinais/fisiologia
9.
J Infect Dis ; 209(4): 562-70, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23990568

RESUMO

BACKGROUND: Marburg virus (MARV) infection causes severe morbidity and mortality in humans and nonhuman primates. Currently, there are no licensed therapeutics available for treating MARV infection. Here, we present the in vitro development and in vivo evaluation of lipid-encapsulated small interfering RNA (siRNA) as a potential therapeutic for the treatment of MARV infection. METHODS: The activity of anti-MARV siRNAs was assessed using dual luciferase reporter assays followed by in vitro testing against live virus. Lead candidates were tested in lethal guinea pig models of 3 different MARV strains (Angola, Ci67, Ravn). RESULTS: Treatment resulted in 60%-100% survival of guinea pigs infected with MARV. Although treatment with siRNA targeting other MARV messenger RNA (mRNA) had a beneficial effect, targeting the MARV NP mRNA resulted in the highest survival rates. NP-718m siRNA in lipid nanoparticles provided 100% protection against MARV strains Angola and Ci67, and 60% against Ravn. A cocktail containing NP-718m and NP-143m provided 100% protection against MARV Ravn. CONCLUSIONS: These data show protective efficacy against the most pathogenic Angola strain of MARV. Further development of the lipid nanoparticle technology has the potential to yield effective treatments for MARV infection.


Assuntos
Lipídeos/administração & dosagem , Doença do Vírus de Marburg/tratamento farmacológico , Doença do Vírus de Marburg/prevenção & controle , Nanopartículas/administração & dosagem , Nanopartículas/química , RNA Interferente Pequeno/administração & dosagem , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/análise , Citocinas/sangue , Portadores de Fármacos/química , Feminino , Genes Virais , Cobaias , Lipídeos/química , Fígado/química , Doença do Vírus de Marburg/genética , Doença do Vírus de Marburg/metabolismo , Marburgvirus/efeitos dos fármacos , Marburgvirus/genética , Camundongos , Camundongos Endogâmicos ICR , RNA Interferente Pequeno/química , Proteínas de Ligação a RNA , Análise de Sobrevida , Carga Viral
10.
Nat Commun ; 14(1): 6785, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880247

RESUMO

Marburg and Ebola filoviruses are two of the deadliest infectious agents and several outbreaks have occurred in the last decades. Although several receptors and co-receptors have been reported for Ebola virus, key host factors remain to be elucidated. In this study, using a haploid cell screening platform, we identify the guanine nucleotide exchange factor CCZ1 as a key host factor in the early stage of filovirus replication. The critical role of CCZ1 for filovirus infections is validated in 3D primary human hepatocyte cultures and human blood-vessel organoids, both critical target sites for Ebola and Marburg virus tropism. Mechanistically, CCZ1 controls early to late endosomal trafficking of these viruses. In addition, we report that CCZ1 has a role in the endosomal trafficking of endocytosis-dependent SARS-CoV-2 infections, but not in infections by Lassa virus, which enters endo-lysosomal trafficking at the late endosome stage. Thus, we have identified an essential host pathway for filovirus infections in cell lines and engineered human target tissues. Inhibition of CCZ1 nearly completely abolishes Marburg and Ebola infections. Thus, targeting CCZ1 could potentially serve as a promising drug target for controlling infections caused by various viruses, such as SARS-CoV-2, Marburg, and Ebola.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Doença do Vírus de Marburg , Marburgvirus , Proteínas de Transporte Vesicular , Animais , Humanos , Ebolavirus/metabolismo , Lisossomos , Doença do Vírus de Marburg/genética , Doença do Vírus de Marburg/metabolismo , Marburgvirus/metabolismo , Proteínas de Transporte Vesicular/metabolismo
11.
PLoS Pathog ; 6(1): e1000721, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20084112

RESUMO

Previous studies have demonstrated that Marburg viruses (MARV) and Ebola viruses (EBOV) inhibit interferon (IFN)-alpha/beta signaling but utilize different mechanisms. EBOV inhibits IFN signaling via its VP24 protein which blocks the nuclear accumulation of tyrosine phosphorylated STAT1. In contrast, MARV infection inhibits IFNalpha/beta induced tyrosine phosphorylation of STAT1 and STAT2. MARV infection is now demonstrated to inhibit not only IFNalpha/beta but also IFNgamma-induced STAT phosphorylation and to inhibit the IFNalpha/beta and IFNgamma-induced tyrosine phosphorylation of upstream Janus (Jak) family kinases. Surprisingly, the MARV matrix protein VP40, not the MARV VP24 protein, has been identified to antagonize Jak and STAT tyrosine phosphorylation, to inhibit IFNalpha/beta or IFNgamma-induced gene expression and to inhibit the induction of an antiviral state by IFNalpha/beta. Global loss of STAT and Jak tyrosine phosphorylation in response to both IFNalpha/beta and IFNgamma is reminiscent of the phenotype seen in Jak1-null cells. Consistent with this model, MARV infection and MARV VP40 expression also inhibit the Jak1-dependent, IL-6-induced tyrosine phosphorylation of STAT1 and STAT3. Finally, expression of MARV VP40 is able to prevent the tyrosine phosphorylation of Jak1, STAT1, STAT2 or STAT3 which occurs following over-expression of the Jak1 kinase. In contrast, MARV VP40 does not detectably inhibit the tyrosine phosphorylation of STAT2 or Tyk2 when Tyk2 is over-expressed. Mutation of the VP40 late domain, essential for efficient VP40 budding, has no detectable impact on inhibition of IFN signaling. This study shows that MARV inhibits IFN signaling by a mechanism different from that employed by the related EBOV. It identifies a novel function for the MARV VP40 protein and suggests that MARV may globally inhibit Jak1-dependent cytokine signaling.


Assuntos
Evasão da Resposta Imune/imunologia , Interferons/imunologia , Marburgvirus/imunologia , Transdução de Sinais/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Western Blotting , Linhagem Celular , Citocinas/imunologia , Ebolavirus/imunologia , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Doença pelo Vírus Ebola/imunologia , Humanos , Janus Quinase 1/imunologia , Janus Quinase 1/metabolismo , Doença do Vírus de Marburg/imunologia , Doença do Vírus de Marburg/metabolismo , Marburgvirus/metabolismo , Reação em Cadeia da Polimerase , Transfecção
12.
Front Immunol ; 12: 774026, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777392

RESUMO

Marburg virus (MARV) is a member of the filovirus family that causes hemorrhagic disease with high case fatality rates. MARV is on the priority list of the World Health Organization for countermeasure development highlighting its potential impact on global public health. We developed a vesicular stomatitis virus (VSV)-based vaccine expressing the MARV glycoprotein (VSV-MARV) and previously demonstrated uniform protection of nonhuman primates (NHPs) with a single dose. Here, we investigated the fast-acting potential of this vaccine by challenging NHPs with MARV 14, 7 or 3 days after a single dose vaccination with VSV-MARV. We found that 100% of the animals survived when vaccinated 7 or 14 days and 75% of the animal survived when vaccinated 3 days prior to lethal MARV challenge. Transcriptional analysis of whole blood samples indicated activation of B cells and antiviral defense after VSV-MARV vaccination. In the day -14 and -7 groups, limited transcriptional changes after challenge were observed with the exception of day 9 post-challenge in the day -7 group where we detected gene expression profiles indicative of a recall response. In the day -3 group, transcriptional analysis of samples from surviving NHPs revealed strong innate immune activation. In contrast, the animal that succumbed to disease in this group lacked signatures of antiviral immunity. In summary, our data demonstrate that the VSV-MARV is a fast-acting vaccine suitable for the use in emergency situations like disease outbreaks in Africa.


Assuntos
Doença do Vírus de Marburg/prevenção & controle , Marburgvirus/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Chlorocebus aethiops , Citocinas/sangue , Modelos Animais de Doenças , Imunização , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Ativação Linfocitária , Doença do Vírus de Marburg/sangue , Doença do Vírus de Marburg/imunologia , Doença do Vírus de Marburg/metabolismo , Vacinação , Células Vero , Vesiculovirus , Carga Viral
13.
Cell Host Microbe ; 24(3): 405-416.e3, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30173956

RESUMO

Sexual transmission of filoviruses was first reported in 1968 after an outbreak of Marburg virus (MARV) disease and recently caused flare-ups of Ebola virus disease in the 2013-2016 outbreak. How filoviruses establish testicular persistence and are shed in semen remain unknown. We discovered that persistent MARV infection of seminiferous tubules, an immune-privileged site that harbors sperm production, is a relatively common event in crab-eating macaques that survived infection after antiviral treatment. Persistence triggers severe testicular damage, including spermatogenic cell depletion and inflammatory cell invasion. MARV mainly persists in Sertoli cells, leading to breakdown of the blood-testis barrier formed by inter-Sertoli cell tight junctions. This disruption is accompanied by local infiltration of immunosuppressive CD4+Foxp3+ regulatory T cells. Our study elucidates cellular events associated with testicular persistence that may promote sexual transmission of filoviruses and suggests that targeting immunosuppression may be warranted to clear filovirus persistence in damaged immune-privileged sites.


Assuntos
Doença do Vírus de Marburg/virologia , Marburgvirus/fisiologia , Doenças dos Primatas/virologia , Testículo/virologia , Animais , Macaca , Masculino , Doença do Vírus de Marburg/imunologia , Doença do Vírus de Marburg/metabolismo , Doenças dos Primatas/imunologia , Doenças dos Primatas/metabolismo , Células de Sertoli/metabolismo , Células de Sertoli/virologia , Sobreviventes , Linfócitos T Reguladores/imunologia , Junções Íntimas/metabolismo , Junções Íntimas/virologia
14.
J Clin Invest ; 127(12): 4437-4448, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106386

RESUMO

Ebolaviruses and marburgviruses belong to the family Filoviridae and cause high lethality in infected patients. There are currently no licensed filovirus vaccines or antiviral therapies. The development of broad-spectrum therapies against members of the Marburgvirus genus, including Marburg virus (MARV) and Ravn virus (RAVV), is difficult because of substantial sequence variability. RNAi therapeutics offer a potential solution, as identification of conserved target nucleotide sequences may confer activity across marburgvirus variants. Here, we assessed the therapeutic efficacy of lipid nanoparticle (LNP) delivery of a single nucleoprotein-targeting (NP-targeting) siRNA in nonhuman primates at advanced stages of MARV or RAVV disease to mimic cases in which patients begin treatment for fulminant disease. Sixteen rhesus monkeys were lethally infected with MARV or RAVV and treated with NP siRNA-LNP, with MARV-infected animals beginning treatment four or five days after infection and RAVV-infected animals starting treatment three or six days after infection. While all untreated animals succumbed to disease, NP siRNA-LNP treatment conferred 100% survival of RAVV-infected macaques, even when treatment began just 1 day prior to the death of the control animals. In MARV-infected animals, day-4 treatment initiation resulted in 100% survival, and day-5 treatment resulted in 50% survival. These results identify a single siRNA therapeutic that provides broad-spectrum protection against both MARV and RAVV.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Doença do Vírus de Marburg/tratamento farmacológico , Marburgvirus , Nanopartículas/uso terapêutico , RNA Interferente Pequeno/farmacologia , Animais , Macaca mulatta , Doença do Vírus de Marburg/metabolismo , Doença do Vírus de Marburg/patologia , Nanopartículas/química , RNA Interferente Pequeno/química
15.
Sci Rep ; 6: 34589, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713552

RESUMO

The unprecedented outbreak of Ebola in West Africa resulted in over 28,000 cases and 11,000 deaths, underlining the need for a better understanding of the biology of this highly pathogenic virus to develop specific counter strategies. Two filoviruses, the Ebola and Marburg viruses, result in a severe and often fatal infection in humans. However, bats are natural hosts and survive filovirus infections without obvious symptoms. The molecular basis of this striking difference in the response to filovirus infections is not well understood. We report a systematic overview of differentially expressed genes, activity motifs and pathways in human and bat cells infected with the Ebola and Marburg viruses, and we demonstrate that the replication of filoviruses is more rapid in human cells than in bat cells. We also found that the most strongly regulated genes upon filovirus infection are chemokine ligands and transcription factors. We observed a strong induction of the JAK/STAT pathway, of several genes encoding inhibitors of MAP kinases (DUSP genes) and of PPP1R15A, which is involved in ER stress-induced cell death. We used comparative transcriptomics to provide a data resource that can be used to identify cellular responses that might allow bats to survive filovirus infections.


Assuntos
Ebolavirus/metabolismo , Regulação da Expressão Gênica , Doença pelo Vírus Ebola/metabolismo , Doença do Vírus de Marburg/metabolismo , Marburgvirus/metabolismo , Transdução de Sinais , Transcrição Gênica , Animais , Linhagem Celular Tumoral , Quirópteros , Humanos
16.
Vestn Ross Akad Med Nauk ; (3): 35-8, 1998.
Artigo em Russo | MEDLINE | ID: mdl-9608275

RESUMO

The paper provides data on the effect of tumor necrosis factor (TNF) antiserum on the course of experimental Marburg hemorrhagic fever. On day 3 of the challenge of guinea pigs with the Popp strain of Marburg virus, the infection event was confirmed by PCR. On days 4-7, the infected animals intramuscularly received a TNF-alpha antiserum. The treated animals showed a 50% survival while all control animals died. It may be assumed that a course of death due to Marburg hemorrhagic fever in shocks brought about by inflammatory cytokines. Therefore, attempts may be made to treat this infection by using the drugs that are TNF antagonists.


Assuntos
Soros Imunes/farmacologia , Imunização Passiva , Doença do Vírus de Marburg/terapia , Fator de Necrose Tumoral alfa/imunologia , Animais , Anticorpos Antivirais/imunologia , Eletroforese em Gel de Ágar , Seguimentos , Cobaias , Humanos , Doença do Vírus de Marburg/metabolismo , Marburgvirus/genética , Marburgvirus/imunologia , Reação em Cadeia da Polimerase , RNA Viral/análise , Resultado do Tratamento
17.
Cell Rep ; 6(6): 1017-1025, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24630991

RESUMO

Kelch-like ECH-associated protein 1 (Keap1) is a ubiquitin E3 ligase specificity factor that targets transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) for ubiquitination and degradation. Disrupting Keap1-Nrf2 interaction stabilizes Nrf2, resulting in Nrf2 nuclear accumulation, binding to antioxidant response elements (AREs), and transcription of cytoprotective genes. Marburg virus (MARV) is a zoonotic pathogen that likely uses bats as reservoir hosts. We demonstrate that MARV protein VP24 (mVP24) binds the Kelch domain of either human or bat Keap1. This binding is of high affinity and 1:1 stoichiometry and activates Nrf2. Modeling based on the Zaire ebolavirus (EBOV) VP24 (eVP24) structure identified in mVP24 an acidic loop (K-loop) critical for Keap1 interaction. Transfer of the K-loop to eVP24, which otherwise does not bind Keap1, confers Keap1 binding and Nrf2 activation, and infection by MARV, but not EBOV, activates ARE gene expression. Therefore, MARV targets Keap1 to activate Nrf2-induced cytoprotective responses during infection.


Assuntos
Antioxidantes/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Marburgvirus/metabolismo , Proteínas Virais/metabolismo , Animais , Citoproteção , Expressão Gênica , Células HEK293 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch , Doença do Vírus de Marburg/metabolismo , Doença do Vírus de Marburg/virologia , Marburgvirus/genética , Modelos Moleculares , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Transfecção , Proteínas Virais/biossíntese , Proteínas Virais/genética
18.
Viruses ; 4(10): 2400-16, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23202470

RESUMO

Baboons are susceptible to natural Ebola virus (EBOV) infection and share 96% genetic homology with humans. Despite these characteristics, baboons have rarely been utilized as experimental models of human EBOV infection to evaluate the efficacy of prophylactics and therapeutics in the United States. This review will summarize what is known about the pathogenesis of EBOV infection in baboons compared to EBOV infection in humans and other Old World nonhuman primates. In addition, we will discuss how closely the baboon model recapitulates human EBOV infection. We will also review some of the housing requirements and behavioral attributes of baboons compared to other Old World nonhuman primates. Due to the lack of data available on the pathogenesis of Marburg virus (MARV) infection in baboons, discussion of the pathogenesis of MARV infection in baboons will be limited.


Assuntos
Modelos Animais de Doenças , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/patologia , Doença do Vírus de Marburg/patologia , Papio/virologia , Animais , Sequência de Bases , Fatores de Coagulação Sanguínea/metabolismo , Fibrina/metabolismo , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Doenças Linfáticas/patologia , Doenças Linfáticas/virologia , Doença do Vírus de Marburg/metabolismo , Doença do Vírus de Marburg/virologia , Marburgvirus/patogenicidade , Necrose/patologia , Necrose/virologia , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Trombocitopenia/patologia , Trombocitopenia/virologia
19.
J Pharm Sci ; 100(12): 5156-73, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21858822

RESUMO

The filoviruses, Ebola virus and Marburg virus, cause severe hemorrhagic fever with up to 90% human mortality. Virus-like particles of EBOV (eVLPs) and MARV (mVLPs) are attractive vaccine candidates. For the development of stable vaccines, the conformational stability of these two enveloped VLPs produced in insect cells was characterized by various spectroscopic techniques over a wide pH and temperature range. Temperature-induced aggregation of the VLPs at various pH values was monitored by light scattering. Temperature/pH empirical phase diagrams (EPDs) of the two VLPs were constructed to summarize the large volume of data generated. The EPDs show that both VLPs lose their conformational integrity above about 50°C-60°C, depending on solution pH. The VLPs were maximally thermal stable in solution at pH 7-8, with a significant reduction in stability at pH 5 and 6. They were much less stable in solution at pH 3-4 due to increased susceptibility of the VLPs to aggregation. The characterization data and conformational stability profiles from these studies provide a basis for selection of optimized solution conditions for further vaccine formulation and long-term stability studies of eVLPs and mVLPs.


Assuntos
Ebolavirus/metabolismo , Doença do Vírus de Marburg/metabolismo , Marburgvirus/metabolismo , Vírion/química , Animais , Anticorpos Antivirais , Baculoviridae/genética , Baculoviridae/metabolismo , Linhagem Celular , Vacinas contra Ebola/análise , Vacinas contra Ebola/química , Vacinas contra Ebola/metabolismo , Ebolavirus/química , Ebolavirus/genética , Ebolavirus/imunologia , Vetores Genéticos , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Insetos , Doença do Vírus de Marburg/imunologia , Marburgvirus/química , Marburgvirus/genética , Marburgvirus/imunologia , Conformação Molecular , Temperatura , Vacinas de Partículas Semelhantes a Vírus/análise , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/metabolismo
20.
J Virol ; 80(19): 9659-66, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16973570

RESUMO

Marburg virus (MARV) has been associated with sporadic episodes of hemorrhagic fever, including a recent highly publicized outbreak in Angola that produced severe disease and significant mortality in infected patients. MARV is also considered to have potential as a biological weapon. Recently, we reported the development of a promising attenuated, replication-competent vaccine against MARV based on recombinant vesicular stomatitis virus (VSV) expressing the glycoprotein of the Musoke strain of MARV (VSVDeltaG/MARVGP-Musoke). We used this vaccine to demonstrate complete protection of cynomolgus monkeys against a homologous MARV challenge. While these results are highly encouraging, an effective vaccine would need to confer protection against all relevant strains of MARV. Here, we evaluated the protective efficacy of the VSVDeltaG/MARVGP-Musoke vaccine against two heterologous MARV strains, the seemingly more pathogenic Angola strain and the more distantly related Ravn strain. In this study, seven cynomolgus monkeys were vaccinated with the VSVDeltaG/MARVGP-Musoke vector. Three of these animals were challenged with the Angola strain, three with the Ravn strain, and a single animal with the Musoke strain of MARV. Two animals served as controls and were each injected with a nonspecific VSV vector; these controls were challenged with the Angola and Ravn strains, respectively. Both controls succumbed to challenge by day 8. However, none of the specifically vaccinated animals showed any evidence of illness either from the vaccination or from the MARV challenges and all of these animals survived. These data suggest that the VSVDeltaG/MARVGP-Musoke vaccine should be sufficient to protect against all known MARV strains.


Assuntos
Doença do Vírus de Marburg/imunologia , Marburgvirus/classificação , Marburgvirus/imunologia , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos/imunologia , Reações Cruzadas/imunologia , Macaca fascicularis , Doença do Vírus de Marburg/genética , Doença do Vírus de Marburg/metabolismo , Marburgvirus/genética , Marburgvirus/metabolismo , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Viremia/sangue , Viremia/imunologia , Viremia/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA