Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.379
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Neurosci ; 44(15)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38413231

RESUMO

Fluctuations in brain activity alter how we perceive our body and generate movements but have not been investigated in functional whole-body behaviors. During reactive balance, we recently showed that evoked brain activity is associated with the balance ability in young individuals. Furthermore, in PD, impaired whole-body motion perception in reactive balance is associated with impaired balance. Here, we investigated the brain activity during the whole-body motion perception in reactive balance in young adults (9 female, 10 male). We hypothesized that both ongoing and evoked cortical activity influences the efficiency of information processing for successful perception and movement during whole-body behaviors. We characterized two cortical signals using electroencephalography localized to the SMA: (1) the "N1," a perturbation-evoked potential that decreases in amplitude with expectancy and is larger in individuals with lower balance function, and (2) preperturbation ß power, a transient rhythm that favors maintenance of the current sensorimotor state and is inversely associated with tactile perception. In a two-alternative forced choice task, participants judged whether pairs of backward support surface perturbations during standing were in the "same" or "different" direction. As expected, lower whole-body perception was associated with lower balance ability. Within a perturbation pair, N1 attenuation was larger on correctly perceived trials and associated with better balance, but not perception. In contrast, preperturbation ß power was higher on incorrectly perceived trials and associated with poorer perception, but not balance. Together, ongoing and evoked cortical activity have unique roles in information processing that give rise to distinct associations with perceptual and balance ability.


Assuntos
Percepção de Movimento , Equilíbrio Postural , Adulto Jovem , Humanos , Masculino , Feminino , Equilíbrio Postural/fisiologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Movimento , Percepção de Movimento/fisiologia
2.
PLoS Comput Biol ; 20(4): e1011562, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630803

RESUMO

The role of the cortex in shaping automatic whole-body motor behaviors such as walking and balance is poorly understood. Gait and balance are typically mediated through subcortical circuits, with the cortex becoming engaged as needed on an individual basis by task difficulty and complexity. However, we lack a mechanistic understanding of how increased cortical contribution to whole-body movements shapes motor output. Here we use reactive balance recovery as a paradigm to identify relationships between hierarchical control mechanisms and their engagement across balance tasks of increasing difficulty in young adults. We hypothesize that parallel sensorimotor feedback loops engaging subcortical and cortical circuits contribute to balance-correcting muscle activity, and that the involvement of cortical circuits increases with balance challenge. We decomposed balance-correcting muscle activity based on hypothesized subcortically- and cortically-mediated feedback components driven by similar sensory information, but with different loop delays. The initial balance-correcting muscle activity was engaged at all levels of balance difficulty. Its onset latency was consistent with subcortical sensorimotor loops observed in the lower limb. An even later, presumed, cortically-mediated burst of muscle activity became additionally engaged as balance task difficulty increased, at latencies consistent with longer transcortical sensorimotor loops. We further demonstrate that evoked cortical activity in central midline areas measured using electroencephalography (EEG) can be explained by a similar sensory transformation as muscle activity but at a delay consistent with its role in a transcortical loop driving later cortical contributions to balance-correcting muscle activity. These results demonstrate that a neuromechanical model of muscle activity can be used to infer cortical contributions to muscle activity without recording brain activity. Our model may provide a useful framework for evaluating changes in cortical contributions to balance that are associated with falls in older adults and in neurological disorders such as Parkinson's disease.


Assuntos
Eletroencefalografia , Retroalimentação Sensorial , Equilíbrio Postural , Humanos , Equilíbrio Postural/fisiologia , Retroalimentação Sensorial/fisiologia , Masculino , Adulto Jovem , Adulto , Feminino , Músculo Esquelético/fisiologia , Córtex Sensório-Motor/fisiologia , Córtex Cerebral/fisiologia , Biologia Computacional , Eletromiografia
3.
PLoS Comput Biol ; 20(6): e1012209, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38870205

RESUMO

Balance impairments are common in cerebral palsy. When balance is perturbed by backward support surface translations, children with cerebral palsy have increased co-activation of the plantar flexors and tibialis anterior muscle as compared to typically developing children. However, it is unclear whether increased muscle co-activation is a compensation strategy to improve balance control or is a consequence of reduced reciprocal inhibition. During translational perturbations, increased joint stiffness due to co-activation might aid balance control by resisting movement of the body with respect to the feet. In contrast, during rotational perturbations, increased joint stiffness will hinder balance control as it couples body to platform rotation. Therefore, we expect increased muscle co-activation in response to rotational perturbations if co-activation is caused by reduced reciprocal inhibition but not if it is merely a compensation strategy. We perturbed standing balance by combined backward translational and toe-up rotational perturbations in 20 children with cerebral palsy and 20 typically developing children. Perturbations induced forward followed by backward movement of the center of mass. We evaluated reactive muscle activity and the relation between center of mass movement and reactive muscle activity using a linear feedback model based on center of mass kinematics. In typically developing children, perturbations induced plantar flexor balance correcting muscle activity followed by tibialis anterior balance correcting muscle activity, which was driven by center of mass movement. In children with cerebral palsy, the switch from plantar flexor to tibialis anterior activity was less pronounced than in typically developing children due to increased muscle co-activation of the plantar flexors and tibialis anterior throughout the response. Our results thus suggest that a reduction in reciprocal inhibition causes muscle co-activation in reactive standing balance in children with cerebral palsy.


Assuntos
Paralisia Cerebral , Músculo Esquelético , Equilíbrio Postural , Paralisia Cerebral/fisiopatologia , Humanos , Equilíbrio Postural/fisiologia , Criança , Masculino , Feminino , Músculo Esquelético/fisiopatologia , Fenômenos Biomecânicos , Rotação , Eletromiografia , Biologia Computacional , Adolescente
4.
J Neurosci ; 43(13): 2326-2337, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36801822

RESUMO

To maintain stable posture of the head and body during our everyday activities, the brain integrates information across multiple sensory systems. Here, we examined how the primate vestibular system, independently and in combination with visual sensory input, contributes to the sensorimotor control of head posture across the range of dynamic motion experienced during daily life. We recorded activity of single motor units in the splenius capitis and sternocleidomastoid muscles in rhesus monkeys during yaw rotations spanning the physiological range of self-motion (up to 20 Hz) in darkness. Splenius capitis motor unit responses continued to increase with frequency up to 16 Hz in normal animals, and were strikingly absent following bilateral peripheral vestibular loss. To determine whether visual information modulated these vestibular-driven neck muscle responses, we experimentally controlled the correspondence between visual and vestibular cues of self-motion. Surprisingly, visual information did not influence motor unit responses in normal animals, nor did it substitute for absent vestibular feedback following bilateral peripheral vestibular loss. A comparison of muscle activity evoked by broadband versus sinusoidal head motion further revealed that low-frequency responses were attenuated when low- and high-frequency self-motion were experienced concurrently. Finally, we found that vestibular-evoked responses were enhanced by increased autonomic arousal, quantified via pupil size. Together, our findings directly establish the vestibular system's contribution to the sensorimotor control of head posture across the dynamic motion range experienced during everyday activities, as well as how vestibular, visual, and autonomic inputs are integrated for postural control.SIGNIFICANCE STATEMENT Our sensory systems enable us to maintain control of our posture and balance as we move through the world. Notably, the vestibular system senses motion of the head and sends motor commands, via vestibulospinal pathways, to axial and limb muscles to stabilize posture. By recording the activity of single motor units, here we show, for the first time, that the vestibular system contributes to the sensorimotor control of head posture across the dynamic motion range experienced during everyday activities. Our results further establish how vestibular, autonomic, and visual inputs are integrated for postural control. This information is essential for understanding both the mechanisms underlying the control of posture and balance, and the impact of the loss of sensory function.


Assuntos
Percepção de Movimento , Vestíbulo do Labirinto , Animais , Músculos do Pescoço/fisiologia , Vestíbulo do Labirinto/fisiologia , Músculo Esquelético , Primatas , Percepção de Movimento/fisiologia , Equilíbrio Postural/fisiologia
5.
J Physiol ; 602(12): 2985-2998, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38766932

RESUMO

Prolonged bed rest impairs standing balance but the underlying mechanisms are uncertain. Previous research suggests strength loss is not the cause, leaving impaired sensorimotor control as an alternative. Here we examine vestibular control of posture in 18 male volunteers before and after 60 days of bed rest. Stochastic vestibular stimulation (SVS) was used to evoke sway responses before, 1 and 6 days after bed rest under different head yaw orientations. The directional accuracy and precision of these responses were calculated from ground reaction force vectors. Bed rest caused up to 63% increases in spontaneous standing sway and 31% reductions in leg strength, changes which were uncorrelated. The increase in sway was exacerbated when the eyes were closed. Mean directions of SVS-evoked sway responses were unaffected, being directed towards the anodal ear and rotating in line with head orientation in the same way before and after bed rest. However, individual trial analysis revealed 25%-30% increases in directional variability, which were significantly correlated with the increase in spontaneous sway (r = 0.48-0.71; P ≤ 0.044) and were still elevated on day 6 post-bed rest. This reveals that individual sway responses may be inappropriately oriented, a finding masked by the averaging process. Our results confirm that impaired balance following prolonged bedrest is not related to loss of strength. Rather, they demonstrate that the sensorimotor transformation process which converts vestibular feedback into appropriately directed balance responses is impaired. KEY POINTS: Prolonged inactivity impairs balance but previous research suggests this is not caused by loss of strength. Here we investigated vestibular control of balance before and after 60 days of bed rest using electrical vestibular stimulation (EVS) to evoke sway responses. Spontaneous sway significantly increased and muscle strength reduced following bed rest, but, in keeping with previous research, these two effects were not correlated. While the overall accuracy of EVS-evoked sway responses was unaffected, their directional variability significantly increased following bed rest, and this was correlated with the increases in spontaneous sway. We have shown that the ability to transform head-centred vestibular feedback into an appropriately directed body sway response is negatively affected by prolonged inactivity; this may contribute to the impaired balance commonly observed following bed rest.


Assuntos
Repouso em Cama , Equilíbrio Postural , Vestíbulo do Labirinto , Humanos , Masculino , Equilíbrio Postural/fisiologia , Adulto , Vestíbulo do Labirinto/fisiologia , Adulto Jovem
6.
J Neurophysiol ; 131(3): 516-528, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230879

RESUMO

The active control of the lumbar musculature provides a stable platform critical for postures and goal-directed movements. Voluntary and perturbation-evoked motor commands can recruit individual lumbar muscles in a task-specific manner according to their presumed biomechanics. Here, we investigated the vestibular control of the deep and superficial lumbar musculature. Ten healthy participants were exposed to noisy electrical vestibular stimulation while balancing upright with their head facing forward, left, or right to characterize the differential modulation in the vestibular-evoked lumbar extensor responses in generating multidirectional whole body motion. We quantified the activation of the lumbar muscles on the right side using indwelling [deep multifidus, superficial multifidus, caudal longissimus (L4), and cranial longissimus (L1)] and high-density surface recordings. We characterized the vestibular-evoked responses using coherence and peak-to-peak cross-covariance amplitude between the vestibular and electromyographic signals. Participants exhibited responses in all lumbar muscles. The vestibular control of the lumbar musculature exhibited muscle-specific modulations: responses were larger in the longissimus (combined cranio-caudal) compared with the multifidus (combined deep-superficial) when participants faced forward (P < 0.001) and right (P = 0.011) but not when they faced left. The high-density surface recordings partly supported this observation: the location of the responses was more lateral when facing right compared with left (P < 0.001). The vestibular control of muscle subregions within the longissimus or the multifidus was similar. Our results demonstrate muscle-specific vestibular control of the lumbar muscles in response to perturbations of vestibular origin. The lack of differential activation of lumbar muscle subregions suggests the vestibular control of these subregions is co-regulated for standing balance.NEW & NOTEWORTHY We investigated the vestibular control of the deep and superficial lumbar extensor muscles using electrical vestibular stimuli. Vestibular stimuli elicited preferential activation of the longissimus muscle over the multifidus muscle. We did not observe clear regional activation of lumbar muscle subregions in response to the vestibular stimuli. Our findings show that the central nervous system can finely tune the vestibular control of individual lumbar muscles and suggest minimal regional variations in the activation of lumbar muscle subregions.


Assuntos
Região Lombossacral , Músculo Esquelético , Humanos , Eletromiografia , Músculo Esquelético/fisiologia , Movimento , Equilíbrio Postural/fisiologia , Músculos Paraespinais/fisiologia
7.
J Neurophysiol ; 131(3): 562-575, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324891

RESUMO

The ability to adapt our locomotion in a feedforward (i.e., "predictive") manner is crucial for safe and efficient walking behavior. Equally important is the ability to quickly deadapt and update behavior that is no longer appropriate for the given context. It has been suggested that anxiety induced via postural threat may play a fundamental role in disrupting such deadaptation. We tested this hypothesis, using the "broken escalator" phenomenon: Fifty-six healthy young adults walked onto a stationary walkway ("BEFORE" condition, 5 trials), then onto a moving walkway akin to an airport travelator ("MOVING" condition, 10 trials), and then again onto the stationary walkway ("AFTER" condition, 5 trials). Participants completed all trials while wearing a virtual reality headset, which was used to induce postural threat-related anxiety (raised clifflike drop at the end of the walkway) during different phases of the paradigm. We found that performing the locomotor adaptation phase in a state of increased threat disrupted subsequent deadaptation during AFTER trials: These participants displayed anticipatory muscular activity as if expecting the platform to move and exhibited inappropriate anticipatory forward trunk movement that persisted during multiple AFTER trials. In contrast, postural threat induced during AFTER trials did not affect behavioral or neurophysiological outcomes. These findings highlight that actions learned in the presence of postural threat-induced anxiety are strengthened, leading to difficulties in deadapting these behaviors when no longer appropriate. Given the associations between anxiety and persistent maladaptive gait behaviors (e.g., "overly cautious" gait, functional gait disorders), the findings have implications for the understanding of such conditions.NEW & NOTEWORTHY Safe and efficient locomotion frequently requires movements to be adapted in a feedforward (i.e., "predictive") manner. These adaptations are not always correct, and thus inappropriate behavior must be quickly updated. Here we showed that increased threat disrupts this process. We found that locomotor actions learned in the presence of postural threat-induced anxiety are strengthened, subsequently impairing one's ability to update (or "deadapt") these actions when they are no longer appropriate for the current context.


Assuntos
Aprendizagem , Caminhada , Adulto Jovem , Humanos , Caminhada/fisiologia , Aprendizagem/fisiologia , Marcha/fisiologia , Locomoção/fisiologia , Ansiedade , Equilíbrio Postural/fisiologia
8.
J Neurophysiol ; 131(6): 1260-1270, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38748413

RESUMO

Visual information is essential to navigate the environment and maintain postural stability during gait. Visual field rotations alter the perceived heading direction, resulting in gait trajectory deviations, known as visual coupling. It is unclear how center of mass (CoM) control relative to a continuously changing base of support (BoS) is adapted to facilitate visual coupling. This study aimed to characterize mediolateral (ML) balance control during visual coupling in steady-state gait. Sixteen healthy participants walked on an instrumented treadmill, naive to sinusoidal low-frequency (0.1 Hz) rotations of the virtual environment around the vertical axis. Rotations were continuous with 1) high or 2) low amplitude or were 3) periodic with 10-s intervals. Visual coupling was characterized with cross-correlations between CoM trajectory and visual rotations. Balance control was characterized with the ML margin of stability (MoSML) and by quantifying foot placement control as the relation between CoM dynamics and lateral foot placement. Visual coupling was strong on a group level (continuous low: 0.88, continuous high: 0.91, periodic: 0.95) and moderate to strong on an individual level. Higher rotation amplitudes induced stronger gait trajectory deviations. The MoSML decreased toward the deviation direction and increased at the opposite side. Foot placement control was similar compared with regular gait. Furthermore, pelvis and foot reorientation toward the rotation direction was observed. We concluded that visual coupling was facilitated by reorientating the body and shifting the extrapolated CoMML closer to the lateral BoS boundary toward the adjusted heading direction while preserving CoM excursion and foot placement control.NEW & NOTEWORTHY Healthy, naive participants were unaware of subtle, low-frequency rotations of the visual field but still coupled their gait trajectory to a rotating virtual environment. In response, participants decreased their margin of stability toward the new heading direction, without changing the center of mass excursion magnitude and foot placement strategy.


Assuntos
Marcha , Equilíbrio Postural , Percepção Visual , Humanos , Masculino , Feminino , Marcha/fisiologia , Equilíbrio Postural/fisiologia , Adulto , Rotação , Percepção Visual/fisiologia , Adulto Jovem , Fenômenos Biomecânicos/fisiologia
9.
N Engl J Med ; 384(6): 521-532, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33567192

RESUMO

BACKGROUND: Bilateral vestibular hypofunction is associated with chronic disequilibrium, postural instability, and unsteady gait owing to failure of vestibular reflexes that stabilize the eyes, head, and body. A vestibular implant may be effective in alleviating symptoms. METHODS: Persons who had had ototoxic (7 participants) or idiopathic (1 participant) bilateral vestibular hypofunction for 2 to 23 years underwent unilateral implantation of a prosthesis that electrically stimulates the three semicircular canal branches of the vestibular nerve. Clinical outcomes included the score on the Bruininks-Oseretsky Test of Motor Proficiency balance subtest (range, 0 to 36, with higher scores indicating better balance), time to failure on the modified Romberg test (range, 0 to 30 seconds), score on the Dynamic Gait Index (range, 0 to 24, with higher scores indicating better gait performance), time needed to complete the Timed Up and Go test, gait speed, pure-tone auditory detection thresholds, speech discrimination scores, and quality of life. We compared participants' results at baseline (before implantation) with those at 6 months (8 participants) and at 1 year (6 participants) with the device set in its usual treatment mode (varying stimulus pulse rate and amplitude to represent rotational head motion) and in a placebo mode (holding pulse rate and amplitude constant). RESULTS: The median scores at baseline and at 6 months on the Bruininks-Oseretsky test were 17.5 and 21.0, respectively (median within-participant difference, 5.5 points; 95% confidence interval [CI], 0 to 10.0); the median times on the modified Romberg test were 3.6 seconds and 8.3 seconds (difference, 5.1; 95% CI, 1.5 to 27.6); the median scores on the Dynamic Gait Index were 12.5 and 22.5 (difference, 10.5 points; 95% CI, 1.5 to 12.0); the median times on the Timed Up and Go test were 11.0 seconds and 8.7 seconds (difference, 2.3; 95% CI, -1.7 to 5.0); and the median speeds on the gait-speed test were 1.03 m per second and 1.10 m per second (difference, 0.13; 95% CI, -0.25 to 0.30). Placebo-mode testing confirmed that improvements were due to treatment-mode stimulation. Among the 6 participants who were also assessed at 1 year, the median within-participant changes from baseline to 1 year were generally consistent with results at 6 months. Implantation caused ipsilateral hearing loss, with the air-conducted pure-tone average detection threshold at 6 months increasing by 3 to 16 dB in 5 participants and by 74 to 104 dB in 3 participants. Changes in participant-reported disability and quality of life paralleled changes in posture and gait. CONCLUSIONS: Six months and 1 year after unilateral implantation of a vestibular prosthesis for bilateral vestibular hypofunction, measures of posture, gait, and quality of life were generally in the direction of improvement from baseline, but hearing was reduced in the ear with the implant in all but 1 participant. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT02725463.).


Assuntos
Vestibulopatia Bilateral/cirurgia , Marcha/fisiologia , Perda Auditiva/etiologia , Neuroestimuladores Implantáveis , Equilíbrio Postural/fisiologia , Qualidade de Vida , Vestíbulo do Labirinto/cirurgia , Idoso , Vestibulopatia Bilateral/induzido quimicamente , Vestibulopatia Bilateral/complicações , Tontura/etiologia , Feminino , Transtornos Neurológicos da Marcha/etiologia , Humanos , Neuroestimuladores Implantáveis/efeitos adversos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias , Estudos Prospectivos , Canais Semicirculares/inervação , Nervo Vestibular/efeitos dos fármacos
10.
BMC Med ; 22(1): 281, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972988

RESUMO

BACKGROUND: The increase in population aging highlights the growing prevalence of mild cognitive impairment, prompting the adoption of interventions that combine physical exercise and cognitive training to improve health and cognitive performance in older adults. The aim of this study was to analyze the efficacy of a combined program on physical and cognitive health in older people with cognitive impairment. METHODS: A 12-week randomized controlled clinical trial involving 95 participants (aged 72.12 ± 4.25 years), 47 individuals participated in a control group (CG) that only underwent cognitive stimulation, while 48 individuals were in an experimental group (EG) that participated in a combined program. Balance was measured using the Tinetti scale, upper body strength was assessed with the arm curl test, lower body strength was evaluated with the 30-s chair stand test, flexibility was tested using the back scratch test and chair sit-and-reach test, physical function was measured with the Timed Up and Go test, cognitive function was assessed using the Mini Mental State Examination, cognitive impairment was evaluated with the Montreal Cognitive Assessment, verbal fluency was tested with the Isaac test, and executive functions were assessed using the Trail Making Test. RESULTS: The results of the study show significant improvements in both physical and cognitive aspects, such as balance, gait, upper and lower body strength, flexibility, physical function, cognitive function, cognitive impairment, verbal fluency, and executive functions in the group that carried out the intervention compared to the control group. CONCLUSION: A combined program for older individuals with mild cognitive impairment leads to enhancements in physical and cognitive health. These improvements underscore the importance of integrating physical exercise with cognitive training as an effective strategy for enhancing overall health and quality of life in older adults. TRIAL REGISTRATION: NCT05503641.


Assuntos
Cognição , Disfunção Cognitiva , Humanos , Disfunção Cognitiva/terapia , Idoso , Masculino , Feminino , Cognição/fisiologia , Terapia por Exercício/métodos , Equilíbrio Postural/fisiologia , Resultado do Tratamento , Idoso de 80 Anos ou mais , Exercício Físico/fisiologia , Terapia Combinada , Treino Cognitivo
11.
Mov Disord ; 39(6): 996-1005, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38469957

RESUMO

BACKGROUND: Progressive loss of standing balance is a feature of Friedreich's ataxia (FRDA). OBJECTIVES: This study aimed to identify standing balance conditions and digital postural sway measures that best discriminate between FRDA and healthy controls (HC). We assessed test-retest reliability and correlations between sway measures and clinical scores. METHODS: Twenty-eight subjects with FRDA and 20 HC completed six standing conditions: feet apart, feet together, and feet tandem, both with eyes opened (EO) and eyes closed. Sway was measured using a wearable sensor on the lumbar spine for 30 seconds. Test completion rate, test-retest reliability with intraclass correlation coefficients, and areas under the receiver operating characteristic curves (AUCs) for each measure were compared to identify distinguishable FRDA sway characteristics from HC. Pearson correlations were used to evaluate the relationships between discriminative measures and clinical scores. RESULTS: Three of the six standing conditions had completion rates over 70%. Of these three conditions, natural stance and feet together with EO showed the greatest completion rates. All six of the sway measures' mean values were significantly different between FRDA and HC. Four of these six measures discriminated between groups with >0.9 AUC in all three conditions. The Friedreich Ataxia Rating Scale Upright Stability and Total scores correlated with sway measures with P-values <0.05 and r-values (0.63-0.86) and (0.65-0.81), respectively. CONCLUSION: Digital postural sway measures using wearable sensors are discriminative and reliable for assessing standing balance in individuals with FRDA. Natural stance and feet together stance with EO conditions suggest use in clinical trials for FRDA. © 2024 International Parkinson and Movement Disorder Society.


Assuntos
Ataxia de Friedreich , Equilíbrio Postural , Humanos , Ataxia de Friedreich/fisiopatologia , Ataxia de Friedreich/diagnóstico , Equilíbrio Postural/fisiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem , Posição Ortostática
12.
Mov Disord ; 39(4): 663-673, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38357985

RESUMO

BACKGROUND: Maintaining balance is crucial for independence and quality of life. Loss of balance is a hallmark of spinocerebellar ataxia (SCA). OBJECTIVE: The aim of this study was to identify which standing balance conditions and digital measures of body sway were most discriminative, reliable, and valid for quantifying balance in SCA. METHODS: Fifty-three people with SCA (13 SCA1, 13 SCA2, 14 SCA3, and 13 SCA6) and Scale for Assessment and Rating of Ataxia (SARA) scores 9.28 ± 4.36 and 31 healthy controls were recruited. Subjects stood in six test conditions (natural stance, feet together and tandem, each with eyes open [EO] and eyes closed [EC]) with an inertial sensor on their lower back for 30 seconds (×2). We compared test completion rate, test-retest reliability, and areas under the receiver operating characteristic curve (AUC) for seven digital sway measures. Pearson's correlations related sway with the SARA and the Patient-Reported Outcome Measure of Ataxia (PROM ataxia). RESULTS: Most individuals with SCA (85%-100%) could stand for 30 seconds with natural stance EO or EC, and with feet together EO. The most discriminative digital sway measures (path length, range, area, and root mean square) from the two most reliable and discriminative conditions (natural stance EC and feet together EO) showed intraclass correlation coefficients from 0.70 to 0.91 and AUCs from 0.83 to 0.93. Correlations of sway with SARA were significant (maximum r = 0.65 and 0.73). Correlations with PROM ataxia were mild to moderate (maximum r = 0.56 and 0.34). CONCLUSION: Inertial sensor measures of extent of postural sway in conditions of natural stance EC and feet together stance EO were discriminative, reliable, and valid for monitoring SCA. © 2024 International Parkinson and Movement Disorder Society.


Assuntos
Equilíbrio Postural , Ataxias Espinocerebelares , Humanos , Equilíbrio Postural/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Ataxias Espinocerebelares/fisiopatologia , Ataxias Espinocerebelares/diagnóstico , Adulto , Idoso , Reprodutibilidade dos Testes , Índice de Gravidade de Doença
13.
Mov Disord ; 39(6): 1048-1053, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477413

RESUMO

BACKGROUND: Gait disorders in patients with Parkinson's disease (PD) can become disabling with disease progression without effective treatment. OBJECTIVES: To investigate the efficacy of intermittent θ burst trans-spinal magnetic stimulation (TsMS) in PD patients with gait and balance disorders. METHODS: This was a randomized, parallel, double-blind, controlled trial. Active or sham TsMS was applied at third thoracic vertebra with 100% of the trans-spinal motor threshold, during 5 consecutive days. Participants were evaluated at baseline, immediately after last session, 1 and 4 weeks after last session. Primary outcome was Total Timed Up and Go (TUG) values comparing active versus sham phases 1 week after intervention. The secondary outcome measurements consisted of motor, gait and balance scales, and questionnaires for quality of life and cognition. RESULTS: Thirty-three patients were included, average age 68.5 (6.4) years in active group and 70.3 (6.3) years in sham group. In active group, Total TUG mean baseline was 107.18 (95% CI, 52.1-116.1), and 1 week after stimulation was 93.0 (95% CI, 50.7-135.3); sham group, Total TUG mean baseline was 101.2 (95% CI, 47.1-155.3) and 1 week after stimulation 75.2 (95% CI 34.0-116.4), P = 0.54. Similarly, intervention had no significant effects on secondary outcome measurements. During stimulation period, five patients presented with mild side effects (three in active group and two in sham group). DISCUSSION: TsMS did not significantly improve gait or balance analysis in patients with PD and gait disorders. The protocol was safe and well tolerated. © 2024 International Parkinson and Movement Disorder Society.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Transtornos Neurológicos da Marcha/fisiopatologia , Método Duplo-Cego , Equilíbrio Postural/fisiologia , Resultado do Tratamento , Qualidade de Vida , Estimulação da Medula Espinal/métodos , Estimulação Magnética Transcraniana/métodos , Marcha/fisiologia , Magnetoterapia/métodos
14.
Cerebellum ; 23(2): 383-390, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36821023

RESUMO

During forward swinging of the arm, the central nervous system must anticipate the effect of upraising upon the body. Little is known about the cerebellar network that coordinates these anticipatory postural adjustments (APAs). Stimulating different cerebellar regions with transcranial direct current stimulation (tDCS) and with different polarities modulated the APAs. We used surface electromyography (sEMG) to measure muscle activities in a bilateral rapid shoulder flexion task. The onset of APAs was altered after tDCS over the vermis, while the postural stability and the kinematics of arm raising were not affected. To our knowledge, this is the first human cerebellar-tDCS (c-tDCS) study to separate cerebellar involvement in core muscle APAs in bilateral rapid shoulder flexion. These data contribute to our understanding of the cerebellar network supporting APAs in healthy adults. Modulated APAs of the erector spinae by tDCS on the vermis may be related to altered cerebellar brain inhibition (CBI), suggesting the importance of the vermal-cerebral connections in APAs regulation.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Adulto , Humanos , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Eletromiografia , Movimento/fisiologia
15.
Cerebellum ; 23(1): 162-171, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36692709

RESUMO

Motor and somatosensory pathway dysfunction due to degeneration of long tracts in hereditary spastic paraplegias (HSP) indicates that postural abnormalities may be a relevant disease feature. However, balance assessments have been underutilized to study these conditions. How does the static balance of individuals with HSP with eyes open and closed differ from healthy controls, and how does it relate to disease severity? This cross-sectional case-control study assessed the static balance of 17 subjects with genetically confirmed HSP and 17 healthy individuals, evaluating the center of pressure (COP) variables captured by a force platform. The root-mean-square of velocities and mean of displacements amplitudes in mediolateral and anteroposterior axes were correlated with disease severity. All COP parameters' performances were significantly impaired in HSP subjects compared to controls (p < 0.001 for all comparisons). COP with eyes open and closed differed for all variables within the HSP group, whereas in the control group, differences were observed only for anteroposterior velocity and amplitude. Spastic Paraplegia Rating Scale presented moderate direct correlations with the most COP variables (Rho = - 0.520 to - 0.736). HSP individuals presented significant postural instability with eyes open and to a greater extent with eyes closed, corroborating the clinical findings of somatosensorial and proprioceptive pathways dysfunction. The degrees of proprioceptive and motor impairments are mutually correlated, suggesting that similar pathophysiological mechanisms operate for the degeneration of these long tracts. COP parameters can be seen as disease severity biomarkers of HSP, and they should be assessed in future clinical trials.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Estudos Transversais , Estudos de Casos e Controles , Equilíbrio Postural/fisiologia , Propriocepção
16.
Exp Physiol ; 109(7): 1177-1187, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38745546

RESUMO

Anticipatory postural adjustments (APAs) give feedforward postural control of the trunk, but they are delayed with ageing, affecting balance and mobility in older individuals. The reticulospinal tract contributes to postural control of the trunk; however, the extent to which age-related changes affect the reticulospinal contributions to APAs of the trunk remains unknown in humans. Here, we tested the hypothesis that a startling acoustic sound, which activates the reticulospinal tract, improves delayed APAs in older individuals. Twenty-two old (75 ± 6 years) and 20 healthy young adults (21 ± 4 years) performed a self-initiated fast bilateral shoulder flexion or shoulder extension task in response to visual, visual and auditory (80 dB), or visual and startling (115 dB) cues. Electromyography (EMG) was recorded from bilateral anterior deltoid (AD) and erector spinae (ES) during shoulder flexion and from bilateral posterior deltoid (PD) and rectus abdominis (RA) during shoulder extension. EMG onset of all muscles shortened during the startling cue in both age groups, suggesting a non-specific modulation of the reticulospinal tract on prime movers (AD or PD) and non-prime movers (ES or RA). Interestingly, APAs of the ES were accelerated in older participants to a similar degree as in younger participants during the startling cue. Conversely, APAs of the RA were not influenced by the startling cue in older participants. Our results suggest differential effects of ageing on functional contributions of the reticulospinal tract to APAs between back extensors and abdominal muscles.


Assuntos
Músculos Abdominais , Envelhecimento , Eletromiografia , Equilíbrio Postural , Postura , Humanos , Masculino , Idoso , Feminino , Adulto Jovem , Músculos Abdominais/fisiologia , Envelhecimento/fisiologia , Equilíbrio Postural/fisiologia , Postura/fisiologia , Adulto , Idoso de 80 Anos ou mais , Ombro/fisiologia , Músculo Esquelético/fisiologia , Sinais (Psicologia) , Antecipação Psicológica/fisiologia
17.
Exp Physiol ; 109(5): 729-737, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488678

RESUMO

Due to Achilles tendon compliance, passive ankle stiffness is insufficient to stabilise the body when standing. This results in 'paradoxical' muscle movement, whereby calf muscles tend to shorten during forward body sway. Natural variation in stiffness may affect this movement. This may have consequences for postural control, with compliant ankles placing greater reliance upon active neural control rather than stretch reflexes. Previous research also suggests ageing reduces ankle stiffness, possibly contributing to reduced postural stability. Here we determine the relationship between ankle stiffness and calf muscle movement during standing, and whether this is associated with postural stability or age. Passive ankle stiffness was measured during quiet stance in 40 healthy volunteers ranging from 18 to 88 years of age. Medial gastrocnemius muscle length was also recorded using ultrasound. We found a significant inverse relationship between ankle stiffness and paradoxical muscle movement, that is, more compliant ankles were associated with greater muscle shortening during forward sway (r ≥ 0.33). This was seen during both quiet stance as well as voluntary sway. However, we found no significant effects of age upon stiffness, paradoxical motion or postural sway. Furthermore, neither paradoxical muscle motion nor ankle stiffness was associated with postural sway. These results show that natural variation in ankle stiffness alters the extent of paradoxical calf muscle movement during stance. However, the absence of a clear relationship to postural sway suggests that neural control mechanisms are more than capable of compensating for a lack of inherent joint stiffness.


Assuntos
Tornozelo , Músculo Esquelético , Equilíbrio Postural , Humanos , Músculo Esquelético/fisiologia , Adulto , Idoso , Pessoa de Meia-Idade , Masculino , Feminino , Equilíbrio Postural/fisiologia , Adulto Jovem , Idoso de 80 Anos ou mais , Tornozelo/fisiologia , Adolescente , Movimento/fisiologia , Tendão do Calcâneo/fisiologia , Tendão do Calcâneo/diagnóstico por imagem , Articulação do Tornozelo/fisiologia , Envelhecimento/fisiologia , Perna (Membro)/fisiologia , Postura/fisiologia
18.
Muscle Nerve ; 70(1): 82-93, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38558014

RESUMO

INTRODUCTION/AIMS: The utilization of virtual reality (VR) and biofeedback training, while effective in diverse populations, remains limited in the treatment of Duchenne and Becker muscular dystrophies (D/BMD). This study aimed to determine the feasibility of VR in children with D/BMD and compare the effectiveness of VR and biofeedback in children with D/BMD. METHODS: The study included 25 children with D/BMD. Eight children in the control group participated in a routine follow-up rehabilitation program, while the remaining children were randomly assigned to the VR (n = 9) and biofeedback (n = 8) groups for a 12-week intervention. The following evaluations were performed before, during (week 6), and after treatment: Muscle pain and cramps, laboratory studies, muscle strength, timed performance, function (Motor Function Measurement Scale-32, Vignos, and Brooke Scales), and balance (Pediatric Functional Reach Test and Balance Master System). Motivation for rehabilitation was determined. RESULTS: The median ages were 9.00 (VR), 8.75 (biofeedback), and 7.00 (control) years. The study found no significant differences between groups in pretreatment assessments for most measures, except for tandem step width (p < .05). VR and biofeedback interventions significantly improved various aspects (pain intensity, cramp frequency, cramp severity, muscle strength, timed performance, functional level, and balance) in children with D/BMD (p < .05), while the conventional rehabilitation program maintained patients' current status without any changes. The study found VR and biofeedback equally effective, with VR maintaining children's motivation for rehabilitation longer (p < .05). DISCUSSION: The study showed that both VR and biofeedback appear to be effective for rehabilitation this population, but additional, larger studies are needed.


Assuntos
Biorretroalimentação Psicológica , Estudos de Viabilidade , Força Muscular , Distrofia Muscular de Duchenne , Realidade Virtual , Humanos , Criança , Masculino , Distrofia Muscular de Duchenne/reabilitação , Distrofia Muscular de Duchenne/fisiopatologia , Distrofia Muscular de Duchenne/terapia , Biorretroalimentação Psicológica/métodos , Feminino , Força Muscular/fisiologia , Resultado do Tratamento , Terapia de Exposição à Realidade Virtual/métodos , Adolescente , Equilíbrio Postural/fisiologia
19.
Eur J Neurol ; 31(2): e16108, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37877681

RESUMO

BACKGROUND AND PURPOSE: The specific pathophysiological mechanisms underlying postural instability/gait difficulty (PIGD) and cognitive function in Parkinson's disease (PD) remain unclear. Both postural and gait control, as well as cognitive function, are associated with the cholinergic basal forebrain (cBF) system. METHODS: A total of 84 PD patients and 82 normal controls were enrolled. Each participant underwent motor and cognitive assessments. Diffusion tensor imaging was used to detect structural abnormalities in the cBF system. The cBF was segmented using FreeSurfer, and its fiber tract was traced using probabilistic tractography. To provide information on extracellular water accumulation, free-water fraction (FWf) was quantified. FWf in the cBF and its fiber tract, as well as cortical projection density, were extracted for statistical analyses. RESULTS: Patients had significantly higher FWf in the cBF (p < 0.001) and fiber tract (p = 0.021) than normal controls, as well as significantly lower cBF projection in the occipital (p < 0.001), parietal (p < 0.001) and prefrontal cortex (p = 0.005). In patients, a higher FWf in the cBF correlated with worse PIGD score (r = 0.306, p = 0.006) and longer Trail Making Test A time (r = 0.303, p = 0.007). Attentional function (Trail Making Test A) partially mediated the association between FWf in the cBF and PIGD score (indirect effect, a*b = 0.071; total effect, c = 0.256; p = 0.006). CONCLUSIONS: Our findings suggest that degeneration of the cBF system in PD, from the cBF to its fiber tract and cortical projection, plays an important role in cognitive-motor interaction.


Assuntos
Prosencéfalo Basal , Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Imagem de Tensor de Difusão , Prosencéfalo Basal/diagnóstico por imagem , Atenção , Marcha , Água , Colinérgicos , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/etiologia , Equilíbrio Postural/fisiologia
20.
Dement Geriatr Cogn Disord ; 53(3): 135-142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38599186

RESUMO

INTRODUCTION: When determining the level of gait independence in patients with Alzheimer's disease (AD), detailed functional assessment is difficult in some patients. The previous literature has suggested simple standing balance tests for patients with AD due to their ease of implementation in clinical practice and relevance to gait. However, their usefulness for discriminating the level of gait independence remains unclear. This study aimed to investigate the discrimination accuracy of a simple standing balance test in the level of gait independence among hospitalized patients with AD. METHODS: This cross-sectional study was a post hoc analysis of a study conducted on 63 inpatients with AD in a single hospital. Participants were divided into three groups according to their level of gait independence: independent, modified independent (independent, walking with walking aids), and dependent groups (supervision). Gait independence was determined using the Functional Independence Measure. Four standing balance tests were used - closed-leg, semi-tandem, tandem, and one-leg standings - and the discrimination accuracy of each test was calculated by receiver operating characteristic analysis. RESULTS: One-leg standing was best at discriminating between the independent and modified independent groups (positive predictive value = 80.0%, negative predictive value = 94.1%). Tandem standing was best at discriminating between the modified independent and dependent groups (positive predictive value = 74.1%, negative predictive value = 93.3%). CONCLUSION: A simple standing balance test may assist in the determining level of gait independence in patients with AD when it is difficult to perform a mobility assessment.


Assuntos
Doença de Alzheimer , Marcha , Equilíbrio Postural , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/fisiopatologia , Equilíbrio Postural/fisiologia , Masculino , Feminino , Estudos Transversais , Idoso , Idoso de 80 Anos ou mais , Marcha/fisiologia , Hospitalização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA