Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 722
Filtrar
1.
J Immunol ; 213(1): 75-85, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758115

RESUMO

In chronic obstructive pulmonary disease (COPD), inflammation gives rise to protease-mediated degradation of the key extracellular matrix protein, elastin, which causes irreversible loss of pulmonary function. Intervention against proteolysis has met with limited success in COPD, due in part to our incomplete understanding of the mechanisms that underlie disease pathogenesis. Peptidyl arginine deiminase (PAD) enzymes are a known modifier of proteolytic susceptibility, but their involvement in COPD in the lungs of affected individuals is underexplored. In this study, we showed that enzyme isotypes PAD2 and PAD4 are present in primary granules of neutrophils and that cells from people with COPD release increased levels of PADs when compared with neutrophils of healthy control subjects. By examining bronchoalveolar lavage and lung tissue samples of patients with COPD or matched smoking and nonsmoking counterparts with normal lung function, we reveal that COPD presents with markedly increased airway concentrations of PADs. Ex vivo, we established citrullinated elastin in the peripheral airways of people with COPD, and in vitro, elastin citrullination significantly enhanced its proteolytic degradation by serine and matrix metalloproteinases, including neutrophil elastase and matrix metalloprotease-12, respectively. These results provide a mechanism by which neutrophil-released PADs affect lung function decline, indicating promise for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.


Assuntos
Elastina , Neutrófilos , Proteína-Arginina Desiminase do Tipo 2 , Proteína-Arginina Desiminase do Tipo 4 , Proteólise , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Neutrófilos/imunologia , Elastina/metabolismo , Feminino , Masculino , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Pessoa de Meia-Idade , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Enfisema Pulmonar/imunologia , Idoso , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Citrulinação , Desiminases de Arginina em Proteínas/metabolismo , Elastase de Leucócito/metabolismo , Pulmão/imunologia , Pulmão/patologia
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046017

RESUMO

Alveolar macrophages (AMs) are critical for lung immune defense and homeostasis. They are orchestrators of chronic obstructive pulmonary disease (COPD), with their number significantly increased and functions altered in COPD. However, it is unclear how AM number and function are controlled in a healthy lung and if changes in AMs without environmental assault are sufficient to trigger lung inflammation and COPD. We report here that absence of isthmin 1 (ISM1) in mice (Ism1-/- ) leads to increase in both AM number and functional heterogeneity, with enduring lung inflammation, progressive emphysema, and significant lung function decline, phenotypes similar to human COPD. We reveal that ISM1 is a lung resident anti-inflammatory protein that selectively triggers the apoptosis of AMs that harbor high levels of its receptor cell-surface GRP78 (csGRP78). csGRP78 is present at a heterogeneous level in the AMs of a healthy lung, but csGRP78high AMs are expanded in Ism1-/- mice, cigarette smoke (CS)-induced COPD mice, and human COPD lung, making these cells the prime targets of ISM1-mediated apoptosis. We show that csGRP78high AMs mostly express MMP-12, hence proinflammatory. Intratracheal delivery of recombinant ISM1 (rISM1) depleted csGRP78high AMs in both Ism1-/- and CS-induced COPD mice, blocked emphysema development, and preserved lung function. Consistently, ISM1 expression in human lungs positively correlates with AM apoptosis, suggesting similar function of ISM1-csGRP78 in human lungs. Our findings reveal that AM apoptosis regulation is an important physiological mechanism for maintaining lung homeostasis and demonstrate the potential of pulmonary-delivered rISM1 to target csGRP78 as a therapeutic strategy for COPD.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Células Epiteliais Alveolares/metabolismo , Animais , Apoptose/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático/fisiologia , Feminino , Homeostase , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Pulmão/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose/fisiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/metabolismo , Fumaça/efeitos adversos , Fumar/efeitos adversos , Nicotiana/efeitos adversos
3.
Am J Respir Cell Mol Biol ; 70(6): 482-492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38377392

RESUMO

Cigarette smoking is known to be the leading cause of chronic obstructive pulmonary disease (COPD). However, the detailed mechanisms have not been elucidated. PAF (platelet-activating factor), a potent inflammatory mediator, is involved in the pathogenesis of various respiratory diseases such as bronchial asthma and COPD. We focused on LPLAT9 (lysophospholipid acyltransferase 9), a biosynthetic enzyme of PAF, in the pathogenesis of COPD. LPLAT9 gene expression was observed in excised COPD lungs and single-cell RNA sequencing data of alveolar macrophages (AMs). LPLAT9 was predominant and upregulated in AMs, particularly monocyte-derived AMs, in patients with COPD. To identify the function of LPLAT9/PAF in AMs in the pathogenesis of COPD, we exposed systemic LPLAT9-knockout (LPALT9-/-) mice to cigarette smoke (CS). CS increased the number of AMs, especially the monocyte-derived fraction, which secreted MMP12 (matrix metalloprotease 12). Also, CS augmented LPLAT9 phosphorylation/activation on macrophages and, subsequently, PAF synthesis in the lung. The LPLAT9-/- mouse lung showed reduced PAF production after CS exposure. Intratracheal PAF administration accumulated AMs by increasing MCP1 (monocyte chemoattractant protein-1). After CS exposure, AM accumulation and subsequent pulmonary emphysema, a primary pathologic change of COPD, were reduced in LPALT9-/- mice compared with LPLAT9+/+ mice. Notably, these phenotypes were again worsened by LPLAT9+/+ bone marrow transplantation in LPALT9-/- mice. Thus, CS-induced LPLAT9 activation in monocyte-derived AMs aggravated pulmonary emphysema via PAF-induced further accumulation of AMs. These results suggest that PAF synthesized by LPLAT9 has an important role in the pathogenesis of COPD.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Macrófagos Alveolares , Camundongos Knockout , Fator de Ativação de Plaquetas , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Enfisema Pulmonar/genética , Fator de Ativação de Plaquetas/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 12 da Matriz/genética , Pulmão/metabolismo , Pulmão/patologia , Fumar Cigarros/efeitos adversos , Fumar Cigarros/metabolismo , Feminino
4.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(4): 339-345, 2024 Apr 12.
Artigo em Zh | MEDLINE | ID: mdl-38599809

RESUMO

Objective: To construct and characterize conditional Src homology region 2 protein tyrosine phosphatase 1 (SHP-1) knockout mice in airway epithelial cells and to observe the effect of defective SHP-1 expression in airway epithelial cells on the emphysema phenotype in chronic obstructive pulmonary disease (COPD). Methods: To detect the expression of SHP-1 in the airway epithelium of COPD patients. CRISPR/Cas9 technology was used to construct SHP-1flox/flox transgenic mice, which were mated with airway epithelial Clara protein 10-cyclase recombinase and estrogen receptor fusion transgenic mice (CC10-CreER+/+), and after intraperitoneal injection of tamoxifen, airway epithelial SHP-1 knockout mice were obtained (SHP-1flox/floxCC10-CreER+/-, SHP-1Δ/Δ). Mouse tail and lung tissue DNA was extracted and PCR amplified to discriminate the genotype of the mice; the knockout effect of SHP-1 gene in airway epithelial cells was verified by qRT-PCR, Western blotting, and immunofluorescence. In addition, an emphysema mouse model was constructed using elastase to assess the severity of emphysema in each group of mice. Results: Airway epithelial SHP-1 was significantly downregulated in COPD patients. Genotyping confirmed that SHP-1Δ/Δ mice expressed CC10-CreER and SHP-1-flox. After tamoxifen induction, we demonstrated the absence of SHP-1 protein expression in airway epithelial cells of SHP-1Δ/Δ mice at the DNA, RNA, and protein levels, indicating that airway epithelial cell-specific SHP-1 knockout mice had been successfully constructed. In the emphysema animal model, SHP-1Δ/Δ mice had a more severe emphysema phenotype compared with the control group, which was manifested by disorganization of alveolar structure in lung tissue and rupture and fusion of alveolar walls to form pulmonary alveoli. Conclusions: The present study successfully established and characterized the SHP-1 knockout mouse model of airway epithelial cells, which provides a new experimental tool for the in-depth elucidation of the role of SHP-1 in the emphysema process of COPD and its mechanism.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Camundongos , Animais , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Células Epiteliais/metabolismo , Camundongos Transgênicos , Camundongos Knockout , Fenótipo , DNA , Tamoxifeno
5.
Am J Respir Cell Mol Biol ; 69(5): 533-544, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37526463

RESUMO

The activity of PP2A (protein phosphatase 2A), a serine-threonine phosphatase, is reduced by chronic cigarette smoke (SM) exposure and α-1 antitrypsin (AAT) deficiency, and chemical activation of PP2A reduces the loss of lung function in SM-exposed mice. However, the previously studied PP2A-activator tricyclic sulfonamide compound DBK-1154 has low stability to oxidative metabolism, resulting in fast clearance and low systemic exposure. Here we compare the utility of a new more stable PP2A activator, ATUX-792, versus DBK-1154 for the treatment of SM-induced emphysema. ATUX-792 was also tested in human bronchial epithelial cells and a mouse model of AAT deficiency, Serpina1a-e-knockout mice. Human bronchial epithelial cells were treated with ATUX-792 or DBK-1154, and cell viability, PP2A activity, and MAP (mitogen-activated protein) kinase phosphorylation status were examined. Wild-type mice received vehicle, DBK-1154, or ATUX-792 orally in the last 2 months of 4 months of SM exposure, and 8-month-old Serpina1a-e-knockout mice received ATUX-792 daily for 4 months. Forced oscillation and expiratory measurements and histology analysis were performed. Treatment with ATUX-792 or DBK-1154 resulted in PP2A activation, reduced MAP kinase phosphorylation, immune cell infiltration, reduced airspace enlargements, and preserved lung function. Using protein arrays and multiplex assays, PP2A activation was observed to reduce AAT-deficient and SM-induced release of CXCL5, CCL17, and CXCL16 into the airways, which coincided with reduced neutrophil lung infiltration. Our study indicates that suppression of the PP2A activity in two models of emphysema could be restored by next-generation PP2A activators to impact lung function.


Assuntos
Enfisema , Enfisema Pulmonar , Humanos , Animais , Camundongos , Lactente , Proteína Fosfatase 2/metabolismo , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/metabolismo , Pulmão/metabolismo , Enfisema/tratamento farmacológico , Enfisema/metabolismo , Camundongos Knockout
6.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L747-L755, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014816

RESUMO

To better define the role of mechanical forces in pulmonary emphysema, we employed methods recently developed in our laboratory to identify microscopic level relationships between airspace size and elastin-specific desmosine and isodesmosine (DID) cross links in normal and emphysematous human lungs. Free DID in wet tissue (a biomarker for elastin degradation) and total DID in formalin-fixed, paraffin-embedded (FFPE) tissue sections were measured using liquid chromatography-tandem mass spectrometry and correlated with alveolar diameter, as determined by the mean linear intercept (MLI) method. There was a positive correlation between free lung DID and MLI (P < 0.0001) in formalin-fixed lungs, and elastin breakdown was greatly accelerated when airspace diameter exceeded 400 µm. In FFPE tissue, DID density was markedly increased beyond 300 µm (P < 0.0001) and leveled off around 400 µm. Elastic fiber surface area similarly peaked at around 400 µm, but to a much lesser extent than DID density, indicating that elastin cross linking is markedly increased in response to early changes in airspace size. These findings support the hypothesis that airspace enlargement is an emergent phenomenon in which initial proliferation of DID cross links to counteract alveolar wall distention is followed by a phase transition involving rapid acceleration of elastin breakdown, alveolar wall rupture, and progression to an active disease state that is less amenable to therapeutic intervention.NEW & NOTEWORTHY The current findings support the hypothesis that airspace enlargement is an emergent phenomenon in which initial proliferation of DID cross links to counteract alveolar wall distention is followed by a phase transition involving rapid acceleration of elastin breakdown, alveolar wall rupture, and progression to an active disease state that is less amenable to therapeutic intervention.


Assuntos
Enfisema , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/metabolismo , Elastina/metabolismo , Pulmão/metabolismo , Alvéolos Pulmonares/metabolismo
7.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L694-L699, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014068

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterized by lung extracellular matrix (ECM) remodeling that contributes to obstruction. This is driven, in part by extracellular vesicles (EVs) from activated neutrophils (PMNs), which express on their surface an α-1 antitrypsin (AAT) insensitive form of neutrophil elastase (NE). These EVs are predicted to bind to collagen fibers via Mac-1 integrins, during which time NE can enzymatically degrade the collagen. Protamine sulfate (PS), a cationic compound used safely for decades in humans, has been shown, in vitro, to dissociate this NE from the EV surface, rendering it AAT-sensitive. In addition, a nonapeptide inhibitor, MP-9, has been shown to prevent EV association with collagen. We sought to test whether PS, MP-9, or a combination of the two could effectively prevent NE+ EV-driven ECM remodeling in an animal COPD model. EVs were preincubated with PBS, protamine sulfate (25 µM), MP-9 (50 µM), or a combination of PS and MP-9. These were delivered intratracheally to anesthetized female 10- to 12-wk-old A/J mice for a 7-day time period. One group of mice was euthanized and lungs sectioned for morphometry, and the other group was used for live pulmonary function testing. The effect of alveolar destruction by activated neutrophil EVs was abrogated by pretreatment with PS or MP-9. However, in pulmonary function tests, only the PS groups (and combined PS/MP-9 groups) returned pulmonary function to near-control levels. These data presented here offer an insight into the effective use of PS in therapeutic setting for EV-derived alveolar damage.NEW & NOTEWORTHY Protamine sulfate facilitates the removal of neutrophil elastase (NE) from the surface of extracellular vesicles from activated neutrophils. This "free" NE is no longer protected from inhibition by its endogenous anti-protease, α-1-anti-trypsin. This function of protamine sulfate highlights it as a potential therapeutic strategy for COPD, which may attenuate the disease process.


Assuntos
Enfisema , Vesículas Extracelulares , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Feminino , Camundongos , Animais , Elastase de Leucócito/metabolismo , Neutrófilos/metabolismo , Enfisema Pulmonar/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Colágeno/metabolismo , Vesículas Extracelulares/metabolismo
8.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L711-L725, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37814796

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterized by nonresolving inflammation fueled by breach in the endothelial barrier and leukocyte recruitment into the airspaces. Among the ligand-receptor axes that control leukocyte recruitment, the full-length fractalkine ligand (CX3CL1)-receptor (CX3CR1) ensures homeostatic endothelial-leukocyte interactions. Cigarette smoke (CS) exposure and respiratory pathogens increase expression of endothelial sheddases, such as a-disintegrin-and-metalloproteinase-domain 17 (ADAM17, TACE), inhibited by the anti-protease α-1 antitrypsin (AAT). In the systemic endothelium, TACE cleaves CX3CL1 to release soluble CX3CL1 (sCX3CL1). During CS exposure, it is not known whether AAT inhibits sCX3CL1 shedding and CX3CR1+ leukocyte transendothelial migration across lung microvasculature. We investigated the mechanism of sCX3CL1 shedding, its role in endothelial-monocyte interactions, and AAT effect on these interactions during acute inflammation. We used two, CS and lipopolysaccharide (LPS) models of acute inflammation in transgenic Cx3cr1gfp/gfp mice and primary human endothelial cells and monocytes to study sCX3CL1-mediated CX3CR1+ monocyte adhesion and migration. We measured sCX3CL1 levels in plasma and bronchoalveolar lavage (BALF) of individuals with COPD. Both sCX3CL1 shedding and CX3CR1+ monocytes transendothelial migration were triggered by LPS and CS exposure in mice, and were significantly attenuated by AAT. The inhibition of monocyte-endothelial adhesion and migration by AAT was TACE-dependent. Compared with healthy controls, sCX3CL1 levels were increased in plasma and BALF of individuals with COPD, and were associated with clinical parameters of emphysema. Our results indicate that inhibition of sCX3CL1 as well as AAT augmentation may be effective approaches to decrease excessive monocyte lung recruitment during acute and chronic inflammatory states.NEW & NOTEWORTHY Our novel findings that AAT and other inhibitors of TACE, the sheddase that controls full-length fractalkine (CX3CL1) endothelial expression, may provide fine-tuning of the CX3CL1-CX3CR1 axis specifically involved in endothelial-monocyte cross talk and leukocyte recruitment to the alveolar space, suggests that AAT and inhibitors of sCX3CL1 signaling may be harnessed to reduce lung inflammation.


Assuntos
Quimiocina CX3CL1 , Enfisema Pulmonar , Animais , Humanos , Camundongos , alfa 1-Antitripsina/farmacologia , Comunicação Celular , Receptor 1 de Quimiocina CX3C/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Inflamação/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Monócitos , Enfisema Pulmonar/metabolismo
9.
Cell Biol Toxicol ; 39(3): 929-944, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34524572

RESUMO

Cigarette smoke (CS), a main source of indoor air pollution, is a primary risk factor for emphysema, and aberrant cellular autophagy is related to the pathogenesis of emphysema. Circular RNAs (circRNAs) affect the expression of mRNAs via acting as microRNA (miRNA) sponges, but their role in emphysema progression is not established. In the present investigation, CS, acting on alveolar epithelial cells, caused higher levels of miR-21, p-ERK, and cleaved-caspase 3 and led to lower levels of circRNA_0026344 and PTEN, which induced autophagy and apoptosis. miR-21 suppressed the expression of PTEN, which was involved in the regulation of autophagy and apoptosis. Further, in alveolar epithelial cells, overexpression of circRNA_0026344 blocked cigarette smoke extract (CSE)-induced autophagy and apoptosis, but this blockage was reversed by upregulation of miR-21 with a mimic. These results demonstrated that, in alveolar epithelial cells, CS decreases circRNA_0026344 levels, which sponge miR-21 to inhibit the miR-21 target, PTEN, which, in turn, activates ERK and thereby promotes autophagy and apoptosis, leading to emphysema. Thus, for emphysema, circRNA_0026344 regulates the PTEN/ERK axis by sponging miR-21, which is associated with the CS-induced autophagy and apoptosis of alveolar epithelial cells. In sum, the present investigation identifies a novel mechanism for CS-induced emphysema and provides information useful for the diagnosis and treatment of CS-induced emphysema.


Assuntos
Fumar Cigarros , Enfisema , MicroRNAs , Enfisema Pulmonar , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Enfisema/complicações , Enfisema/metabolismo , Apoptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Nicotiana/efeitos adversos , Nicotiana/genética , Autofagia/genética , Células Epiteliais/metabolismo
10.
Regul Toxicol Pharmacol ; 142: 105412, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37247649

RESUMO

This study aimed to evaluate long-term exposure to conventional cigarette smoke (CC) and electronic cigarette (EC) aerosol in adult male and female C57BL/6 mice. Forty-eight C57BL/6 mice were used, male (n = 24) and female (n = 24), both were divided into three groups: control, CC and EC. The CC and EC groups were exposed to cigarette smoke or electronic cigarette aerosol, respectively, 3 times a day for 60 consecutive days. Afterwards, they were maintained for 60 days without exposure to cigarettes or electronic cigarette aerosol. Both cigarettes promoted an influx of inflammatory cells to the lung in males and females. All animals exposed to CC and EC showed an increase in lipid peroxidation and protein oxidation. There was an increase of IL-6 in males and females exposed to EC. The IL-13 levels were higher in the females exposed to EC and CC. Both sexes exposed to EC and CC presented tissue damage characterized by septal destruction and increased alveolar spaces compared to control. Our results demonstrated that exposure to CC and EC induced pulmonary emphysema in both sexes, and females seem to be more susceptible to EC.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Enfisema Pulmonar , Produtos do Tabaco , Camundongos , Masculino , Animais , Feminino , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/metabolismo , Camundongos Endogâmicos C57BL , Aerossóis e Gotículas Respiratórios , Pulmão/metabolismo , Produtos do Tabaco/efeitos adversos , Nicotiana
11.
Phytother Res ; 37(4): 1366-1376, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36729048

RESUMO

Chronic obstructive pulmonary disease (COPD) is an important lung disease characterized by complicated symptoms including emphysema. We aimed to explore the mechanisms underlying the protective effect of green tea extract (GTE) on cigarette smoke condensate (CSC)-induced emphysema by demonstrating the reduction of macrophage-induced protease expression through GTE treatment in vivo and in vitro. Mice were intranasally administered 50 mg/kg CSC once a week for 4 weeks, and doses of 100 or 300 mg/kg GTE were administered orally once daily for 4 weeks. GTE significantly reduced macrophage counts in bronchoalveolar lavage fluid and emphysematous lesions in lung tissues in CSC-exposed mice. In addition, GTE suppressed CSC-induced extracellular signal-regulated kinase (ERK)/activator protein (AP)-1 phosphorylation followed by matrix metalloproteinases (MMP)-9 expression as revealed by western blotting, immunohistochemistry, and zymography in CSC-instilled mice. These underlying mechanisms related to reduced protease expression were confirmed in NCI-H292 cells stimulated by CSC. Taken together, GTE effectively inhibits macrophage-driven emphysematous lesions induced by CSC treatment, and these protective effects of GTE are closely related to the ERK/AP-1 signaling pathway, followed by a reduced protease/antiprotease imbalance. These results suggest that GTE can be used as a supplementary agent for the prevention of emphysema progression in COPD patients.


Assuntos
Fumar Cigarros , Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Camundongos , Animais , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema Pulmonar/complicações , Enfisema Pulmonar/metabolismo , Macrófagos , Antioxidantes/uso terapêutico , Enfisema/complicações , Extratos Vegetais/farmacologia , Peptídeo Hidrolases , Chá
12.
Phytother Res ; 37(9): 4251-4264, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37254460

RESUMO

Pulmonary inflammation induced by cigarette smoke (CS) promoted the development of chronic obstructive pulmonary disease (COPD), and macrophage polarization caused by CS modulated inflammatory response. Previous studies indicated that salidroside exerted therapeutic effects in COPD, but the anti-inflammatory mechanisms were not clear. This study aimed to explore the effects and mechanisms of salidroside on macrophage polarization induced by CS. Wistar rats received passively CS exposure and were treated intraperitoneally with salidroside at a low, medium or high dose. Lung tissues were stained with hematoxylin-eosin. Emphysema and inflammatory scores were evaluated by histomorphology. Lung function, cytokines, and cell differential counts in BALF were detected. The macrophage polarization was determined by immunohistochemistry in lung tissues. Alveolar macrophages (AMs) were isolated and treated with cigarette smoke extract (CSE), salidroside or inhibitors of relative pathways. The polarization status was determined by qPCR, and the protein level was detected by Western blotting. CS exposure induced emphysema and lung function deterioration. The inflammatory scores, cytokines level and neutrophils counts were elevated after CS exposure. Salidroside treatment partly ameliorated above abnormal. CS exposure activated M1 and M2 polarization of AMs in vivo and in vitro, and salidroside mitigated M1 polarization induced by CS. CSE activated the JNK/c-Jun in AMs and the M1 polarization of AMs was inhibited by the inhibitors of JNK and AP-1. Salidroside treatment deactivated the JNK/c-Jun, which indicated that salidroside mitigated the M1 polarization of AMs induced by CS via inhibiting JNK/c-Jun. Salidroside treatment ameliorated the pulmonary inflammation and M1 polarization of AMs induced by CS, and the process might be mediated by the deactivation of JNK/c-Jun.


Assuntos
Fumar Cigarros , Enfisema , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Ratos , Animais , Ratos Wistar , Pulmão , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Enfisema/metabolismo
13.
COPD ; 20(1): 80-91, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36656684

RESUMO

Because cigarette smoke can induce COPD/emphysema through accelerating senescence with or without an incomplete repair system. However, the pathogenesis of COPD following lung senescence induced by CS is not fully understood. Airspace enlargement and airway epithelial cell senescence are common finding during the COPD development. We investigated the lung tress response to CS and demonstrated that a stress-responsive transcription factor, FOXO3, was regulated by deacetylase. SIRT1 inhibited FOXO3 acetylation and FOXO3 degradation, leading to FOXO3 accumulation and activation in airway epithelial cells. CS exposure activated SIRT1 contributed to FOXO3 activation and functioned to protect lungs, as deletion of SIRT1 decreased CS-induced FOXO3 activation and resulted in more severe airway epithelial cells senescence airspace enlargement. Strikingly, deletion of FOXO3 during the development of COPD aggravated lung structural and functional damage, leading to a much more profound COPD phenotype. We show that deletion of FOXO3 resulted in decreased autophagic response and increased senescence, which may explain lung protection by FOXO3. Our study indicates that in the COPD, stress-responsive transcription factors can be activated for adaptions to counteract senescence insults, thus attenuating COPD development.


Assuntos
Fumar Cigarros , Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/metabolismo , Pulmão/patologia , Enfisema/complicações , Enfisema/metabolismo , Senescência Celular , Proteína Forkhead Box O3/metabolismo
14.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835197

RESUMO

Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade proteins of the extracellular matrix and the basement membrane. Thus, these enzymes regulate airway remodeling, which is a major pathological feature of chronic obstructive pulmonary disease (COPD). Furthermore, proteolytic destruction in the lungs may lead to loss of elastin and the development of emphysema, which is associated with poor lung function in COPD patients. In this literature review, we describe and appraise evidence from the recent literature regarding the role of different MMPs in COPD, as well as how their activity is regulated by specific tissue inhibitors. Considering the importance of MMPs in COPD pathogenesis, we also discuss MMPs as potential targets for therapeutic intervention in COPD and present evidence from recent clinical trials in this regard.


Assuntos
Metaloproteinases da Matriz , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Enfisema , Matriz Extracelular/metabolismo , Pulmão/metabolismo , Metaloproteinases da Matriz/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/metabolismo
15.
Toxicol Mech Methods ; 33(1): 83-94, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35706141

RESUMO

Cigarette smoke (CS) induced emphysema and chronic pulmonary inflammation are major comorbidities of chronic obstructive pulmonary disease (COPD), a major cause of morbidity and mortality worldwide. CS exposure exacerbates pulmonary inflammation and compromises immunity to various infections. Aurintricarboxylic acid (ATA) is a polyanionic aromatic compound especially recognized for its anti-inflammatory, nucleic acid, and protein interaction inhibition properties. The study was designed to investigate the anti-inflammatory role of ATA against cigarette smoke extract (CSE) induced pulmonary inflammation. Nicotine concentration was quantified in CSE by UPLC/MS technique. In vitro, fluorescence microscopy, and flow cytometry was performed in CSE stimulated alveolar epithelial cells to determine the effect of ATA on oxidative stress-mediated cellular apoptosis. In vivo, pulmonary inflammation was induced in male Wistar rats via a modified non-invasive intratracheal instillation of cigarette smoke extract (100 µl/animal) twice a week for 8 weeks and post-treated with ATA (10 mg/kg) intraperitoneally for 15 days. Lung homogenates were assessed for MDA and GSH. Lung tissues were subjected to western blotting and histopathological analysis. As result, ATA reduced CSE-induced chromatin condensation, fragmentation, cellular apoptosis in alveolar epithelial cells, and apoptotic biomarkers expression including BAX and Caspase-3 in the lungs. ATA reduced inflammation by normalizing redox balance reflected by MDA/GSH levels. ATA obviated airspace enlargement, fiber deposition, and immune cell infiltration. Reduced inflammation was accompanied by inhibition of inflammatory biomarkers TNF-α, TNFR1, TWEAK, and NF-Ò¡B/p65 activation and nuclear translocation. ATA efficaciously diminished the oxidative stress and pulmonary inflammation associated with lung pathogenesis through TNF-α/TNFR1/NF-Ò¡B/p65 signaling pathway. HIGHLIGHTSATA treatment attenuates CSE-stimulated chromatin condensation, fragmentation, and cellular apoptosis in alveolar epithelial cells.ATA treatment inhibits CSE stimulated activation and nuclear translocation of NF-Ò¡B/p65.ATA treatment diminishes CSE-induced oxidant injury, apoptosis, and emphysema-like phenotypic changes in the lungs.ATA inhibits lung inflammation via suppression of the NF-Ò¡B/p65 signaling pathway.


Assuntos
Fumar Cigarros , Enfisema , Pneumonia , Enfisema Pulmonar , Masculino , Ratos , Animais , Receptores Tipo I de Fatores de Necrose Tumoral/toxicidade , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Ácido Aurintricarboxílico/toxicidade , Ácido Aurintricarboxílico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fumar Cigarros/efeitos adversos , NF-kappa B/metabolismo , Ratos Wistar , Pulmão , Pneumonia/induzido quimicamente , Pneumonia/prevenção & controle , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/prevenção & controle , Enfisema Pulmonar/metabolismo , Estresse Oxidativo , Transdução de Sinais , Nicotiana/toxicidade , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Enfisema/metabolismo , Enfisema/patologia , Cromatina
16.
Am J Respir Cell Mol Biol ; 66(4): 428-438, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35081017

RESUMO

Lung function deterioration is significantly associated with poor prognosis in patients with chronic obstructive pulmonary disease (COPD). We previously reported that CC chemokine ligand 17/thymus and activation-regulated chemokine (CCL17/TARC) could be a predictive factor of lung function decline in patients with COPD. However, the role of CCL17 in the pathogenesis of COPD is unclear. Here we examined the role of CCL17 in lung inflammation using mouse COPD models. Exposure to cigarette smoking induced CCL17 production in bronchial epithelial cells and accumulation of alveolar macrophages in the lungs. Intranasal administration of recombinant CCL17 further enhanced cigarette smoke-induced macrophage accumulation and also aggravated elastase-induced pulmonary emphysema. We confirmed that cigarette smoke (CS) extract as well as hydrogen peroxide upregulated CCL17 in BAES-2B cells. Of note, macrophages of both M1 and M2 surface markers were accumulated by cigarette smoke. Both alveolar macrophage accumulation via exposure to cigarette smoking and emphysematous changes induced by elastase administration were significantly reduced in CCL17-deficient mice. We further demonstrated that CCL17 strongly induced the expression of CC chemokine ligand 2 (CCL2), a chemoattractant for macrophages, in RAW264.7 cells, and its production was inhibited by knockdown of CCR4, the receptor of CCL17. Collectively, the present results demonstrate that CCL17 is produced by lung epithelial cells upon CS exposure. Furthermore, CCL17 is involved in CS-induced accumulation of alveolar macrophages and development of elastase-induced pulmonary emphysema, possibly through CCL17-induced production of CCL2 by macrophages. Our findings may provide a new insight into the pathogenesis of COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Modelos Animais de Doenças , Humanos , Ligantes , Pulmão/patologia , Camundongos , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/metabolismo
17.
Am J Respir Cell Mol Biol ; 67(1): 76-88, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35507773

RESUMO

Alpha-1 antitrypsin deficiency (AATD) is characterized by neutrophil-dominated inflammation resulting in emphysema. The cholesterol-rich neutrophil outer plasma membrane plays a central role in adhesion and subsequent transmigration to underlying tissues. This study aimed to investigate mechanisms of increased neutrophil adhesion in AATD and whether alpha-1 antitrypsin (AAT) augmentation therapy abrogates this effect. Plasma and blood neutrophils were donated by healthy controls (n = 20), AATD (n = 30), and AATD patients after AAT augmentation therapy (n = 6). Neutrophil membrane protein expression was investigated using liquid chromatography-tandem mass spectrometry. The effect of once-weekly intravenous AAT augmentation therapy was assessed by calcium fluorometric, µ-calpain, and cell adhesion assays. Decreased neutrophil plasma membrane cholesterol content (P = 0.03), yet increased abundance of integrin α-M (fold change 1.91), integrin α-L (fold change 3.76), and cytoskeletal adaptor proteins including talin-1 (fold change 4.04) were detected on AATD neutrophil plasma membrane fractions. The described inflammatory induced structural changes were a result of a more than twofold increased cytosolic calcium concentration (P = 0.02), leading to significant calcium-dependent µ-calpain activity (3.5-fold change; P = 0.005), resulting in proteolysis of the membrane cholesterol trafficking protein caveolin-1. Treatment of AAT-deficient individuals with AAT augmentation therapy resulted in increased caveolin-1 and membrane cholesterol content (111.8 ± 15.5 vs. 64.18 ± 7.8 µg/2 × 107 cells before and after treatment, respectively; P = 0.02), with concurrent decreased neutrophil integrin expression and adhesion. Results demonstrate an auxiliary benefit of AAT augmentation therapy, evident by a decrease in circulating inflammation and controlled neutrophil adhesion.


Assuntos
Enfisema Pulmonar , Deficiência de alfa 1-Antitripsina , Cálcio/metabolismo , Caveolina 1/metabolismo , Colesterol/metabolismo , Humanos , Inflamação/metabolismo , Integrinas/metabolismo , Neutrófilos/metabolismo , Enfisema Pulmonar/metabolismo , alfa 1-Antitripsina/metabolismo
18.
Respir Res ; 23(1): 269, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183124

RESUMO

BACKGROUND: The defects and imbalance in lung repair and structural maintenance contribute to the pathogenesis of chronic obstructive pulmonary diseases (COPD), yet the molecular mechanisms that regulate lung repair process are so far incompletely understood. We hypothesized that cigarette smoking causes glycocalyx impairment and endothelial apoptosis in COPD, which could be repaired by the stimulation of fibroblast growth factor 10 (FGF10)/FGF receptor 1 (FGFR1) signaling. METHODS: We used immunostaining (immunohistochemical [IHC] and immunofluorescence [IF]) and enzyme-linked immunosorbent assay (ELISA) to detect the levels of glycocalyx components and endothelial apoptosis in animal models and in patients with COPD. We used the murine emphysema model and in vitro studies to determine the protective and reparative role of FGF10/FGFR1. RESULTS: Exposure to cigarette smoke caused endothelial glycocalyx impairment and emphysematous changes in murine models and human specimens. Pretreatment of FGF10 attenuated the development of emphysema and the shedding of glycocalyx components induced by CSE in vivo. However, FGF10 did not attenuate the emphysema induced by endothelial-specific killing peptide CGSPGWVRC-GG-D(KLAKLAK)2. Mechanistically, FGF10 alleviated smoke-induced endothelial apoptosis and glycocalyx repair through FGFR1/ERK/SOX9/HS6ST1 signaling in vitro. FGF10 was shown to repair pulmonary glycocalyx injury and endothelial apoptosis, and attenuate smoke-induced COPD through FGFR1 signaling. CONCLUSIONS: Our results suggest that FGF10 may serve as a potential therapeutic strategy against COPD via endothelial repair and glycocalyx reconstitution.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Apoptose/fisiologia , Enfisema/complicações , Fator 10 de Crescimento de Fibroblastos , Glicocálix/metabolismo , Glicocálix/patologia , Humanos , Camundongos , Enfisema Pulmonar/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/uso terapêutico , Nicotiana
19.
Respir Res ; 23(1): 44, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241086

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is among the top 5 causes of mortality in the world and can develop as a consequence of genetic and/or environmental factors. Current efforts are focused on identifying early life insults and how these contribute to COPD development. In line with this, our study focuses on the influence of early life nicotine exposure and its potential impact on (a) lung pulmonary functions, and (b) elastase-induced emphysema in adulthood. METHODS: To address this hypothesis, we developed a model of 2 hits, delivered at different time points: mouse pups were first exposed to nicotine/placebo in utero and during lactation, and then subsequently received elastase/placebo at the age of 11 weeks. The effect of nicotine pretreatment and elastase instillation was assessed by (a) measurement of pulmonary function at post-elastase day (ped) 21, and (b) transcriptomic profiling at ped3 and 21, and complementary protein determination. Statistical significance was determined by 3- and 2-way ANOVA for pulmonary functions, and RNAseq results were analyzed using the R project. RESULTS: We did not observe any impact of nicotine pre- and early post-natal exposure compared to control samples on lung pulmonary functions in adulthood, as measured by FLEXIVENT technology. After elastase instillation, substantial lung damage was detected by x-ray tomography and was accompanied by loss in body weight at ped3 as well as an increase in cell numbers, inflammatory markers in BAL and lung volume at ped21. Lung functions showed a decrease in elastance and an increase in deep inflation volume and pressure volume (pv) loop area in animals with emphysema at ped21. Nicotine had no effect on elastance and deep inflation volume, but did affect the pv loop area in animals with emphysema at ped21. Extensive transcriptomic changes were induced by elastase at ped3 both in the nicotine-pretreated and the control samples, with several pathways common to both groups, such as for cell cycle, DNA adhesion and DNA damage. Nicotine pretreatment affected the number of lymphocytes present in BAL after elastase instillation and some of the complement pathway related proteins, arguing for a slight modification of the immune response, as well as changes related to general body metabolism. The majority of elastase-induced transcriptomic changes detected at ped3 had disappeared at ped21. In addition, transcriptomic profiling singled out a common gene pool that was independently activated by nicotine and elastase. CONCLUSIONS: Our study reports a broad spectrum of transient transcriptomic changes in mouse emphysema and identifies nicotine as influencing the emphysema-associated immune system response.


Assuntos
Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Expectativa de Vida , Nicotina/efeitos adversos , Enfisema Pulmonar/genética , RNA/genética , Animais , Líquido da Lavagem Broncoalveolar/citologia , Células Cultivadas , Modelos Animais de Doenças , Antígenos H-2 , Antígenos de Histocompatibilidade Classe I/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Elastase Pancreática/toxicidade , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/metabolismo
20.
Am J Respir Crit Care Med ; 204(6): 651-666, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34033525

RESUMO

Rationale: Cigarette smoke (CS) inhalation triggers oxidative stress and inflammation, leading to accelerated lung aging, apoptosis, and emphysema, as well as systemic pathologies. Metformin is beneficial for protecting against aging-related diseases. Objectives: We sought to investigate whether metformin may ameliorate CS-induced pathologies of emphysematous chronic obstructive pulmonary disease (COPD). Methods: Mice were exposed chronically to CS and fed metformin-enriched chow for the second half of exposure. Lung, kidney, and muscle pathologies, lung proteostasis, endoplasmic reticulum (ER) stress, mitochondrial function, and mediators of metformin effects in vivo and/or in vitro were studied. We evaluated the association of metformin use with indices of emphysema progression over 5 years of follow-up among the COPDGene (Genetic Epidemiology of COPD) study participants. The association of metformin use with the percentage of emphysema and adjusted lung density was estimated by using a linear mixed model. Measurements and Main Results: Metformin protected against CS-induced pulmonary inflammation and airspace enlargement; small airway remodeling, glomerular shrinkage, oxidative stress, apoptosis, telomere damage, aging, dysmetabolism in vivo and in vitro; and ER stress. The AMPK (AMP-activated protein kinase) pathway was central to metformin's protective action. Within COPDGene, participants receiving metformin compared with those not receiving it had a slower progression of emphysema (-0.92%; 95% confidence interval [CI], -1.7% to -0.14%; P = 0.02) and a slower adjusted lung density decrease (2.2 g/L; 95% CI, 0.43 to 4.0 g/L; P = 0.01). Conclusions: Metformin protected against CS-induced lung, renal, and muscle injury; mitochondrial dysfunction; and unfolded protein responses and ER stress in mice. In humans, metformin use was associated with lesser emphysema progression over time. Our results provide a rationale for clinical trials testing the efficacy of metformin in limiting emphysema progression and its systemic consequences.


Assuntos
Metformina/uso terapêutico , Substâncias Protetoras/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema Pulmonar/prevenção & controle , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Fumar Cigarros/efeitos adversos , Progressão da Doença , Feminino , Seguimentos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA