Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Cell ; 138(2): 340-51, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19632183

RESUMO

Intrinsic immune responses autonomously inhibit viral replication and spread. One pathway that restricts viral infection in plants and insects is RNA interference (RNAi), which targets and degrades viral RNA to limit infection. To identify additional genes involved in intrinsic antiviral immunity, we screened Drosophila cells for modulators of viral infection using an RNAi library. We identified Ars2 as a key component of Drosophila antiviral immunity. Loss of Ars2 in cells, or in flies, increases susceptibility to RNA viruses. Consistent with its antiviral properties, we found that Ars2 physically interacts with Dcr-2, modulates its activity in vitro, and is required for siRNA-mediated silencing. Furthermore, we show that Ars2 plays an essential role in miRNA-mediated silencing, interacting with the Microprocessor and stabilizing pri-miRNAs. The identification of Ars2 as a player in these small RNA pathways provides new insight into the biogenesis of small RNAs that may be extended to other systems.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/imunologia , Complexo Proteico Nuclear de Ligação ao Cap/metabolismo , Interferência de RNA , Vesiculovirus/imunologia , Animais , Drosophila/virologia , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , MicroRNAs/genética , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Vesiculovirus/genética
2.
Genes Dev ; 30(14): 1658-70, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27474443

RESUMO

RNA degradation is tightly regulated to selectively target aberrant RNAs, including viral RNA, but this regulation is incompletely understood. Through RNAi screening in Drosophila cells, we identified the 3'-to-5' RNA exosome and two components of the exosome cofactor TRAMP (Trf4/5-Air1/2-Mtr4 polyadenylation) complex, dMtr4 and dZcchc7, as antiviral against a panel of RNA viruses. We extended our studies to human orthologs and found that the exosome as well as TRAMP components hMTR4 and hZCCHC7 are antiviral. While hMTR4 and hZCCHC7 are normally nuclear, infection by cytoplasmic RNA viruses induces their export, forming a cytoplasmic complex that specifically recognizes and induces degradation of viral mRNAs. Furthermore, the 3' untranslated region (UTR) of bunyaviral mRNA is sufficient to confer virus-induced exosomal degradation. Altogether, our results reveal that signals from viral infection repurpose TRAMP components to a cytoplasmic surveillance role where they selectively engage viral RNAs for degradation to restrict a broad range of viruses.


Assuntos
Exossomos/metabolismo , Estabilidade de RNA/fisiologia , RNA Viral/metabolismo , Animais , Linhagem Celular , Citoplasma/metabolismo , Drosophila/virologia , Humanos , Complexos Multiproteicos/genética , Poliadenilação , Ligação Proteica , Transporte Proteico , Interferência de RNA , Infecções por Vírus de RNA/metabolismo , Infecções por Vírus de RNA/virologia , Vírus de RNA/fisiologia , Fatores de Transcrição/metabolismo
3.
J Virol ; 96(17): e0069922, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35993738

RESUMO

Viral protein genome-linked (VPg) protein plays an essential role in protein-primed replication of plus-stranded RNA viruses. VPg is covalently linked to the 5' end of the viral RNA genome via a phosphodiester bond typically at a conserved amino acid. Whereas most viruses have a single VPg, some viruses have multiple VPgs that are proposed to have redundant yet undefined roles in viral replication. Here, we use cricket paralysis virus (CrPV), a dicistrovirus that has four nonidentical copies of VPg, as a model to characterize the role of VPg copies in infection. Dicistroviruses contain two main open reading frames (ORFs) that are driven by distinct internal ribosome entry sites (IRESs). We systematically generated single and combinatorial deletions and mutations of VPg1 to VPg4 within the CrPV infectious clone and monitored viral yield in Drosophila S2 cells. Deletion of one to three VPg copies progressively decreased viral yield and delayed viral replication, suggesting a threshold number of VPgs for productive infection. Mass spectrometry analysis of CrPV VPg-linked RNAs revealed viral RNA linkage to either a serine or threonine in VPg, mutations of which in all VPgs attenuated infection. Mutating serine 4 in a single VPg abolished viral infection, indicating a dominant negative effect. Using viral minigenome reporters that monitor dicistrovirus 5' untranslated (UTR) and IRES translation revealed a relationship between VPg copy number and the ratio of distinct IRES translation activities. We uncovered a novel viral strategy whereby VPg copies in dicistrovirus genomes compensate for the relative IRES translation efficiencies to promote infection. IMPORTANCE Genetic duplication is exceedingly rare in small RNA viral genomes, as there is selective pressure to prevent RNA genomes from expanding. However, some small RNA viruses encode multiple copies of a viral protein, most notably an unusual viral protein that is linked to the viral RNA genome. Here, we investigate a family of viruses that contains multiple viral protein genome-linked proteins and reveal a novel viral strategy whereby viral protein copy number counterbalances differences in viral protein synthesis mechanisms.


Assuntos
Dicistroviridae , Genoma Viral , Biossíntese de Proteínas , Infecções por Vírus de RNA , RNA Viral , Proteínas Virais , Regiões 5' não Traduzidas/genética , Animais , Linhagem Celular , Dicistroviridae/genética , Dicistroviridae/metabolismo , Drosophila/citologia , Drosophila/virologia , Genoma Viral/genética , Sítios Internos de Entrada Ribossomal/genética , Mutação , Infecções por Vírus de RNA/virologia , RNA Viral/genética , Serina/metabolismo , Treonina/metabolismo , Carga Viral , Proteínas Virais/biossíntese , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
Nature ; 535(7610): 164-8, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27383988

RESUMO

Flaviviruses infect hundreds of millions of people annually, and no antiviral therapy is available. We performed a genome-wide CRISPR/Cas9-based screen to identify host genes that, when edited, resulted in reduced flavivirus infection. Here, we validated nine human genes required for flavivirus infectivity, and these were associated with endoplasmic reticulum functions including translocation, protein degradation, and N-linked glycosylation. In particular, a subset of endoplasmic reticulum-associated signal peptidase complex (SPCS) proteins was necessary for proper cleavage of the flavivirus structural proteins (prM and E) and secretion of viral particles. Loss of SPCS1 expression resulted in markedly reduced yield of all Flaviviridae family members tested (West Nile, Dengue, Zika, yellow fever, Japanese encephalitis, and hepatitis C viruses), but had little impact on alphavirus, bunyavirus, or rhabdovirus infection or the surface expression or secretion of diverse host proteins. We found that SPCS1 dependence could be bypassed by replacing the native prM protein leader sequences with a class I major histocompatibility complex (MHC) antigen leader sequence. Thus, SPCS1, either directly or indirectly via its interactions with unknown host proteins, preferentially promotes the processing of specific protein cargo, and Flaviviridae have a unique dependence on this signal peptide processing pathway. SPCS1 and other signal processing pathway members could represent pharmacological targets for inhibiting infection by the expanding number of flaviviruses of medical concern.


Assuntos
Sistemas CRISPR-Cas/genética , Flavivirus/fisiologia , Genoma Humano/genética , Fatores Celulares Derivados do Hospedeiro/genética , Sinais Direcionadores de Proteínas/fisiologia , Animais , Linhagem Celular , Drosophila/citologia , Drosophila/genética , Drosophila/virologia , Descoberta de Drogas , Retículo Endoplasmático/metabolismo , Feminino , Flavivirus/metabolismo , Infecções por Flavivirus/genética , Infecções por Flavivirus/virologia , Glicosilação , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas de Membrana/genética , Terapia de Alvo Molecular , Transporte Proteico/genética , Proteólise , Reprodutibilidade dos Testes , Serina Endopeptidases/genética , Especificidade da Espécie , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/metabolismo
5.
Proc Natl Acad Sci U S A ; 116(48): 24296-24302, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712431

RESUMO

Coevolution of viruses and their hosts may lead to viral strategies to avoid, evade, or suppress antiviral immunity. An example is antiviral RNA interference (RNAi) in insects: the host RNAi machinery processes viral double-stranded RNA into small interfering RNAs (siRNAs) to suppress viral replication, whereas insect viruses encode suppressors of RNAi, many of which inhibit viral small interfering RNA (vsiRNA) production. Yet, many studies have analyzed viral RNAi suppressors in heterologous systems, due to the lack of experimental systems to manipulate the viral genome of interest, raising questions about in vivo functions of RNAi suppressors. To address this caveat, we generated an RNAi suppressor-defective mutant of invertebrate iridescent virus 6 (IIV6), a large DNA virus in which we previously identified the 340R protein as a suppressor of RNAi. Loss of 340R did not affect vsiRNA production, indicating that 340R binds siRNA duplexes to prevent RNA-induced silencing complex assembly. Indeed, vsiRNAs were not efficiently loaded into Argonaute 2 during wild-type IIV6 infection. Moreover, IIV6 induced a limited set of mature microRNAs in a 340R-dependent manner, most notably miR-305-3p, which we attribute to stabilization of the miR-305-5p:3p duplex by 340R. The IIV6 340R deletion mutant did not have a replication defect in cells, but was strongly attenuated in adult Drosophila This in vivo replication defect was completely rescued in RNAi mutant flies, indicating that 340R is a bona fide RNAi suppressor, the absence of which uncovers a potent antiviral immune response that suppresses virus accumulation ∼100-fold. Together, our work indicates that viral RNAi suppressors may completely mask antiviral immunity.


Assuntos
Drosophila/genética , Drosophila/virologia , Interações Hospedeiro-Patógeno/imunologia , Iridovirus/fisiologia , Iridovirus/patogenicidade , Animais , Drosophila/imunologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , Microrganismos Geneticamente Modificados , Mutação , Interferência de RNA , Estabilidade de RNA , Proteínas Virais/genética , Proteínas Virais/imunologia , Replicação Viral
6.
PLoS Pathog ; 15(9): e1007936, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31504075

RESUMO

Wolbachia are the most widespread maternally-transmitted bacteria in the animal kingdom. Their global spread in arthropods and varied impacts on animal physiology, evolution, and vector control are in part due to parasitic drive systems that enhance the fitness of infected females, the transmitting sex of Wolbachia. Male killing is one common drive mechanism wherein the sons of infected females are selectively killed. Despite decades of research, the gene(s) underlying Wolbachia-induced male killing remain unknown. Here using comparative genomic, transgenic, and cytological approaches in fruit flies, we identify a candidate gene in the eukaryotic association module of Wolbachia prophage WO, termed WO-mediated killing (wmk), which transgenically causes male-specific lethality during early embryogenesis and cytological defects typical of the pathology of male killing. The discovery of wmk establishes new hypotheses for the potential role of phage genes in sex-specific lethality, including the control of arthropod pests and vectors.


Assuntos
Prófagos/genética , Prófagos/patogenicidade , Wolbachia/patogenicidade , Wolbachia/virologia , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Drosophila/embriologia , Drosophila/microbiologia , Drosophila/virologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/microbiologia , Drosophila melanogaster/virologia , Feminino , Genes Letais , Genes Virais , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Masculino , Prófagos/fisiologia , Razão de Masculinidade , Simbiose/genética , Simbiose/fisiologia , Proteínas Virais/genética , Proteínas Virais/fisiologia
7.
J Gen Virol ; 101(11): 1131-1132, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33048045

RESUMO

Metaviridae is a family of retrotransposons and reverse-transcribing viruses with long terminal repeats belonging to the order Ortervirales. Members of the genera Errantivirus and Metavirus include, respectively, Saccharomyces cerevisiae Ty3 virus and its Gypsy-like relatives in drosophilids. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Metaviridae, which is available at ictv.global/report/metaviridae.


Assuntos
Micovírus/classificação , Genoma Viral , Vírus de Insetos/classificação , Vírus de RNA/classificação , Retroelementos , Animais , Drosophila/virologia , Micovírus/genética , Micovírus/fisiologia , Genes Virais , Vírus de Insetos/genética , Vírus de Insetos/fisiologia , Vírus de RNA/genética , Vírus de RNA/fisiologia , Saccharomyces cerevisiae/virologia , Vírion/ultraestrutura , Replicação Viral
8.
Nat Immunol ; 9(12): 1425-32, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18953338

RESUMO

Drosophila, like other invertebrates and plants, relies mainly on RNA interference for its defense against viruses. In flies, viral infection also triggers the expression of many genes. One of the genes induced, Vago, encodes a 18-kilodalton cysteine-rich polypeptide. Here we provide genetic evidence that the Vago gene product controlled viral load in the fat body after infection with drosophila C virus. Induction of Vago was dependent on the helicase Dicer-2. Dicer-2 belongs to the same DExD/H-box helicase family as do the RIG-I-like receptors, which sense viral infection and mediate interferon induction in mammals. We propose that this family represents an evolutionary conserved set of sensors that detect viral nucleic acids and direct antiviral responses.


Assuntos
Proteínas de Drosophila/imunologia , Drosophila/imunologia , Drosophila/virologia , RNA Helicases/imunologia , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Eletroforese em Gel de Poliacrilamida , Corpo Adiposo/imunologia , Corpo Adiposo/virologia , Regulação da Expressão Gênica/imunologia , Humanos , Filogenia , RNA Helicases/genética , RNA Helicases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonuclease III , Homologia de Sequência de Aminoácidos , Transcrição Gênica , Viroses/imunologia
9.
Mol Ecol ; 29(11): 2063-2079, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32391935

RESUMO

The bacterial symbiont Wolbachia can protect insects against viral pathogens, and the varying levels of antiviral protection are correlated with the endosymbiont load within the insects. To understand why Wolbachia strains differ in their antiviral effects, we investigated the factors controlling Wolbachia density in five closely related strains in their natural Drosophila hosts. We found that Wolbachia density varied greatly across different tissues and between flies of different ages, and these effects depended on the host-symbiont association. Some endosymbionts maintained largely stable densities as flies aged while others increased, and these effects in turn depended on the tissue being examined. Measuring Wolbachia rRNA levels in response to viral infection, we found that viral infection itself also altered Wolbachia levels, with Flock House virus causing substantial reductions in symbiont loads late in the infection. This effect, however, was virus-specific as Drosophila C virus had little impact on Wolbachia in all of the five host systems. Because viruses have strong tissue tropisms and antiviral protection is thought to be cell-autonomous, these effects are likely to affect the virus-blocking phenomenon. However, we were unable to find any evidence of a correlation between Wolbachia and viral titres within the same tissues. We conclude that Wolbachia levels within flies are regulated in a complex host-symbiont-virus-dependent manner and this trinity is likely to influence the antiviral effects of Wolbachia.


Assuntos
Fatores Etários , Drosophila , Simbiose , Viroses , Wolbachia , Animais , Drosophila/genética , Drosophila/microbiologia , Drosophila/virologia , Genótipo , Simbiose/genética
10.
PLoS Pathog ; 13(5): e1006365, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28475646

RESUMO

Defective-Interfering RNAs (DI-RNAs) have long been known to play an important role in virus replication and transmission. DI-RNAs emerge during virus passaging in both cell-culture and their hosts as a result of non-homologous RNA recombination. However, the principles of DI-RNA emergence and their subsequent evolution have remained elusive. Using a combination of long- and short-read Next-Generation Sequencing, we have characterized the formation of DI-RNAs during serial passaging of Flock House virus (FHV) in cell-culture over a period of 30 days in order to elucidate the pathways and potential mechanisms of DI-RNA emergence and evolution. For short-read RNAseq, we employed 'ClickSeq' due to its ability to sensitively and confidently detect RNA recombination events with nucleotide resolution. In parallel, we used the Oxford Nanopore Technologies's (ONT) MinION to resolve full-length defective and wild-type viral genomes. Together, these accurately resolve both rare and common RNA recombination events, determine the correlation between recombination events, and quantifies the relative abundance of different DI-RNAs throughout passaging. We observe the formation of a diverse pool of defective RNAs at each stage of viral passaging. However, many of these 'intermediate' species, while present in early stages of passaging, do not accumulate. After approximately 9 days of passaging we observe the rapid accumulation of DI-RNAs with a correlated reduction in specific infectivity and with the Nanopore data find that DI-RNAs are characterized by multiple RNA recombination events. This suggests that intermediate DI-RNA species are not competitive and that multiple recombination events interact epistatically to confer 'mature' DI-RNAs with their selective advantage allowing for their rapid accumulation. Alternatively, it is possible that mature DI-RNA species are generated in a single event involving multiple RNA rearrangements. These insights have important consequences for our understanding of the mechanisms, determinants and limitations in the emergence and evolution of DI-RNAs.


Assuntos
Vírus Defeituosos/genética , Evolução Molecular , Genoma Viral/genética , Nodaviridae/genética , RNA Interferente Pequeno/genética , Replicação Viral/genética , Animais , Drosophila/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Nanoporos , RNA , RNA Interferente Pequeno/química , RNA Viral/química , RNA Viral/genética , Análise de Sequência de RNA
11.
Appl Environ Microbiol ; 85(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30552191

RESUMO

Wolbachia infections can present different phenotypes in hosts, including different forms of reproductive manipulation and antiviral protection, which may influence infection dynamics within host populations. In populations of Drosophila pandora two distinct Wolbachia strains coexist, each manipulating host reproduction: strain wPanCI causes cytoplasmic incompatibility (CI), whereas strain wPanMK causes male killing (MK). CI occurs when a Wolbachia-infected male mates with a female not infected with a compatible type of Wolbachia, leading to nonviable offspring. wPanMK can rescue wPanCI-induced CI but is unable to induce CI. The antiviral protection phenotypes provided by the wPanCI and wPanMK infections were characterized; the strains showed differential protection phenotypes, whereby cricket paralysis virus (CrPV)-induced mortality was delayed in flies infected with wPanMK but enhanced in flies infected with wPanCI compared to their respective Wolbachia-cured counterparts. Homologs of the cifA and cifB genes involved in CI identified in wPanMK and wPanCI showed a high degree of conservation; however, the CifB protein in wPanMK is truncated and is likely nonfunctional. The presence of a likely functional CifA in wPanMK and wPanMK's ability to rescue wPanCI-induced CI are consistent with the recent confirmation of CifA's involvement in CI rescue, and the absence of a functional CifB protein further supports its involvement as a CI modification factor. Taken together, these findings indicate that wPanCI and wPanMK have different relationships with their hosts in terms of their protective and CI phenotypes. It is therefore likely that different factors influence the prevalence and dynamics of these coinfections in natural Drosophila pandora hosts.IMPORTANCEWolbachia strains are common endosymbionts in insects, with multiple strains often coexisting in the same species. The coexistence of multiple strains is poorly understood but may rely on Wolbachia organisms having diverse phenotypic effects on their hosts. As Wolbachia is increasingly being developed as a tool to control disease transmission and suppress pest populations, it is important to understand the ways in which multiple Wolbachia strains persist in natural populations and how these might then be manipulated. We have therefore investigated viral protection and the molecular basis of cytoplasmic incompatibility in two coexisting Wolbachia strains with contrasting effects on host reproduction.


Assuntos
Drosophila/microbiologia , Drosophila/virologia , Reprodução , Wolbachia/fisiologia , Wolbachia/virologia , Doenças dos Animais/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Citoplasma/fisiologia , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Dicistroviridae/genética , Dicistroviridae/metabolismo , Dicistroviridae/patogenicidade , Feminino , Genes Bacterianos/genética , Genes Virais , Interações Hospedeiro-Patógeno , Masculino , Fenótipo , Simbiose , Wolbachia/genética
12.
Mol Cell ; 44(3): 502-8, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22055194

RESUMO

The effector of RNA interference (RNAi) is the RNA-induced silencing complex (RISC). C3PO promotes the activation of RISC by degrading the Argonaute2 (Ago2)-nicked passenger strand of duplex siRNA. Active RISC is a multiple-turnover enzyme that uses the guide strand of siRNA to direct the Ago2-mediated sequence-specific cleavage of complementary mRNA. How this effector step of RNAi is regulated is currently unknown. Here, we used the human Ago2 minimal RISC system to purify Sjögren's syndrome antigen B (SSB)/autoantigen La as an activator of the RISC-mediated mRNA cleavage activity. Our reconstitution studies showed that La could promote multiple-turnover RISC catalysis by facilitating the release of cleaved mRNA from RISC. Moreover, we demonstrated that La was required for efficient RNAi, antiviral defense, and transposon silencing in vivo. Taken together, the findings of C3PO and La reveal a general concept that regulatory factors are required to remove Ago2-cleaved products to assemble or restore active RISC.


Assuntos
Proteínas Argonautas/metabolismo , Autoantígenos/metabolismo , Elementos de DNA Transponíveis , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Proteínas Argonautas/genética , Catálise , Drosophila/genética , Drosophila/metabolismo , Drosophila/virologia , Células HeLa , Humanos , Complexo de Inativação Induzido por RNA/genética , Fatores de Tempo , Transfecção , Antígeno SS-B
13.
Immunity ; 30(4): 588-98, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19362021

RESUMO

Intrinsic innate immune mechanisms are the first line of defense against pathogens and exist to control infection autonomously in infected cells. Here, we showed that autophagy, an intrinsic mechanism that can degrade cytoplasmic components, played a direct antiviral role against the mammalian viral pathogen vesicular stomatitis virus (VSV) in the model organism Drosophila. We found that the surface glycoprotein, VSV-G, was likely the pathogen-associated molecular pattern (PAMP) that initiated this cell-autonomous response. Once activated, autophagy decreased viral replication, and repression of autophagy led to increased viral replication and pathogenesis in cells and animals. Lastly, we showed that the antiviral response was controlled by the phosphatidylinositol 3-kinase (PI3K)-Akt-signaling pathway, which normally regulates autophagy in response to nutrient availability. Altogether, these data uncover an intrinsic antiviral program that links viral recognition to the evolutionarily conserved nutrient-signaling and autophagy pathways.


Assuntos
Autofagia/imunologia , Drosophila/imunologia , Vesiculovirus/fisiologia , Animais , Células Cultivadas , Drosophila/virologia , Imunofluorescência , Vesiculovirus/imunologia
14.
J Invertebr Pathol ; 154: 74-78, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625149

RESUMO

The invasive insect pest Drosophila suzukii infests ripening fruits and causes extensive damage to crops in the northern hemisphere. Novel, environmentally friendly strategies to control the spread of this species are urgently needed, and one promising approach is the deployment of entomopathogenic viruses. Here we report the identification and characterization of two natural viruses associated with D. suzukii: Drosophila A virus (DAV) and La Jolla virus (LJV). Our work provides new tools for the development of biological control agents that protect crops against D. suzukii without a harmful impact on biodiversity.


Assuntos
Drosophila/virologia , Vírus de Insetos/isolamento & purificação , Animais , Feminino , Vírus de Insetos/classificação , Vírus de Insetos/genética , Virulência
15.
Proc Biol Sci ; 284(1847)2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28100819

RESUMO

A small number of free-living viruses have been found to be obligately vertically transmitted, but it remains uncertain how widespread vertically transmitted viruses are and how quickly they can spread through host populations. Recent metagenomic studies have found several insects to be infected with sigma viruses (Rhabdoviridae). Here, we report that sigma viruses that infect Mediterranean fruit flies (Ceratitis capitata), Drosophila immigrans, and speckled wood butterflies (Pararge aegeria) are all vertically transmitted. We find patterns of vertical transmission that are consistent with those seen in Drosophila sigma viruses, with high rates of maternal transmission, and lower rates of paternal transmission. This mode of transmission allows them to spread rapidly in populations, and using viral sequence data we found the viruses in D. immigrans and C. capitata had both recently swept through host populations. The viruses were common in nature, with mean prevalences of 12% in C. capitata, 38% in D. immigrans and 74% in P. aegeria We conclude that vertically transmitted rhabdoviruses may be widespread in a broad range of insect taxa, and that these viruses can have dynamic interactions with their hosts.


Assuntos
Transmissão Vertical de Doenças Infecciosas , Insetos/virologia , Rhabdoviridae , Animais , Borboletas/virologia , Ceratitis capitata/virologia , Drosophila/virologia
16.
J Virol ; 90(11): 5415-5426, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27009948

RESUMO

UNLABELLED: Antiviral immunity in the model organism Drosophila melanogaster involves the broadly active intrinsic mechanism of RNA interference (RNAi) and virus-specific inducible responses. Here, using a panel of six viruses, we investigated the role of hemocytes and autophagy in the control of viral infections. Injection of latex beads to saturate phagocytosis, or genetic depletion of hemocytes, resulted in decreased survival and increased viral titers following infection with Cricket paralysis virus (CrPV), Flock House virus (FHV), and vesicular stomatitis virus (VSV) but had no impact on Drosophila C virus (DCV), Sindbis virus (SINV), and Invertebrate iridescent virus 6 (IIV6) infection. In the cases of CrPV and FHV, apoptosis was induced in infected cells, which were phagocytosed by hemocytes. In contrast, VSV did not trigger any significant apoptosis but we confirmed that the autophagy gene Atg7 was required for full virus resistance, suggesting that hemocytes use autophagy to recognize the virus. However, this recognition does not depend on the Toll-7 receptor. Autophagy had no impact on DCV, CrPV, SINV, or IIV6 infection and was required for replication of the sixth virus, FHV. Even in the case of VSV, the increases in titers were modest in Atg7 mutant flies, suggesting that autophagy does not play a major role in antiviral immunity in Drosophila Altogether, our results indicate that, while autophagy plays a minor role, phagocytosis contributes to virus-specific immune responses in insects. IMPORTANCE: Phagocytosis and autophagy are two cellular processes that involve lysosomal degradation and participate in Drosophila immunity. Using a panel of RNA and DNA viruses, we have addressed the contribution of phagocytosis and autophagy in the control of viral infections in this model organism. We show that, while autophagy plays a minor role, phagocytosis contributes to virus-specific immune responses in Drosophila This work brings to the front a novel facet of antiviral host defense in insects, which may have relevance in the control of virus transmission by vector insects or in the resistance of beneficial insects to viral pathogens.


Assuntos
Autofagia , Vírus de DNA/imunologia , Drosophila/imunologia , Drosophila/virologia , Hemócitos/imunologia , Fagocitose , Vírus de RNA/imunologia , Animais , Apoptose , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Linhagem Celular , Drosophila/citologia , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Interferência de RNA , Sindbis virus/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Replicação Viral
17.
PLoS Pathog ; 11(3): e1004728, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25774803

RESUMO

Emerging infectious diseases are often the result of a host shift, where the pathogen originates from a different host species. Virulence--the harm a pathogen does to its host-can be extremely high following a host shift (for example Ebola, HIV, and SARs), while other host shifts may go undetected as they cause few symptoms in the new host. Here we examine how virulence varies across host species by carrying out a large cross infection experiment using 48 species of Drosophilidae and an RNA virus. Host shifts resulted in dramatic variation in virulence, with benign infections in some species and rapid death in others. The change in virulence was highly predictable from the host phylogeny, with hosts clustering together in distinct clades displaying high or low virulence. High levels of virulence are associated with high viral loads, and this may determine the transmission rate of the virus.


Assuntos
Drosophila/genética , Drosophila/virologia , Especificidade de Hospedeiro/genética , Vírus de RNA/patogenicidade , Virulência/genética , Animais , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carga Viral
18.
Mol Ecol ; 26(15): 4072-4084, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28464440

RESUMO

Wolbachia is a common heritable bacterial symbiont in insects. Its evolutionary success lies in the diverse phenotypic effects it has on its hosts coupled to its propensity to move between host species over evolutionary timescales. In a survey of natural host-symbiont associations in a range of Drosophila species, we found that 10 of 16 Wolbachia strains protected their hosts against viral infection. By moving Wolbachia strains between host species, we found that the symbiont genome had a much greater influence on the level of antiviral protection than the host genome. The reason for this was that the level of protection depended on the density of the symbiont in host tissues, and Wolbachia rather than the host-controlled density. The finding that virus resistance and symbiont density are largely under the control of symbiont genes in this system has important implications both for the evolution of these traits and for public health programmes using Wolbachia to prevent mosquitoes from transmitting disease.


Assuntos
Resistência à Doença , Drosophila/microbiologia , Simbiose , Wolbachia/genética , Animais , Drosophila/genética , Drosophila/virologia , Genoma Bacteriano , Genoma de Inseto , Fenótipo , Vírus/patogenicidade
19.
J Invertebr Pathol ; 148: 138-141, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28666960

RESUMO

The invasive insect pest Drosophila suzukii infests ripening fruits and causes massive agricultural damage in North America and Europe (Cini et al., 2012). Environmentally sustainable strategies are urgently needed to control the spread of this species, and entomopathogenic viruses offer one potential solution for global crop protection. Here we report the status of intrinsic and extrinsic factors that influence the susceptibility of D. suzukii to three model insect viruses: Drosophila C virus, Cricket paralysis virus and Flock house virus. Our work provides the basis for further studies using D. suzukii as a host system to develop viruses as biological control agents.


Assuntos
Drosophila/virologia , Vírus de Insetos/patogenicidade , Controle Biológico de Vetores/métodos , Animais , Dicistroviridae/patogenicidade , Nodaviridae/patogenicidade
20.
J Gen Virol ; 97(6): 1446-1452, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26977591

RESUMO

Elevated levels of reactive oxygen species (ROS) provide protection against virus-induced mortality in Drosophila. In addition to contributing to oxidative stress, ROS are known to activate a number of signalling pathways including the extracellular signal-regulated kinases (ERK) signalling cascade. It was recently shown that ERK signalling is important for resistance against viral replication and invasion in cultured Drosophila cells and the gut epithelium of adult flies. Here, using a Drosophila loss-of-function ERK (rolled) mutant we demonstrated that ERK is important for fly survival during virus infection. ERK mutant flies subjected to Drosophila C virus (DCV) oral and systemic infection were more susceptible to virus-induced mortality as compared with wild-type flies. We have demonstrated experimentally that ERK activation is important for fly survival during oral and systemic virus infection. Given that elevated ROS correlates with Wolbachia-mediated antiviral protection, we also investigated the involvement of ERK in antiviral protection in flies infected by Wolbachia. The results indicate that ERK activation is increased in the presence of Wolbachia but this does not appear to influence Wolbachia-mediated antiviral protection, at least during systemic infection.


Assuntos
Dicistroviridae/imunologia , Drosophila/virologia , Imunidade Inata , Sistema de Sinalização das MAP Quinases , Viroses/veterinária , Wolbachia/crescimento & desenvolvimento , Animais , Drosophila/imunologia , Drosophila/microbiologia , Análise de Sobrevida , Viroses/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA