Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.905
Filtrar
1.
Nature ; 614(7948): 456-462, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792740

RESUMO

Stretchable hybrid devices have enabled high-fidelity implantable1-3 and on-skin4-6 monitoring of physiological signals. These devices typically contain soft modules that match the mechanical requirements in humans7,8 and soft robots9,10, rigid modules containing Si-based microelectronics11,12 and protective encapsulation modules13,14. To make such a system mechanically compliant, the interconnects between the modules need to tolerate stress concentration that may limit their stretching and ultimately cause debonding failure15-17. Here, we report a universal interface that can reliably connect soft, rigid and encapsulation modules together to form robust and highly stretchable devices in a plug-and-play manner. The interface, consisting of interpenetrating polymer and metal nanostructures, connects modules by simply pressing without using pastes. Its formation is depicted by a biphasic network growth model. Soft-soft modules joined by this interface achieved 600% and 180% mechanical and electrical stretchability, respectively. Soft and rigid modules can also be electrically connected using the above interface. Encapsulation on soft modules with this interface is strongly adhesive with an interfacial toughness of 0.24 N mm-1. As a proof of concept, we use this interface to assemble stretchable devices for in vivo neuromodulation and on-skin electromyography, with high signal quality and mechanical resistance. We expect such a plug-and-play interface to simplify and accelerate the development of on-skin and implantable stretchable devices.


Assuntos
Eletromiografia , Eletrônica Médica , Nanoestruturas , Maleabilidade , Polímeros , Próteses e Implantes , Dispositivos Eletrônicos Vestíveis , Humanos , Nanoestruturas/química , Polímeros/química , Pele , Monitorização Fisiológica , Eletrônica Médica/instrumentação , Eletrônica Médica/métodos , Eletromiografia/instrumentação
2.
Anesthesiology ; 141(2): 262-271, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38728090

RESUMO

BACKGROUND: The accuracy and precision of currently available, widely used acceleromyograph and electromyograph neuromuscular blockade monitors have not been well studied. In addition, the normalization of the train-of-four ratio from acceleromyography (train-of-four ratio [T4/T1] divided by the baseline train-of-four ratio) has not been validated in comparison to mechanomyography. METHODS: Enrolled patients had surgery under general anesthesia with a supraglottic airway and without any neuromuscular blocking drugs. Three acceleromyograph monitors, three electromyograph monitors, and a mechanomyograph built in the authors' laboratory were tested. Most patients had an electromyograph and the mechanomyograph on one arm and a third monitor on the contralateral arm. Train-of-four ratios were collected every 12 to 20 s for the duration of the anesthetic. At least 1,000 train-of-four ratios were recorded for each device. Gauge repeatability and reproducibility analysis was performed. RESULTS: Twenty-eight patients were enrolled. In total, 9,498 train-of-four ratio measurements were collected. Since no neuromuscular blocking drugs were used, the expected train-of-four ratio was 1.0. All of the acceleromyograph monitors produced overshoot in the train-of-four ratio (estimated means, 1.10 to 1.13) and substantial variability (gauge SDs, 0.07 to 0.18). Normalization of the train-of-four ratio measured by acceleromyography improved the estimated mean for each device (0.97 to 1.0), but the variability was not improved (gauge SDs, 0.06 to 0.17). The electromyograph and the mechanomyograph monitors produced minimal overshoot (estimated means, 0.99 to 1.01) and substantially less variation (gauge SDs, 0.01 to 0.02). For electromyography and mechanomyography, 0.3% of all train-of-four ratios were outside of the range 0.9 to 1.1. For acceleromyography, 27 to 51% of normalized train-of-four ratios were outside the range of 0.9 to 1.1. CONCLUSIONS: Three currently available acceleromyograph monitors produced overshoot and substantial variability that could be clinically significant. Normalization corrected the overshoot in the average results but did not reduce the wide variability. Three electromyograph monitors measured the train-of-four ratio with minimal overshoot and variability, similar to a mechanomyograph.


Assuntos
Eletromiografia , Miografia , Bloqueio Neuromuscular , Humanos , Masculino , Feminino , Eletromiografia/métodos , Eletromiografia/normas , Eletromiografia/instrumentação , Pessoa de Meia-Idade , Bloqueio Neuromuscular/métodos , Adulto , Miografia/métodos , Miografia/instrumentação , Miografia/normas , Reprodutibilidade dos Testes , Bloqueadores Neuromusculares/farmacologia , Idoso , Acelerometria/métodos , Acelerometria/instrumentação , Acelerometria/normas , Monitorização Intraoperatória/métodos , Monitorização Intraoperatória/instrumentação , Monitorização Intraoperatória/normas , Anestesia Geral/métodos
3.
Neurourol Urodyn ; 43(5): 1230-1237, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38567649

RESUMO

OBJECTIVE: Functional MRI (fMRI) can be employed to assess neuronal activity in the central nervous system. However, investigating the spinal cord using fMRI poses several technical difficulties. Enhancing the fMRI signal intensity in the spinal cord can improve the visualization and analysis of different neural pathways, particularly those involved in bladder function. The bulbocavernosus reflex (BCR) is an excellent method for evaluating the integrity of the sacral spinal cord. Instead of stimulating the glans penis or clitoris, the BCR can be simulated comfortably by tapping the suprapubic region. In this study, we explain the necessity and development of a device to elicit the simulated BCR (sBCR) via suprapubic tapping while conducting an fMRI scan. METHODS: The device was successfully tested on a group of 20 healthy individuals. Two stimulation task block protocols were administered (empty vs. full bladder). Each block consisted of 40 s of suprapubic tapping followed by 40 s of rest, and the entire sequence was repeated four times. RESULTS: Our device can reliably and consistently elicit sBCR noninvasively as demonstrated by electromyographic recording of pelvic muscles and anal winking. Participants did note mild to moderate discomfort and urge to void during the full bladder task. CONCLUSION: Our device demonstrates an efficacious approach to elicit sBCR within an MRI bore to assess sacral spinal cord functional activity without generating any significant motion artifacts. SIGNIFICANCE: This device can explore the mechanisms and processes controlling urinary, digestive, or sexual function within this region in humans.


Assuntos
Imageamento por Ressonância Magnética , Reflexo , Medula Espinal , Humanos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Adulto , Feminino , Medula Espinal/fisiologia , Medula Espinal/diagnóstico por imagem , Reflexo/fisiologia , Bexiga Urinária/fisiologia , Bexiga Urinária/diagnóstico por imagem , Eletromiografia/instrumentação , Adulto Jovem , Estimulação Física/instrumentação , Pessoa de Meia-Idade
4.
Spinal Cord ; 62(6): 320-327, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575740

RESUMO

STUDY DESIGN: Non-interventional, cross-sectional pilot study. OBJECTIVES: To establish the validity and reliability of the BioStamp nPoint biosensor (Medidata Solutions, New York, NY, USA [formerly MC10, Inc.]) for measuring electromyography in individuals with cervical spinal cord injury (SCI) by comparing the surface electromyography (sEMG) metrics with the Trigno wireless electromyography system (Delsys, Natick, MA, USA). SETTING: Participants were recruited from the Shirley Ryan AbilityLab registry. METHODS: Individuals aged 18-70 years with cervical SCI were evaluated with the two biosensors to capture activity on upper-extremity muscles during two study sessions conducted over 2 days (day 1-consent alone; day 2-two data collections in same session). Time and frequency metrics were captured, and signal-to-noise ratio was determined for each muscle group. Test-retest reliability was determined using Pearson's correlation. Validation of the BioStamp nPoint system was based on Bland-Altmann analysis. RESULTS: Among the 11 participants, 30.8% had subacute cervical injury at C5-C6; 53.8% were injured within 1 year of the study. Results from the test-retest reliability assessment revealed that most Pearson's correlations between the two sensory measurements were strong (≥0.50). The Bland-Altman analysis found values of the signal-to-noise ratio, frequency, and peak amplitude were within the level of agreement. Signal-to-noise ratios ranged from 7.06 to 22.1. CONCLUSIONS: In most instances, the performance of the BioStamp nPoint sensors was moderately to strongly correlated with that of the Trigno sensors in all muscle groups tested. The BioStamp nPoint system is a valid and reliable approach to assess sEMG measures in individuals with cervical SCI. SPONSORSHIP: The present study was supported by AbbVie Inc.


Assuntos
Eletromiografia , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/fisiopatologia , Eletromiografia/instrumentação , Eletromiografia/métodos , Pessoa de Meia-Idade , Adulto , Masculino , Feminino , Reprodutibilidade dos Testes , Estudos Transversais , Idoso , Adulto Jovem , Projetos Piloto , Adolescente , Medula Cervical/lesões , Vértebras Cervicais , Técnicas Biossensoriais/instrumentação , Músculo Esquelético/fisiopatologia
5.
Sensors (Basel) ; 24(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000885

RESUMO

In this study, we design an embedded surface EMG acquisition device to conveniently collect human surface EMG signals, pursue more intelligent human-computer interactions in exoskeleton robots, and enable exoskeleton robots to synchronize with or even respond to user actions in advance. The device has the characteristics of low cost, miniaturization, and strong compatibility, and it can acquire eight-channel surface EMG signals in real time while retaining the possibility of expanding the channel. This paper introduces the design and function of the embedded EMG acquisition device in detail, which includes the use of wired transmission to adapt to complex electromagnetic environments, light signals to indicate signal strength, and an embedded processing chip to reduce signal noise and perform filtering. The test results show that the device can effectively collect the original EMG signal, which provides a scheme for improving the level of human-computer interactions and enhancing the robustness and intelligence of exoskeleton equipment. The development of this device provides a new possibility for the intellectualization of exoskeleton systems and reductions in their cost.


Assuntos
Eletromiografia , Processamento de Sinais Assistido por Computador , Eletromiografia/instrumentação , Eletromiografia/métodos , Humanos , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Exoesqueleto Energizado , Robótica/instrumentação
6.
Sensors (Basel) ; 24(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38793840

RESUMO

We propose the use of a specially designed polyurethane foam with a plateau region in its mechanical characteristics-where stress remains nearly constant during deformation-between the electromyography (EMG) electrode and clothing to suppress motion artifacts in EMG measurement. Wearable EMG devices are receiving attention for monitoring muscle weakening due to aging. However, daily EMG measurement has been challenging due to motion artifacts caused by changes in the contact pressure between the bioelectrode and the skin. Therefore, this study aims to measure EMG signals in daily movement environments by controlling the contact pressure using polyurethane foam between the bioelectrode on the clothing and the skin. Through mechanical calculations and finite element method simulations of the polyurethane foam's effect, we clarified that the characteristics of the polyurethane foam significantly influence contact pressure control and that the contact pressure is adjustable through the polyurethane foam thickness. The optimization of the design successfully controlled the contact pressure between the bioelectrode and skin from 1.0 kPa to 2.0 kPa, effectively suppressing the motion artifact in EMG measurement.


Assuntos
Artefatos , Eletromiografia , Poliuretanos , Dispositivos Eletrônicos Vestíveis , Poliuretanos/química , Eletromiografia/métodos , Eletromiografia/instrumentação , Humanos , Eletrodos , Movimento (Física)
7.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732868

RESUMO

This paper presents the design, development, and validation of a novel e-textile leg sleeve for non-invasive Surface Electromyography (sEMG) monitoring. This wearable device incorporates e-textile sensors for sEMG signal acquisition from the lower limb muscles, specifically the anterior tibialis and lateral gastrocnemius. Validation was conducted by performing a comparative study with eleven healthy volunteers to evaluate the performance of the e-textile sleeve in acquiring sEMG signals compared to traditional Ag/AgCl electrodes. The results demonstrated strong agreement between the e-textile and conventional methods in measuring descriptive metrics of the signals, including area, power, mean, and root mean square. The paired data t-test did not reveal any statistically significant differences, and the Bland-Altman analysis indicated negligible bias between the measures recorded using the two methods. In addition, this study evaluated the wearability and comfort of the e-textile sleeve using the Comfort Rating Scale (CRS). Overall, the scores confirmed that the proposed device is highly wearable and comfortable, highlighting its suitability for everyday use in patient care.


Assuntos
Eletrodos , Eletromiografia , Têxteis , Dispositivos Eletrônicos Vestíveis , Humanos , Eletromiografia/métodos , Eletromiografia/instrumentação , Masculino , Adulto , Feminino , Músculo Esquelético/fisiologia , Perna (Membro)/fisiologia
8.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732871

RESUMO

Myoelectric hands are beneficial tools in the daily activities of people with upper-limb deficiencies. Because traditional myoelectric hands rely on detecting muscle activity in residual limbs, they are not suitable for individuals with short stumps or paralyzed limbs. Therefore, we developed a novel electric prosthetic hand that functions without myoelectricity, utilizing wearable wireless sensor technology for control. As a preliminary evaluation, our prototype hand with wireless button sensors was compared with a conventional myoelectric hand (Ottobock). Ten healthy therapists were enrolled in this study. The hands were fixed to their forearms, myoelectric hand muscle activity sensors were attached to the wrist extensor and flexor muscles, and wireless button sensors for the prostheses were attached to each user's trunk. Clinical evaluations were performed using the Simple Test for Evaluating Hand Function and the Action Research Arm Test. The fatigue degree was evaluated using the modified Borg scale before and after the tests. While no statistically significant differences were observed between the two hands across the tests, the change in the Borg scale was notably smaller for our prosthetic hand (p = 0.045). Compared with the Ottobock hand, the proposed hand prosthesis has potential for widespread applications in people with upper-limb deficiencies.


Assuntos
Membros Artificiais , Mãos , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Humanos , Mãos/fisiologia , Projetos Piloto , Tecnologia sem Fio/instrumentação , Masculino , Adulto , Feminino , Eletromiografia/instrumentação , Desenho de Prótese
9.
Sensors (Basel) ; 24(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000892

RESUMO

This study presents the development and evaluation of an innovative intelligent garment system, incorporating 3D knitted silver biopotential electrodes, designed for long-term sports monitoring. By integrating advanced textile engineering with wearable monitoring technologies, we introduce a novel approach to real-time physiological signal acquisition, focusing on enhancing athletic performance analysis and fatigue detection. Utilizing low-resistance silver fibers, our electrodes demonstrate significantly reduced skin-to-electrode impedance, facilitating improved signal quality and reliability, especially during physical activities. The garment system, embedded with these electrodes, offers a non-invasive, comfortable solution for continuous ECG and EMG monitoring, addressing the limitations of traditional Ag/AgCl electrodes, such as skin irritation and signal degradation over time. Through various experimentation, including impedance measurements and biosignal acquisition during cycling activities, we validate the system's effectiveness in capturing high-quality physiological data. Our findings illustrate the electrodes' superior performance in both dry and wet conditions. This study not only advances the field of intelligent garments and biopotential monitoring, but also provides valuable insights for the application of intelligent sports wearables in the future.


Assuntos
Eletrodos , Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Eletromiografia/métodos , Eletromiografia/instrumentação , Eletrocardiografia/instrumentação , Eletrocardiografia/métodos , Vestuário , Têxteis , Esportes/fisiologia , Desenho de Equipamento , Impedância Elétrica
10.
Sensors (Basel) ; 24(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000904

RESUMO

This study aims to demonstrate the feasibility of using a new wireless electroencephalography (EEG)-electromyography (EMG) wearable approach to generate characteristic EEG-EMG mixed patterns with mouth movements in order to detect distinct movement patterns for severe speech impairments. This paper describes a method for detecting mouth movement based on a new signal processing technology suitable for sensor integration and machine learning applications. This paper examines the relationship between the mouth motion and the brainwave in an effort to develop nonverbal interfacing for people who have lost the ability to communicate, such as people with paralysis. A set of experiments were conducted to assess the efficacy of the proposed method for feature selection. It was determined that the classification of mouth movements was meaningful. EEG-EMG signals were also collected during silent mouthing of phonemes. A few-shot neural network was trained to classify the phonemes from the EEG-EMG signals, yielding classification accuracy of 95%. This technique in data collection and processing bioelectrical signals for phoneme recognition proves a promising avenue for future communication aids.


Assuntos
Eletroencefalografia , Eletromiografia , Processamento de Sinais Assistido por Computador , Tecnologia sem Fio , Humanos , Eletroencefalografia/métodos , Eletroencefalografia/instrumentação , Eletromiografia/métodos , Eletromiografia/instrumentação , Tecnologia sem Fio/instrumentação , Boca/fisiopatologia , Boca/fisiologia , Adulto , Masculino , Movimento/fisiologia , Redes Neurais de Computação , Distúrbios da Fala/diagnóstico , Distúrbios da Fala/fisiopatologia , Feminino , Dispositivos Eletrônicos Vestíveis , Aprendizado de Máquina
11.
Proc Natl Acad Sci U S A ; 117(44): 27655-27666, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33060294

RESUMO

Modular organization of the spinal motor system is thought to reduce the cognitive complexity of simultaneously controlling the large number of muscles and joints in the human body. Although modular organization has been confirmed in the hindlimb control system of several animal species, it has yet to be established in the forelimb motor system or in primates. Expanding upon experiments originally performed in the frog lumbar spinal cord, we examined whether costimulation of two sites in the macaque monkey cervical spinal cord results in motor activity that is a simple linear sum of the responses evoked by stimulating each site individually. Similar to previous observations in the frog and rodent hindlimb, our analysis revealed that in most cases (77% of all pairs) the directions of the force fields elicited by costimulation were highly similar to those predicted by the simple linear sum of those elicited by stimulating each site individually. A comparable simple summation of electromyography (EMG) output, especially in the proximal muscles, suggested that this linear summation of force field direction was produced by a spinal neural mechanism whereby the forelimb motor output recruited by costimulation was also summed linearly. We further found that the force field magnitudes exhibited supralinear (amplified) summation, which was also observed in the EMG output of distal forelimb muscles, implying a novel feature of primate forelimb control. Overall, our observations support the idea that complex movements in the primate forelimb control system are made possible by flexibly combined spinal motor modules.


Assuntos
Braço/fisiologia , Medula Cervical/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia , Animais , Braço/inervação , Estimulação Elétrica/instrumentação , Eletrodos Implantados , Eletromiografia/instrumentação , Potencial Evocado Motor/fisiologia , Macaca , Masculino , Músculo Esquelético/inervação
12.
Proc Natl Acad Sci U S A ; 117(14): 8135-8142, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32205442

RESUMO

Many studies have demonstrated covariation between muscle activations during behavior, suggesting that muscles are not controlled independently. According to one common proposal, this covariation reflects simplification of task performance by the nervous system so that muscles with similar contributions to task variables are controlled together. Alternatively, this covariation might reflect regulation of low-level aspects of movements that are common across tasks, such as stresses within joints. We examined these issues by analyzing covariation patterns in quadriceps muscle activity during locomotion in rats. The three monoarticular quadriceps muscles (vastus medialis [VM], vastus lateralis [VL], and vastus intermedius [VI]) produce knee extension and so have identical contributions to task performance; the biarticular rectus femoris (RF) produces an additional hip flexion. Consistent with the proposal that muscle covariation is related to similarity of muscle actions on task variables, we found that the covariation between VM and VL was stronger than their covariations with RF. However, covariation between VM and VL was also stronger than their covariations with VI. Since all vastii have identical actions on task variables, this finding suggests that covariation between muscle activity is not solely driven by simplification of overt task performance. Instead, the preferentially strong covariation between VM and VL is consistent with the control of internal joint stresses: Since VM and VL produce opposing mediolateral forces on the patella, the high positive correlation between their activation minimizes the net mediolateral patellar force. These results provide important insights into the interpretation of muscle covariations and their role in movement control.


Assuntos
Contração Isométrica/fisiologia , Articulações/fisiologia , Modelos Neurológicos , Movimento/fisiologia , Músculo Quadríceps/inervação , Animais , Fenômenos Biomecânicos , Eletrodos Implantados , Eletromiografia/instrumentação , Feminino , Membro Posterior/inervação , Membro Posterior/fisiologia , Modelos Lineares , Músculo Quadríceps/fisiologia , Ratos
13.
Sensors (Basel) ; 23(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36904616

RESUMO

The early and objective detection of hand pathologies is a field that still requires more research. One of the main signs of hand osteoarthritis (HOA) is joint degeneration, which causes loss of strength, among other symptoms. HOA is usually diagnosed with imaging and radiography, but the disease is in an advanced stage when HOA is observable by these methods. Some authors suggest that muscle tissue changes seem to occur before joint degeneration. We propose recording muscular activity to look for indicators of these changes that might help in early diagnosis. Muscular activity is often measured using electromyography (EMG), which consists of recording electrical muscle activity. The aim of this study is to study whether different EMG characteristics (zero crossing, wavelength, mean absolute value, muscle activity) via collection of forearm and hand EMG signals are feasible alternatives to the existing methods of detecting HOA patients' hand function. We used surface EMG to measure the electrical activity of the dominant hand's forearm muscles with 22 healthy subjects and 20 HOA patients performing maximum force during six representative grasp types (the most commonly used in ADLs). The EMG characteristics were used to identify discriminant functions to detect HOA. The results show that forearm muscles are significantly affected by HOA in EMG terms, with very high success rates (between 93.3% and 100%) in the discriminant analyses, which suggest that EMG can be used as a preliminary step towards confirmation with current HOA diagnostic techniques. Digit flexors during cylindrical grasp, thumb muscles during oblique palmar grasp, and wrist extensors and radial deviators during the intermediate power-precision grasp are good candidates to help detect HOA.


Assuntos
Força da Mão , Mãos , Osteoartrite , Osteoartrite/diagnóstico , Osteoartrite/fisiopatologia , Eletromiografia/instrumentação , Eletromiografia/métodos , Mãos/fisiopatologia , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Caracteres Sexuais
14.
Muscle Nerve ; 64(1): 86-89, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33822375

RESUMO

INTRODUCTION/AIMS: The virtual cathode (VC) is a site near the anode where the nerve can be stimulated. Costimulation of neighboring nerves via the VC can affect recording and interpretation of responses. Hence, it is important to teach trainees the concept of the VC. The VC has been demonstrated previously with subtle changes in response latency, amplitude, and shape. Herein we describe an experiment that simply demonstrates a VC with its effects recognizable by gross changes in waveforms. METHODS: Compound muscle action potentials of the abductor pollicis brevis were recorded using various placements of the cathode and anode at different stimulus intensity levels. Studies were performed in nine healthy subjects. RESULTS: Three patterns were observed that demonstrated no stimulation, partial stimulation, and complete nerve stimulation by the VC. Partial stimulation yielded responses with long duration and low amplitude. Response patterns also depended on stimulus strength and proximity of the nerve from the skin surface. DISCUSSION: This experiment demonstrates that nerve stimulation can occur near the anode when high-intensity stimulus is used. It also illustrates collision of action potentials. This exercise can help trainees understand potential pitfalls in nerve conduction studies, especially at very proximal stimulation sites or when high stimulus intensity is used.


Assuntos
Competência Clínica , Terapia por Estimulação Elétrica/instrumentação , Terapia por Estimulação Elétrica/métodos , Nervo Mediano/fisiologia , Condução Nervosa/fisiologia , Potenciais de Ação/fisiologia , Adulto , Idoso , Eletrodos , Eletromiografia/instrumentação , Eletromiografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Exame Neurológico/instrumentação , Exame Neurológico/métodos
15.
J Neurophysiol ; 124(2): 525-535, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32667263

RESUMO

Persistent inward currents (PICs) are responsible for amplifying motoneuronal synaptic inputs and contribute to generating normal motoneuron activation. Delta-F (ΔF) is a well-established method that estimates PICs in humans indirectly from firing patterns of individual motor units. Traditionally, motor unit firing patterns are obtained by manually decomposing electromyography (EMG) signals recorded through intramuscular electrodes (iEMG). A previous iEMG study has shown that in humans the elbow extensors have higher ΔF than the elbow flexors. In this study, EMG signals were collected from the ankle extensors and flexors using high-density surface array electrodes during isometric sitting and standing at 10-30% maximum voluntary contraction. The signals were then decomposed into individual motor unit firings. We hypothesized that comparable to the upper limb, the lower limb extensor muscles (soleus) would have higher ΔF than the lower limb flexor muscles [tibialis anterior (TA)]. Contrary to our expectations, ΔF was higher in the TA than the soleus during sitting and standing despite the difference in cohort of participants and body positions. The TA also had significantly higher maximum discharge rate than the soleus while there was no difference in rate increase. When only the unit pairs with similar maximum discharge rates were compared, ∆F was still higher in the TA than the soleus. Future studies will focus on investigating the functional significance of the findings.NEW & NOTEWORTHY With the use of high-density surface array electrodes and convolutive blind source separation algorithm, thousands of motor units were decomposed from the soleus and tibialis anterior muscles. Persistent inward currents were estimated under seated and standing conditions via delta-F (∆F) calculation, and the results showed that unlike the upper limb, the flexor has higher ∆F than the extensor in the lower limb. Future studies will focus on functional significance of the findings.


Assuntos
Tornozelo/fisiologia , Eletromiografia/métodos , Contração Isométrica/fisiologia , Atividade Motora/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Recrutamento Neurofisiológico/fisiologia , Postura Sentada , Posição Ortostática , Adulto , Eletromiografia/instrumentação , Feminino , Humanos , Masculino , Adulto Jovem
16.
J Neurophysiol ; 123(5): 1766-1774, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32267195

RESUMO

Our current knowledge on the neurophysiological properties of intrinsic foot muscles is limited, especially at high forces. This study therefore aimed to investigate the discharge characteristics of single motor units in an intrinsic foot muscle, namely flexor hallucis brevis, during voluntary contractions up to 100% of maximal voluntary contraction. We measured the recruitment threshold and discharge rate of flexor hallucis brevis motor units using indwelling fine-wire electrodes. Ten participants followed a target ramp up to maximal voluntary contraction by applying a metatarso-phalangeal flexion torque. We observed motor unit recruitment thresholds across a wide range of isometric forces (ranging from 10 to 98% of maximal voluntary contraction) as well as across a wide range of discharge rates (ranging from 4.8 to 23.3 Hz for initial discharge rate and 9.5 to 34.2 Hz for peak discharge rate). We further observed patterns of high variability in recruitment threshold and discharge rate as well as crossover in discharge rate between motor units within the same participant. These findings suggest that the force output of a muscle is generated through a mechanism with substantial variability rather than relying on a rigid organization, which is in contrast to the proposed onion-skin theory. The demands placed on the plantar intrinsic foot muscles during high- and low-force tasks may explain these observed neurophysiological properties.NEW & NOTEWORTHY We recorded for the first time single motor unit action potential trains in the flexor hallucis brevis, a short toe muscle, over the full range of maximum voluntary contraction. Its motor units are recruited up to very high (98%) recruitment thresholds with a substantial range of discharge rates. We further show high variability with crossover of discharge rates as a function of recruitment threshold both between participants and between motor units within participants.


Assuntos
Potenciais de Ação/fisiologia , Fenômenos Biomecânicos/fisiologia , Pé/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Recrutamento Neurofisiológico/fisiologia , Adulto , Eletromiografia/instrumentação , Eletromiografia/métodos , Humanos , Masculino , Adulto Jovem
17.
Muscle Nerve ; 61(3): 280-287, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31674675

RESUMO

INTRODUCTION: The purpose of this position statement is to clarify what constitutes an acceptable nerve conduction study (NCS) waveform in the practice of electrodiagnostic (EDx) medicine. METHODS: The American Association of Neuromuscular & Electrodiagnostic Medicine convened an expert panel to analyze the typical deficiencies of NCS waveforms seen when performed by unqualified providers and/or providers using substandard equipment and also to describe basic standards that all proper NCS waveforms should meet. RESULTS: An acceptable NCS waveform should include clearly identifiable polarity, configuration, onset, peak(s), and return to baseline. DISCUSSION: Only NCSs performed using appropriate EDx equipment and interpreted by trained physicians can accurately measure the speed of nerve conduction and amplitude of the nerve response. If these parameters cannot be clearly identified, then the waveform should be considered substandard and should not be submitted for reimbursement according to the Current Procedural Terminology guidelines of the American Medical Association.


Assuntos
Potenciais de Ação , Eletromiografia/normas , Condução Nervosa , Eletromiografia/instrumentação , Eletromiografia/métodos , Humanos , Processamento de Sinais Assistido por Computador
18.
Muscle Nerve ; 61(6): 754-758, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32246723

RESUMO

BACKGROUND: Ultrasound was used to determine optimal needle insertion parameters and assess the vasculature of paraspinal muscles at C5-T1 spinal levels across patients with different body mass indices (BMIs). METHODS: Thirty patients underwent ultrasound examination of the cervical paraspinal muscles at the C5-T1 levels. Images were analyzed to determine the optimal distance and angle of needle insertion to reach the base of the right lamina. Color and spectral Doppler analysis were used to identify and map paraspinal blood vessels. RESULTS: Mean distances and angles varied from 35.1 mm and 17.27 degrees for the low BMI group at C5 to 65.1 mm and 9.85 degrees for the high BMI group at T1. Paraspinal blood vessel mapping revealed a random distribution of vasculature. CONCLUSIONS: Longer distances and steeper angles of needle insertion are required for patients with higher BMIs. Cervical paraspinal arteries vary in distribution and can be visualized with ultrasound.


Assuntos
Eletromiografia/métodos , Agulhas , Músculos Paraespinais/diagnóstico por imagem , Músculos Paraespinais/fisiologia , Ultrassonografia de Intervenção/métodos , Adulto , Vértebras Cervicais/diagnóstico por imagem , Eletromiografia/instrumentação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vértebras Torácicas/diagnóstico por imagem , Adulto Jovem
19.
Surg Endosc ; 34(2): 996-1005, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31218426

RESUMO

OBJECTIVES/HYPOTHESIS: Intraoperative neuromonitoring (IONM) is a useful adjunct for recurrent laryngeal nerve (RLN) mapping and identification in transoral endoscopic thyroidectomy vestibular approach (TOETVA). This experimental study aimed to investigate the feasibility, safety, thresholds required of an endoscopic forceps that combine the function of surgical dissection and nerve stimulation. STUDY DESIGN: Prospective experimental research. METHODS: TOETVA was performed in 12 piglets, i.e., 24 RLNs and 24 vagal nerves (VN). RLNs electromyography (EMG) was recorded via endotracheal surface electrodes. Baseline EMG of VN and RLN were recorded and compared by (a) percutaneously placed monopolar stimulator probe (Group I), (b) adapted Maryland endoscopic dissector applied on nerves at its tip-end (Group II) and (c) endoscopic dissector tip-lateral applied (Group III). EMG profiles, amplitude, latency, waveform, thresholds and supra-maximal stimulation (5 mA) were analyzed. RESULTS: Application of the endoscopic device was feasible in all TOETVA and did not result in any morbidity. 24 RLNs and VNs were detected, stimulated and monitored. With increase of stimulation current, the amplitude of EMG increased, showing a dose-response curve. Mean VN stimulation thresholds were: Group I 0.28 mA, Group II 0.56 mA, Group III 0.58 mA (P1 = 0.00, P2 = 0.00, P3 = 0.11). Minimal current to evoked a maximal VN response was: Group I 0.65 mA, Group II 1.07 mA and Group III 1.14 mA (P1 = 0.00, P2 = 0.00, P3 = 0.48). Minimal current to evoke a RLN maximal response was Group I 0.6 mA, Group II 0.95 mA and Group III 1.05 mA (P1 = 0.00, P2 = 0.00, P3 = 0.31). Latency values were similar to each group. Repetitive (> 10 min) supra-maximal (> 5 mA) electrical stimulation was safe. CONCLUSIONS: The application of endoscopic stimulating dissector is simple, effective and safe way to monitor both VN and RLN function during a TOETVA animal model. It provides surgeons with real-time feedback of EMG response and can be applied as a tool for RLN monitoring. Endoscopic instrument required higher current to evoke EMG response compared to hand probe stimulation. Tip-end required less current to evoke EMG response compared to tip-lateral mode of stimulation.


Assuntos
Dissecação/instrumentação , Eletromiografia/instrumentação , Complicações Intraoperatórias/prevenção & controle , Monitorização Neurofisiológica Intraoperatória/instrumentação , Cirurgia Endoscópica por Orifício Natural/instrumentação , Traumatismos do Nervo Laríngeo Recorrente/prevenção & controle , Tireoidectomia/instrumentação , Animais , Dissecação/métodos , Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Eletromiografia/métodos , Estudos de Viabilidade , Monitorização Neurofisiológica Intraoperatória/métodos , Masculino , Cirurgia Endoscópica por Orifício Natural/métodos , Estudo de Prova de Conceito , Estudos Prospectivos , Nervo Laríngeo Recorrente/fisiologia , Suínos , Tireoidectomia/métodos , Nervo Vago/fisiologia
20.
Anaesthesia ; 75(2): 187-195, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31617199

RESUMO

The extent of neuromuscular blockade during anaesthesia is frequently measured using a train-of-four stimulus. Various monitors have been used to quantify the train-of-four, including mechanomyography, acceleromyography and electromyography. Mechanomyography is often considered to be the laboratory gold standard of measurement, but is not commercially available and has rarely been used in clinical practice. Acceleromyography is currently the most commonly used monitor in the clinical setting, whereas electromyography is not widely available. We compared a prototype electromyograph with a newly constructed mechanomyograph and a commercially available acceleromyograph monitor in 43 anesthetised patients. The mean difference (bias; 95% limits of agreement) in train-of-four ratios was 4.7 (-25.2 to 34.6) for mechanomyography vs. electromyography; 14.9 (-13.0 to 42.8) for acceleromyography vs. electromyography; and 9.8 (-31.8 to 51.3) for acceleromyography vs. mechanomyography. The mean difference (95% limits of agreement) in train-of-four ratios between opposite arms when using electromyography was -0.7 (-20.7 to 19.3). There were significantly more acceleromyography train-of-four values > 1.0 (23%) compared with electromyography or mechanomography (2-4%; p < 0.0001). Electromyography most closely resembled mechanomyographic assessment of neuromuscular blockade, whereas acceleromyography frequently produced train-of-four ratio values > 1.0, complicating the interpretation of acceleromyography results in the clinical setting.


Assuntos
Miografia/instrumentação , Miografia/métodos , Bloqueio Neuromuscular , Adulto , Idoso , Eletromiografia/instrumentação , Eletromiografia/métodos , Feminino , Humanos , Cinetocardiografia/instrumentação , Cinetocardiografia/métodos , Masculino , Pessoa de Meia-Idade , Miografia/estatística & dados numéricos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA