Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 874
Filtrar
1.
PLoS Genet ; 20(6): e1011310, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857303

RESUMO

Growth deficiency is a characteristic feature of both Kabuki syndrome 1 (KS1) and Kabuki syndrome 2 (KS2), Mendelian disorders of the epigenetic machinery with similar phenotypes but distinct genetic etiologies. We previously described skeletal growth deficiency in a mouse model of KS1 and further established that a Kmt2d-/- chondrocyte model of KS1 exhibits precocious differentiation. Here we characterized growth deficiency in a mouse model of KS2, Kdm6atm1d/+. We show that Kdm6atm1d/+ mice have decreased femur and tibia length compared to controls and exhibit abnormalities in cortical and trabecular bone structure. Kdm6atm1d/+ growth plates are also shorter, due to decreases in hypertrophic chondrocyte size and hypertrophic zone height. Given these disturbances in the growth plate, we generated Kdm6a-/- chondrogenic cell lines. Similar to our prior in vitro model of KS1, we found that Kdm6a-/- cells undergo premature, enhanced differentiation towards chondrocytes compared to Kdm6a+/+ controls. RNA-seq showed that Kdm6a-/- cells have a distinct transcriptomic profile that indicates dysregulation of cartilage development. Finally, we performed RNA-seq simultaneously on Kmt2d-/-, Kdm6a-/-, and control lines at Days 7 and 14 of differentiation. This revealed surprising resemblance in gene expression between Kmt2d-/- and Kdm6a-/- at both time points and indicates that the similarity in phenotype between KS1 and KS2 also exists at the transcriptional level.


Assuntos
Anormalidades Múltiplas , Condrócitos , Modelos Animais de Doenças , Face , Doenças Hematológicas , Histona Desmetilases , Doenças Vestibulares , Animais , Doenças Vestibulares/genética , Doenças Vestibulares/patologia , Camundongos , Face/anormalidades , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Condrócitos/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Diferenciação Celular/genética , Condrogênese/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/deficiência , Humanos , Camundongos Knockout , Fenótipo , Histona-Lisina N-Metiltransferase , Proteína de Leucina Linfoide-Mieloide
2.
Blood ; 139(7): 1013-1025, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34479367

RESUMO

Kaposi sarcoma (KS) herpesvirus (KSHV), also known as human herpesvirus 8, is the causal agent of KS but is also pathogenetically related to several lymphoproliferative disorders, including primary effusion lymphoma (PEL)/extracavitary (EC) PEL, KSHV-associated multicentric Castleman disease (MCD), KSHV+ diffuse large B-cell lymphoma, and germinotropic lymphoproliferative disorder. These different KSHV-associated diseases may co-occur and may have overlapping features. KSHV, similar to Epstein-Barr virus (EBV), is a lymphotropic gammaherpesvirus that is preferentially present in abnormal lymphoid proliferations occurring in immunecompromised individuals. Notably, both KSHV and EBV can infect and transform the same B cell, which is frequently seen in KSHV+ EBV+ PEL/EC-PEL. The mechanisms by which KSHV leads to lymphoproliferative disorders is thought to be related to the expression of a few transforming viral genes that can affect cellular proliferation and survival. There are critical differences between KSHV-MCD and PEL/EC-PEL, the 2 most common KSHV-associated lymphoid proliferations, including viral associations, patterns of viral gene expression, and cellular differentiation stage reflected by the phenotype and genotype of the infected abnormal B cells. Advances in treatment have improved outcomes, but mortality rates remain high. Our deepening understanding of KSHV biology, clinical features of KSHV-associated diseases, and newer clinical interventions should lead to improved and increasingly targeted therapeutic interventions.


Assuntos
Infecções por Vírus Epstein-Barr/complicações , Doenças Hematológicas/patologia , Herpesvirus Humano 4/isolamento & purificação , Herpesvirus Humano 8/isolamento & purificação , Transtornos Linfoproliferativos/patologia , Sarcoma de Kaposi/complicações , Infecções por Vírus Epstein-Barr/virologia , Doenças Hematológicas/epidemiologia , Doenças Hematológicas/virologia , Humanos , Transtornos Linfoproliferativos/epidemiologia , Transtornos Linfoproliferativos/virologia , Sarcoma de Kaposi/virologia
3.
Am J Med Genet A ; 194(7): e63567, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38389298

RESUMO

Biallelic variants in the OTUD6B gene have been reported in the literature in association with an intellectual developmental disorder featuring dysmorphic facies, seizures, and distal limb abnormalities. Physical differences described for affected individuals suggest that the disorder may be clinically recognizable, but previous publications have reported an initial clinical suspicion for Kabuki syndrome (KS) in some affected individuals. Here, we report on three siblings with biallelic variants in OTUD6B co-segregating with neurodevelopmental delay, shared physical differences, and other clinical findings similar to those of previously reported individuals. However, clinical manifestations such as long palpebral fissures, prominent and cupped ears, developmental delay, growth deficiency, persistent fetal fingertip pads, vertebral anomaly, and seizures in the proband were initially suggestive of KS. In addition, previously unreported clinical manifestations such as delayed eruption of primary dentition, soft doughy skin with reduced sweating, and mirror movements present in our patients suggest an expansion of the phenotype, and we perform a literature review to update on current information related to OTUD6B and human gene-disease association.


Assuntos
Anormalidades Múltiplas , Face , Doenças Hematológicas , Fenótipo , Irmãos , Doenças Vestibulares , Criança , Pré-Escolar , Humanos , Masculino , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Alelos , Endopeptidases/genética , Face/anormalidades , Face/patologia , Estudos de Associação Genética , Predisposição Genética para Doença , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Doenças Hematológicas/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação/genética , Pescoço/anormalidades , Pescoço/patologia , Doenças Vestibulares/genética , Doenças Vestibulares/patologia , Doenças Vestibulares/diagnóstico
4.
J Pediatr Hematol Oncol ; 46(5): e338-e347, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38857202

RESUMO

Primary mitochondrial disorders (PMDs) are known for their pleiotropic manifestations in humans, affecting almost any organ or system at any time. Hematologic manifestations, such as cytopenias and sideroblastic anemia, occur in 10% to 30% of patients with confirmed PMDs. These can be the initial presenting features or complications that develop over time. Surveillance for these manifestations allows for prompt identification and treatment. This article provides an overview of the pathophysiology underpinning the hematologic effects of mitochondrial dysfunction, discussing the 3 key roles of the mitochondria in hematopoiesis: providing energy for cell differentiation and function, synthesizing heme, and generating iron-sulfur clusters. Subsequently, the diagnosis and management of mitochondrial disorders are discussed, focusing on hematologic manifestations and the specific conditions commonly associated with them. Through this, we aimed to provide a concise point of reference for those considering a mitochondrial cause for a patient's hematologic abnormality, or for those considering a hematologic manifestation in a patient with known or suspected mitochondrial disease.


Assuntos
Doenças Hematológicas , Doenças Mitocondriais , Humanos , Doenças Mitocondriais/complicações , Doenças Hematológicas/sangue , Doenças Hematológicas/complicações , Doenças Hematológicas/patologia , Mitocôndrias/patologia , Hematopoese , Anemia Sideroblástica/diagnóstico , Anemia Sideroblástica/terapia
5.
Nucleic Acids Res ; 50(D1): D231-D235, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34893873

RESUMO

The MODOMICS database has been, since 2006, a manually curated and centralized resource, storing and distributing comprehensive information about modified ribonucleosides. Originally, it only contained data on the chemical structures of modified ribonucleosides, their biosynthetic pathways, the location of modified residues in RNA sequences, and RNA-modifying enzymes. Over the years, prompted by the accumulation of new knowledge and new types of data, it has been updated with new information and functionalities. In this new release, we have created a catalog of RNA modifications linked to human diseases, e.g., due to mutations in genes encoding modification enzymes. MODOMICS has been linked extensively to RCSB Protein Data Bank, and sequences of experimentally determined RNA structures with modified residues have been added. This expansion was accompanied by including nucleotide 5'-monophosphate residues. We redesigned the web interface and upgraded the database backend. In addition, a search engine for chemically similar modified residues has been included that can be queried by SMILES codes or by drawing chemical molecules. Finally, previously available datasets of modified residues, biosynthetic pathways, and RNA-modifying enzymes have been updated. Overall, we provide users with a new, enhanced, and restyled tool for research on RNA modification. MODOMICS is available at https://iimcb.genesilico.pl/modomics/.


Assuntos
Bases de Dados de Ácidos Nucleicos , Enzimas/genética , RNA/genética , Ribonucleosídeos/genética , Interface Usuário-Computador , Sequência de Bases , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Gráficos por Computador , Bases de Dados de Proteínas , Conjuntos de Dados como Assunto , Enzimas/metabolismo , Gastroenteropatias/genética , Gastroenteropatias/metabolismo , Gastroenteropatias/patologia , Doenças Hematológicas/genética , Doenças Hematológicas/metabolismo , Doenças Hematológicas/patologia , Humanos , Internet , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Transtornos Mentais/patologia , Doenças Musculoesqueléticas/genética , Doenças Musculoesqueléticas/metabolismo , Doenças Musculoesqueléticas/patologia , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Ribonucleosídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Adv Exp Med Biol ; 1441: 761-775, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884747

RESUMO

Lesions of the semilunar valve and the aortic arch can occur either in isolation or as part of well-described clinical syndromes. The polygenic cause of calcific aortic valve disease will be discussed including the key role of NOTCH1 mutations. In addition, the complex trait of bicuspid aortic valve disease will be outlined, both in sporadic/familial cases and in the context of associated syndromes, such as Alagille, Williams, and Kabuki syndromes. Aortic arch abnormalities particularly coarctation of the aorta and interrupted aortic arch, including their association with syndromes such as Turner and 22q11 deletion, respectively, are also discussed. Finally, the genetic basis of congenital pulmonary valve stenosis is summarized, with particular note to Ras-/mitogen-activated protein kinase (Ras/MAPK) pathway syndromes and other less common associations, such as Holt-Oram syndrome.


Assuntos
Aorta Torácica , Valva Aórtica , Humanos , Aorta Torácica/anormalidades , Aorta Torácica/patologia , Valva Aórtica/anormalidades , Valva Aórtica/patologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Doença da Válvula Aórtica Bicúspide/genética , Estenose da Valva Pulmonar/genética , Mutação , Receptor Notch1/genética , Valvopatia Aórtica/genética , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/patologia , Calcinose/genética , Calcinose/patologia , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Doenças Vestibulares/genética , Doenças Vestibulares/patologia
7.
Br J Haematol ; 201(4): 605-619, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37067783

RESUMO

Whilst bone marrow adipocytes (BMAd) have long been appreciated by clinical haemato-pathologists, it is only relatively recently, in the face of emerging data, that the adipocytic niche has come under the watchful eye of biologists. There is now mounting evidence to suggest that BMAds are not just a simple structural entity of bone marrow microenvironments but a bona fide driver of physio- and pathophysiological processes relevant to multiple aspects of health and disease. Whilst the truly multifaceted nature of BMAds has only just begun to emerge, paradigms have shifted already for normal, malignant and non-malignant haemopoiesis incorporating a view of adipocyte regulation. Major efforts are ongoing, to delineate the routes by which BMAds participate in health and disease with a final aim of achieving clinical tractability. This review summarises the emerging role of BMAds across the spectrum of normal and pathological haematological conditions with a particular focus on its impact on cancer therapy.


Assuntos
Doenças Hematológicas , Neoplasias Hematológicas , Humanos , Medula Óssea/patologia , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/patologia , Doenças Hematológicas/terapia , Doenças Hematológicas/patologia , Adipócitos/patologia , Microambiente Tumoral
8.
Development ; 147(12)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32439762

RESUMO

Methylation of histone 3 lysine 4 (H3K4) is a major epigenetic system associated with gene expression. In mammals there are six H3K4 methyltransferases related to yeast Set1 and fly Trithorax, including two orthologs of fly Trithorax-related: MLL3 and MLL4. Exome sequencing has documented high frequencies of MLL3 and MLL4 mutations in many types of human cancer. Despite this emerging importance, the requirements of these paralogs in mammalian development have only been incompletely reported. Here, we examined the null phenotypes to establish that MLL3 is first required for lung maturation, whereas MLL4 is first required for migration of the anterior visceral endoderm that initiates gastrulation in the mouse. This collective cell migration is preceded by a columnar-to-squamous transition in visceral endoderm cells that depends on MLL4. Furthermore, Mll4 mutants display incompletely penetrant, sex-distorted, embryonic haploinsufficiency and adult heterozygous mutants show aspects of Kabuki syndrome, indicating that MLL4 action, unlike MLL3, is dosage dependent. The highly specific and discordant functions of these paralogs in mouse development argues against their action as general enhancer factors.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Anormalidades Múltiplas/veterinária , Alelos , Animais , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Face/anormalidades , Face/patologia , Feminino , Genótipo , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Doenças Hematológicas/veterinária , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutagênese , Gravidez , Insuficiência Respiratória/etiologia , Fatores de Tempo , Doenças Vestibulares/genética , Doenças Vestibulares/patologia , Doenças Vestibulares/veterinária
9.
Development ; 147(21)2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32541010

RESUMO

Kabuki syndrome (KS) is a congenital craniofacial disorder resulting from mutations in the KMT2D histone methylase (KS1) or the UTX histone demethylase (KS2). With small cohorts of KS2 patients, it is not clear whether differences exist in clinical manifestations relative to KS1. We mutated KMT2D in neural crest cells (NCCs) to study cellular and molecular functions in craniofacial development with respect to UTX. Similar to UTX, KMT2D NCC knockout mice demonstrate hypoplasia with reductions in frontonasal bone lengths. We have traced the onset of KMT2D and UTX mutant NCC frontal dysfunction to a stage of altered osteochondral progenitor differentiation. KMT2D NCC loss-of-function does exhibit unique phenotypes distinct from UTX mutation, including fully penetrant cleft palate, mandible hypoplasia and deficits in cranial base ossification. KMT2D mutant NCCs lead to defective secondary palatal shelf elevation with reduced expression of extracellular matrix components. KMT2D mutant chondrocytes in the cranial base fail to properly differentiate, leading to defective endochondral ossification. We conclude that KMT2D is required for appropriate cranial NCC differentiation and KMT2D-specific phenotypes may underlie differences between Kabuki syndrome subtypes.


Assuntos
Anormalidades Múltiplas/enzimologia , Anormalidades Múltiplas/patologia , Diferenciação Celular , Face/anormalidades , Doenças Hematológicas/enzimologia , Doenças Hematológicas/patologia , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Crista Neural/enzimologia , Crista Neural/patologia , Doenças Vestibulares/enzimologia , Doenças Vestibulares/patologia , Alelos , Animais , Linhagem da Célula , Movimento Celular , Condrócitos/patologia , Face/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Mutação/genética , Osteogênese , Palato/embriologia , Palato/metabolismo , Palato/patologia , Fenótipo , Crânio/patologia
10.
Blood ; 138(20): 1917-1927, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34792573

RESUMO

Biomedical applications of deep learning algorithms rely on large expert annotated data sets. The classification of bone marrow (BM) cell cytomorphology, an important cornerstone of hematological diagnosis, is still done manually thousands of times every day because of a lack of data sets and trained models. We applied convolutional neural networks (CNNs) to a large data set of 171 374 microscopic cytological images taken from BM smears from 945 patients diagnosed with a variety of hematological diseases. The data set is the largest expert-annotated pool of BM cytology images available in the literature. It allows us to train high-quality classifiers of leukocyte cytomorphology that identify a wide range of diagnostically relevant cell species with high precision and recall. Our CNNs outcompete previous feature-based approaches and provide a proof-of-concept for the classification problem of single BM cells. This study is a step toward automated evaluation of BM cell morphology using state-of-the-art image-classification algorithms. The underlying data set represents an educational resource, as well as a reference for future artificial intelligence-based approaches to BM cytomorphology.


Assuntos
Células da Medula Óssea/patologia , Doenças Hematológicas/diagnóstico , Redes Neurais de Computação , Células da Medula Óssea/citologia , Diferenciação Celular , Doenças Hematológicas/patologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos
11.
Blood ; 138(24): 2455-2468, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33945606

RESUMO

The BCL6 corepressor (BCOR) is a transcription factor involved in the control of embryogenesis, mesenchymal stem cells function, hematopoiesis, and lymphoid development. Recurrent somatic clonal mutations of the BCOR gene and its homolog BCORL1 have been detected in several hematologic malignancies and aplastic anemia. They are scattered across the whole gene length and mostly represent frameshifts (deletions, insertions), nonsense, and missence mutations. These disruptive events lead to the loss of full-length BCOR protein and to the lack or low expression of a truncated form of the protein, both consistent with the tumor suppressor role of BCOR.BCOR and BCORL1 mutations are similar to those causing 2 rare X-linked diseases: oculofaciocardiodental (OFCD) and Shukla-Vernon syndromes, respectively. Here, we focus on the structure and function of normal BCOR and BCORL1 in normal hematopoietic and lymphoid tissues and review the frequency and clinical significance of the mutations of these genes in malignant and nonmalignant hematologic diseases. Moreover, we discuss the importance of mouse models to better understand the role of Bcor loss, alone and combined with alterations of other genes (eg, Dnmt3a and Tet2), in promoting hematologic malignancies and in providing a useful platform for the development of new targeted therapies.


Assuntos
Doenças Hematológicas/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Animais , Regulação Neoplásica da Expressão Gênica , Doenças Hematológicas/metabolismo , Doenças Hematológicas/patologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Humanos , Mutação , Proteínas Proto-Oncogênicas/análise , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/análise , Proteínas Repressoras/metabolismo
12.
Hum Mol Genet ; 29(2): 305-319, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31813957

RESUMO

Kabuki syndrome is an autosomal dominant developmental disorder with high similarities to CHARGE syndrome. It is characterized by a typical facial gestalt in combination with short stature, intellectual disability, skeletal findings and additional features like cardiac and urogenital malformations, cleft palate, hearing loss and ophthalmological anomalies. The major cause of Kabuki syndrome are mutations in KMT2D, a gene encoding a histone H3 lysine 4 (H3K4) methyltransferase belonging to the group of chromatin modifiers. Here we provide evidence that Kabuki syndrome is a neurocrestopathy, by showing that Kmt2d loss-of-function inhibits specific steps of neural crest (NC) development. Using the Xenopus model system, we find that Kmt2d loss-of-function recapitulates major features of Kabuki syndrome including severe craniofacial malformations. A detailed marker analysis revealed defects in NC formation as well as migration. Transplantation experiments confirm that Kmt2d function is required in NC cells. Furthermore, analyzing in vivo and in vitro NC migration behavior demonstrates that Kmt2d is necessary for cell dispersion but not protrusion formation of migrating NC cells. Importantly, Kmt2d knockdown correlates with a decrease in H3K4 monomethylation and H3K27 acetylation supporting a role of Kmt2d in the transcriptional activation of target genes. Consistently, using a candidate approach, we find that Kmt2d loss-of-function inhibits Xenopus Sema3F expression, and overexpression of Sema3F can partially rescue Kmt2d loss-of-function defects. Taken together, our data reveal novel functions of Kmt2d in multiple steps of NC development and support the hypothesis that major features of Kabuki syndrome are caused by defects in NC development.


Assuntos
Anormalidades Múltiplas/enzimologia , Face/anormalidades , Doenças Hematológicas/enzimologia , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Crista Neural/metabolismo , Doenças Vestibulares/enzimologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Acetilação , Animais , Movimento Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Face/patologia , Doenças Hematológicas/genética , Doenças Hematológicas/metabolismo , Doenças Hematológicas/patologia , Histonas/metabolismo , Mutação com Perda de Função , Metilação , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Crista Neural/enzimologia , Crista Neural/patologia , Placa Neural/crescimento & desenvolvimento , Placa Neural/metabolismo , Placa Neural/patologia , Semaforinas/genética , Semaforinas/metabolismo , Doenças Vestibulares/genética , Doenças Vestibulares/metabolismo , Doenças Vestibulares/patologia , Xenopus/embriologia , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/fisiologia
13.
Br J Haematol ; 198(6): 943-952, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35510703

RESUMO

Bone marrow (BM) studies are pivotal for the diagnosis of haematological disorders. Their introduction into clinical haematology dates back to the work of Giovanni Ghedini (1877-1959), an Italian physician who first conceived BM sampling in 1908. Ghedini's proposal stemmed from his clinical experience and from the scientific developments that characterised his epoch. By presenting selected passages of Ghedini's publications, this report considers the theoretical and historical bases of his work and analyses its practical implications for modern haematology.


Assuntos
Doenças Hematológicas , Hematologia , Biópsia , Medula Óssea/patologia , Exame de Medula Óssea , Doenças Hematológicas/patologia , Humanos
14.
Blood ; 135(19): 1630-1638, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32202630

RESUMO

Steroid-resistant or steroid-refractory acute graft-versus-host disease (SR-aGVHD) poses one of the most vexing challenges faced by providers who care for patients after allogeneic hematopoietic cell transplantation. For the past 4 decades, research in the field has been driven by the premise that persistent graft-versus-host disease (GVHD) results from inadequate immunosuppression. Accordingly, most efforts to solve this problem have relied on retrospective or prospective studies testing agents that have direct or indirect immunosuppressive effects. Retrospective studies far outnumber prospective studies, and no controlled prospective trial has shown superior results for any agent over others. Truth be told, I do not know how to treat SR-aGVHD. Preclinical work during the past decade has provided fresh insights into the pathogenesis of acute GVHD, and translation of these insights toward development of more effective treatments for patients with SR-aGVHD has at last begun. Given the limited state of current knowledge, this "How I Treat" review highlights the overriding imperative to avoid harm in caring for patients with SR-aGVHD. Prospective trials that are widely available are urgently needed to advance the field.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doenças Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Imunossupressores/uso terapêutico , Terapia de Salvação , Esteroides/farmacologia , Adulto , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/patologia , Doenças Hematológicas/patologia , Humanos , Masculino , Prognóstico , Indução de Remissão
15.
Am J Med Genet A ; 188(10): 2976-2987, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36097644

RESUMO

Kabuki syndrome (KS) is a rare disorder characterized by distinct face, persistent fingertip pads, and intellectual disability (ID) caused by mutation in KMT2D (56%-76%) or KDM6A (5%-8%). Thirty-seven children aged 1-16 years who followed for median of 6.8 years were included in this study, which aimed to investigate the genetic and clinical characteristics of KS patients. KMT2D and KDM6A were evaluated by sequencing and multiplex-ligation-dependent probe amplification in 32 patients. Twenty-one pathogenic variants in KMT2D, of which 17 were truncated and nine were novel, one frame-shift novel variant in KDM6A were identified. The molecular diagnosis rate was 68.7% (22/32). In the whole-exome sequencing analysis performed in the remaining patients, no pathogenic variant that could cause any disease was detected. All patients had ID; 43.2% were severe and moderate. We observed that facial features that became more prominent with age were enough for a possible diagnosis of KS in infancy. The frequencies of facial features, cardiac and renal anomalies, short stature, microcephaly, and epilepsy did not differ depending on whether they had truncating or nontruncating variants or were in variant-negative KS-like group. This study has expanded clinical features of the disease, as well as identified new variants in genes causing KS.


Assuntos
Doenças Hematológicas , Deficiência Intelectual , Doenças Vestibulares , Anormalidades Múltiplas , Face/anormalidades , Doenças Hematológicas/diagnóstico , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Histona Desmetilases/genética , Humanos , Deficiência Intelectual/genética , Fenótipo , Doenças Vestibulares/diagnóstico , Doenças Vestibulares/genética , Doenças Vestibulares/patologia
16.
Am J Med Genet A ; 188(10): 3041-3048, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35930004

RESUMO

Kabuki syndrome (KS) is a rare epigenetic disorder caused by heterozygous loss of function variants in either KMT2D (90%) or KDM6A (10%), both involved in regulation of histone methylation. While sleep disturbance in other Mendelian disorders of the epigenetic machinery has been reported, no study has been conducted on sleep in KS. This study assessed sleep in 59 participants with KS using a validated sleep questionnaire. Participants ranged in age from 4 to 43 years old with 86% of participants having a pathogenic variant in KMT2D. In addition, data on adaptive function, behavior, anxiety, and quality of life were collected using their respective questionnaires. Some form of sleep issue was present in 71% of participants, with night-waking, daytime sleepiness, and sleep onset delay being the most prevalent. Sleep dysfunction was positively correlated with maladaptive behaviors, anxiety levels, and decreasing quality of life. Sleep issues were not correlated with adaptive function. This study establishes sleep disturbance as a common feature of KS. Quantitative sleep measures may be a useful outcome measure for clinical trials in KS. Further, clinicians caring for those with KS should consider sleep dysfunction as an important feature that impacts overall health and well being in these patients.


Assuntos
Doenças Hematológicas , Doenças Vestibulares , Anormalidades Múltiplas , Adolescente , Adulto , Criança , Pré-Escolar , Face/anormalidades , Doenças Hematológicas/complicações , Doenças Hematológicas/genética , Doenças Hematológicas/patologia , Histona Desmetilases/genética , Humanos , Mutação , Qualidade de Vida , Sono , Doenças Vestibulares/complicações , Doenças Vestibulares/genética , Doenças Vestibulares/patologia , Adulto Jovem
17.
Mol Ther ; 29(4): 1611-1624, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33309880

RESUMO

Ex vivo gene correction of hematopoietic stem and progenitor cells (HSPCs) has emerged as a promising therapeutic approach for treatment of inherited human blood disorders. Use of engineered nucleases to target therapeutic transgenes to their endogenous genetic loci addresses many of the limitations associated with viral vector-based gene replacement strategies, such as insertional mutagenesis, variable gene dosage, and ectopic expression. Common methods of nuclease-mediated site-specific integration utilize the homology-directed repair (HDR) pathway. However, these approaches are inefficient in HSPCs, where non-homologous end joining (NHEJ) is the primary DNA repair mechanism. Recently, a novel NHEJ-based approach to CRISPR-Cas9-mediated transgene knockin, known as homology-independent targeted integration (HITI), has demonstrated improved site-specific integration frequencies in non-dividing cells. Here we utilize a HITI-based approach to achieve robust site-specific transgene integration in human mobilized peripheral blood CD34+ HSPCs. As proof of concept, a reporter gene was targeted to a clinically relevant genetic locus using a recombinant adeno-associated virus serotype 6 vector and single guide RNA/Cas9 ribonucleoprotein complexes. We demonstrate high levels of stable HITI-mediated genome editing (∼21%) in repopulating HSPCs after transplantation into immunodeficient mice. Our study demonstrates that HITI-mediated genome editing provides an effective alternative to HDR-based transgene integration in CD34+ HSPCs.


Assuntos
Sistemas CRISPR-Cas/genética , Terapia Genética , Doenças Hematológicas/genética , Transplante de Células-Tronco Hematopoéticas , Animais , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/genética , Dependovirus/genética , Edição de Genes , Vetores Genéticos/genética , Genoma Humano/genética , Doenças Hematológicas/patologia , Doenças Hematológicas/terapia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , RNA Guia de Cinetoplastídeos/genética , Reparo de DNA por Recombinação/genética , Células-Tronco/citologia , Células-Tronco/metabolismo
18.
Ann Diagn Pathol ; 56: 151868, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34896889

RESUMO

Merkel cell carcinoma (MCC) is a rare but aggressive neuroendocrine carcinoma of the skin, often associated with polyomavirus and ultra-violet light exposure. Immunosuppression is associated with increased risk of development of MCC, including that associated with hematolymphoid disorders such as chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). We sought to determine whether MCC arising in patients with hematologic disorders showed unique features. Searching archived material at three institutions, we identified 13 patients with MCC and at least one hematologic malignancy and 41 patients with MCC with no reported hematologic malignancy. CLL/SLL was the most common hematologic disorder in this setting (9/13 cases). Clinical history, variation in morphologic appearance, unusual site distribution and concern for progression of underlying hematologic disease all contributed to potential diagnostic challenges. Overlapping marker expression between MCC and hematologic neoplasms created potential diagnostic pitfalls (e.g. CD138, Pax5, TdT, Bcl2, CD56, and CD117). In addition, we newly identify expression of CD5 and LEF-1 in a subset of MCC, including in patients with CLL/SLL. MCC in patients with hematologic malignancy were more common in men (92% versus 59%, p < 0.05) and showed an unusual site predilection to non-sun exposed sites (3/13 on the buttocks) with none presenting on the face or scalp. By contrast, face or scalp lesions were common in MCC without an associated hematologic malignancy (17/41, p < 0.05). Our findings reaffirm the need for skin surveillance in the setting of immune deficiency and for vigilance to identify unusual presentations of MCC in patients with or without hematologic disorders.


Assuntos
Carcinoma de Célula de Merkel/patologia , Doenças Hematológicas/patologia , Neoplasias Cutâneas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Célula de Merkel/complicações , Feminino , Doenças Hematológicas/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Cutâneas/complicações
19.
Genesis ; 59(1-2): e23404, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33351273

RESUMO

Neurocristopathies are human congenital syndromes that arise from defects in neural crest (NC) development and are typically associated with malformations of the craniofacial skeleton. Genetic analyses have been very successful in identifying pathogenic mutations, however, model organisms are required to characterize how these mutations affect embryonic development thereby leading to complex clinical conditions. The African clawed frog Xenopus laevis provides a broad range of in vivo and in vitro tools allowing for a detailed characterization of NC development. Due to the conserved nature of craniofacial morphogenesis in vertebrates, Xenopus is an efficient and versatile system to dissect the morphological and cellular phenotypes as well as the signaling events leading to NC defects. Here, we review a set of techniques and resources how Xenopus can be used as a disease model to investigate the pathogenesis of Kabuki syndrome and neurocristopathies in a wider sense.


Assuntos
Anormalidades Múltiplas/genética , Modelos Animais de Doenças , Face/anormalidades , Doenças Hematológicas/genética , Doenças Vestibulares/genética , Xenopus laevis/genética , Anormalidades Múltiplas/patologia , Animais , Face/patologia , Doenças Hematológicas/patologia , Histona Desmetilases/genética , Histona-Lisina N-Metiltransferase/genética , Crista Neural/metabolismo , Crista Neural/patologia , Doenças Vestibulares/patologia , Proteínas de Xenopus/genética , Xenopus laevis/fisiologia
20.
Med Res Rev ; 41(1): 246-274, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32929726

RESUMO

Since the discovery of circulating tumor cells in 1869, technological advances in studying circulating biomarkers from patients' blood have made the diagnosis of nonhematologic cancers less invasive. Technological advances in the detection and analysis of biomarkers provide new opportunities for the characterization of other disease types. When compared with traditional biopsies, liquid biopsy markers, such as exfoliated bladder cancer cells, circulating cell-free DNA (cfDNA), and extracellular vesicles (EV), are considered more convenient than conventional biopsies. Liquid biopsy markers undoubtedly have the potential to influence disease management and treatment dynamics. Our main focuses of this review will be the cell-based, gene-based, and protein-based key liquid biopsy markers (including EV and cfDNA) in disease detection, and discuss the research progress of these biomarkers used in conjunction with liquid biopsy. First, we highlighted the key technologies that have been broadly adopted used in hematological diseases. Second, we introduced the latest technological developments for the specific detection of cardiovascular disease, leukemia, and coronavirus disease. Finally, we concluded with perspectives on these research areas, focusing on the role of microfluidic technology and artificial intelligence in point-of-care medical applications. We believe that the noninvasive capabilities of these technologies have great potential in the development of diagnostics and can influence treatment options, thereby advancing precision disease management.


Assuntos
Tecnologia Biomédica , Doenças Hematológicas/diagnóstico , Doenças Hematológicas/patologia , Biópsia Líquida , Biomarcadores/metabolismo , COVID-19/diagnóstico , Doenças Hematológicas/sangue , Humanos , Microfluídica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA