Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.788
Filtrar
1.
Cell ; 187(7): 1719-1732.e14, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38513663

RESUMO

The glycine transporter 1 (GlyT1) plays a crucial role in the regulation of both inhibitory and excitatory neurotransmission by removing glycine from the synaptic cleft. Given its close association with glutamate/glycine co-activated NMDA receptors (NMDARs), GlyT1 has emerged as a central target for the treatment of schizophrenia, which is often linked to hypofunctional NMDARs. Here, we report the cryo-EM structures of GlyT1 bound with substrate glycine and drugs ALX-5407, SSR504734, and PF-03463275. These structures, captured at three fundamental states of the transport cycle-outward-facing, occluded, and inward-facing-enable us to illustrate a comprehensive blueprint of the conformational change associated with glycine reuptake. Additionally, we identified three specific pockets accommodating drugs, providing clear insights into the structural basis of their inhibitory mechanism and selectivity. Collectively, these structures offer significant insights into the transport mechanism and recognition of substrate and anti-schizophrenia drugs, thus providing a platform to design small molecules to treat schizophrenia.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina , Humanos , Transporte Biológico , Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/química , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/ultraestrutura , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/metabolismo , Transmissão Sináptica , Imidazóis/química , Sarcosina/análogos & derivados , Piperidinas/química
2.
Cell ; 186(24): 5347-5362.e24, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37963465

RESUMO

Trace amine-associated receptor 1 (TAAR1) senses a spectrum of endogenous amine-containing metabolites (EAMs) to mediate diverse psychological functions and is useful for schizophrenia treatment without the side effects of catalepsy. Here, we systematically profiled the signaling properties of TAAR1 activation and present nine structures of TAAR1-Gs/Gq in complex with EAMs, clinical drugs, and synthetic compounds. These structures not only revealed the primary amine recognition pocket (PARP) harboring the conserved acidic D3.32 for conserved amine recognition and "twin" toggle switch for receptor activation but also elucidated that targeting specific residues in the second binding pocket (SBP) allowed modulation of signaling preference. In addition to traditional drug-induced Gs signaling, Gq activation by EAM or synthetic compounds is beneficial to schizophrenia treatment. Our results provided a structural and signaling framework for molecular recognition by TAAR1, which afforded structural templates and signal clues for TAAR1-targeted candidate compounds design.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Aminas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Esquizofrenia/metabolismo
3.
Cell ; 185(1): 42-61, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34774127

RESUMO

The construction of the human nervous system is a distinctly complex although highly regulated process. Human tissue inaccessibility has impeded a molecular understanding of the developmental specializations from which our unique cognitive capacities arise. A confluence of recent technological advances in genomics and stem cell-based tissue modeling is laying the foundation for a new understanding of human neural development and dysfunction in neuropsychiatric disease. Here, we review recent progress on uncovering the cellular and molecular principles of human brain organogenesis in vivo as well as using organoids and assembloids in vitro to model features of human evolution and disease.


Assuntos
Transtorno do Espectro Autista/metabolismo , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Epilepsia/metabolismo , Neurogênese/fisiologia , Esquizofrenia/metabolismo , Animais , Transtorno do Espectro Autista/genética , Encéfalo/metabolismo , Epilepsia/genética , Humanos , Mutação , Neurônios/citologia , Neurônios/metabolismo , Organoides/embriologia , Organoides/crescimento & desenvolvimento , Esquizofrenia/genética
4.
Cell ; 179(3): 750-771.e22, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31626773

RESUMO

Tissue-specific regulatory regions harbor substantial genetic risk for disease. Because brain development is a critical epoch for neuropsychiatric disease susceptibility, we characterized the genetic control of the transcriptome in 201 mid-gestational human brains, identifying 7,962 expression quantitative trait loci (eQTL) and 4,635 spliceQTL (sQTL), including several thousand prenatal-specific regulatory regions. We show that significant genetic liability for neuropsychiatric disease lies within prenatal eQTL and sQTL. Integration of eQTL and sQTL with genome-wide association studies (GWAS) via transcriptome-wide association identified dozens of novel candidate risk genes, highlighting shared and stage-specific mechanisms in schizophrenia (SCZ). Gene network analysis revealed that SCZ and autism spectrum disorder (ASD) affect distinct developmental gene co-expression modules. Yet, in each disorder, common and rare genetic variation converges within modules, which in ASD implicates superficial cortical neurons. More broadly, these data, available as a web browser and our analyses, demonstrate the genetic mechanisms by which developmental events have a widespread influence on adult anatomical and behavioral phenotypes.


Assuntos
Transtorno do Espectro Autista/genética , Locos de Características Quantitativas/genética , Esquizofrenia/genética , Transcriptoma/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Feminino , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Idade Gestacional , Humanos , Masculino , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Splicing de RNA/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia
5.
Cell ; 172(4): 719-730.e14, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29398112

RESUMO

Drugs frequently require interactions with multiple targets-via a process known as polypharmacology-to achieve their therapeutic actions. Currently, drugs targeting several serotonin receptors, including the 5-HT2C receptor, are useful for treating obesity, drug abuse, and schizophrenia. The competing challenges of developing selective 5-HT2C receptor ligands or creating drugs with a defined polypharmacological profile, especially aimed at G protein-coupled receptors (GPCRs), remain extremely difficult. Here, we solved two structures of the 5-HT2C receptor in complex with the highly promiscuous agonist ergotamine and the 5-HT2A-C receptor-selective inverse agonist ritanserin at resolutions of 3.0 Å and 2.7 Å, respectively. We analyzed their respective binding poses to provide mechanistic insights into their receptor recognition and opposing pharmacological actions. This study investigates the structural basis of polypharmacology at canonical GPCRs and illustrates how understanding characteristic patterns of ligand-receptor interaction and activation may ultimately facilitate drug design at multiple GPCRs.


Assuntos
Ergotamina/química , Receptor 5-HT2C de Serotonina/química , Ritanserina/química , Agonistas do Receptor 5-HT2 de Serotonina/química , Antagonistas do Receptor 5-HT2 de Serotonina/química , Células HEK293 , Humanos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Domínios Proteicos , Receptor 5-HT2C de Serotonina/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Relação Estrutura-Atividade , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/metabolismo
6.
Cell ; 171(4): 745-769, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100073

RESUMO

Synapses are specialized junctions between neurons in brain that transmit and compute information, thereby connecting neurons into millions of overlapping and interdigitated neural circuits. Here, we posit that the establishment, properties, and dynamics of synapses are governed by a molecular logic that is controlled by diverse trans-synaptic signaling molecules. Neurexins, expressed in thousands of alternatively spliced isoforms, are central components of this dynamic code. Presynaptic neurexins regulate synapse properties via differential binding to multifarious postsynaptic ligands, such as neuroligins, cerebellin/GluD complexes, and latrophilins, thereby shaping the input/output relations of their resident neural circuits. Mutations in genes encoding neurexins and their ligands are associated with diverse neuropsychiatric disorders, especially schizophrenia, autism, and Tourette syndrome. Thus, neurexins nucleate an overall trans-synaptic signaling network that controls synapse properties, which thereby determines the precise responses of synapses to spike patterns in a neuron and circuit and which is vulnerable to impairments in neuropsychiatric disorders.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Vias Neurais , Sinapses , Processamento Alternativo , Animais , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Humanos , Glicoproteínas de Membrana/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Transdução de Sinais , Síndrome de Tourette/metabolismo , Síndrome de Tourette/patologia
7.
Nature ; 627(8004): 604-611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448582

RESUMO

Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.


Assuntos
Envelhecimento , Astrócitos , Neurônios , Córtex Pré-Frontal , Esquizofrenia , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Envelhecimento/metabolismo , Envelhecimento/patologia , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/patologia , Colesterol/metabolismo , Cognição , Neurônios GABAérgicos/metabolismo , Predisposição Genética para Doença , Glutamina/metabolismo , Saúde , Individualidade , Inibição Neural , Plasticidade Neuronal , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Análise da Expressão Gênica de Célula Única , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo
8.
Cell ; 154(3): 518-29, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23911319

RESUMO

Genes disrupted in schizophrenia may be revealed by de novo mutations in affected persons from otherwise healthy families. Furthermore, during normal brain development, genes are expressed in patterns specific to developmental stage and neuroanatomical structure. We identified de novo mutations in persons with schizophrenia and then mapped the responsible genes onto transcriptome profiles of normal human brain tissues from age 13 weeks gestation to adulthood. In the dorsolateral and ventrolateral prefrontal cortex during fetal development, genes harboring damaging de novo mutations in schizophrenia formed a network significantly enriched for transcriptional coexpression and protein interaction. The 50 genes in the network function in neuronal migration, synaptic transmission, signaling, transcriptional regulation, and transport. These results suggest that disruptions of fetal prefrontal cortical neurogenesis are critical to the pathophysiology of schizophrenia. These results also support the feasibility of integrating genomic and transcriptome analyses to map critical neurodevelopmental processes in time and space in the brain.


Assuntos
Redes Reguladoras de Genes , Mutação , Córtex Pré-Frontal/embriologia , Mapas de Interação de Proteínas , Esquizofrenia/genética , Esquizofrenia/metabolismo , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Análise Mutacional de DNA , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Neurogênese , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Esquizofrenia/fisiopatologia , Transcrição Gênica , Transcriptoma
9.
Cell ; 148(5): 1051-64, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22385968

RESUMO

How extrinsic stimuli and intrinsic factors interact to regulate continuous neurogenesis in the postnatal mammalian brain is unknown. Here we show that regulation of dendritic development of newborn neurons by Disrupted-in-Schizophrenia 1 (DISC1) during adult hippocampal neurogenesis requires neurotransmitter GABA-induced, NKCC1-dependent depolarization through a convergence onto the AKT-mTOR pathway. In contrast, DISC1 fails to modulate early-postnatal hippocampal neurogenesis when conversion of GABA-induced depolarization to hyperpolarization is accelerated. Extending the period of GABA-induced depolarization or maternal deprivation stress restores DISC1-dependent dendritic regulation through mTOR pathway during early-postnatal hippocampal neurogenesis. Furthermore, DISC1 and NKCC1 interact epistatically to affect risk for schizophrenia in two independent case control studies. Our study uncovers an interplay between intrinsic DISC1 and extrinsic GABA signaling, two schizophrenia susceptibility pathways, in controlling neurogenesis and suggests critical roles of developmental tempo and experience in manifesting the impact of susceptibility genes on neuronal development and risk for mental disorders.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Esquizofrenia/metabolismo , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo , Animais , Dendritos/metabolismo , Suscetibilidade a Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Esquizofrenia/genética , Análise de Célula Única , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 2 da Família 12 de Carreador de Soluto
10.
Proc Natl Acad Sci U S A ; 121(34): e2401687121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39133845

RESUMO

The language network of the human brain has core components in the inferior frontal cortex and superior/middle temporal cortex, with left-hemisphere dominance in most people. Functional specialization and interconnectivity of these neocortical regions is likely to be reflected in their molecular and cellular profiles. Excitatory connections between cortical regions arise and innervate according to layer-specific patterns. Here, we generated a gene expression dataset from human postmortem cortical tissue samples from core language network regions, using spatial transcriptomics to discriminate gene expression across cortical layers. Integration of these data with existing single-cell expression data identified 56 genes that showed differences in laminar expression profiles between the frontal and temporal language cortex together with upregulation in layer II/III and/or layer V/VI excitatory neurons. Based on data from large-scale genome-wide screening in the population, DNA variants within these 56 genes showed set-level associations with interindividual variation in structural connectivity between the left-hemisphere frontal and temporal language cortex, and with the brain-related disorders dyslexia and schizophrenia which often involve affected language. These findings identify region-specific patterns of laminar gene expression as a feature of the brain's language network.


Assuntos
Idioma , Neocórtex , Humanos , Neocórtex/metabolismo , Lobo Temporal/metabolismo , Masculino , Feminino , Esquizofrenia/genética , Esquizofrenia/metabolismo , Neurônios/metabolismo , Lobo Frontal/metabolismo , Transcriptoma , Adulto
11.
Proc Natl Acad Sci U S A ; 121(34): e2312511121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39141354

RESUMO

Schizophrenia phenotypes are suggestive of impaired cortical plasticity in the disease, but the mechanisms of these deficits are unknown. Genomic association studies have implicated a large number of genes that regulate neuromodulation and plasticity, indicating that the plasticity deficits have a genetic origin. Here, we used biochemically detailed computational modeling of postsynaptic plasticity to investigate how schizophrenia-associated genes regulate long-term potentiation (LTP) and depression (LTD). We combined our model with data from postmortem RNA expression studies (CommonMind gene-expression datasets) to assess the consequences of altered expression of plasticity-regulating genes for the amplitude of LTP and LTD. Our results show that the expression alterations observed post mortem, especially those in the anterior cingulate cortex, lead to impaired protein kinase A (PKA)-pathway-mediated LTP in synapses containing GluR1 receptors. We validated these findings using a genotyped electroencephalogram (EEG) dataset where polygenic risk scores for synaptic and ion channel-encoding genes as well as modulation of visual evoked potentials were determined for 286 healthy controls. Our results provide a possible genetic mechanism for plasticity impairments in schizophrenia, which can lead to improved understanding and, ultimately, treatment of the disorder.


Assuntos
Plasticidade Neuronal , Esquizofrenia , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Esquizofrenia/metabolismo , Humanos , Plasticidade Neuronal/genética , Simulação por Computador , Potenciação de Longa Duração/genética , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Sinapses/genética , Eletroencefalografia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Modelos Neurológicos , Depressão Sináptica de Longo Prazo/genética , Masculino , Potenciais Evocados Visuais/fisiologia
12.
J Neurosci ; 44(43)2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39214704

RESUMO

Neuregulin1 (Nrg1) signaling is critical for neuronal development and function from fate specification to synaptic plasticity. Type III Nrg1 is a synaptic protein which engages in bidirectional signaling with its receptor ErbB4. Forward signaling engages ErbB4 phosphorylation, whereas back signaling engages two known mechanisms: (1) local axonal PI3K-AKT signaling and (2) cleavage by γ-secretase resulting in cytosolic release of the intracellular domain (ICD), which can traffic to the nucleus (Bao et al., 2003; Hancock et al., 2008). To dissect the contribution of these alternate signaling strategies to neuronal development, we generated a transgenic mouse with a missense mutation (V321L) in the Nrg1 transmembrane domain that disrupts nuclear back signaling with minimal effects on forward signaling or local back signaling and was previously found to be associated with psychosis (Walss-Bass et al., 2006). We combined RNA sequencing, retroviral fate mapping of neural stem cells, behavioral analyses, and various network analyses of transcriptomic data to investigate the effect of disrupting Nrg1 nuclear back signaling in the dentate gyrus (DG) of male and female mice. The V321L mutation impairs nuclear translocation of the Nrg1 ICD and alters gene expression in the DG. V321L mice show reduced stem cell proliferation, altered cell cycle dynamics, fate specification defects, and dendritic dysmorphogenesis. Orthologs of known schizophrenia (SCZ)-susceptibility genes were dysregulated in the V321L DG. These genes coordinated a larger network with other dysregulated genes. Weighted gene correlation network analysis and protein interaction network analyses revealed striking similarity between DG transcriptomes of V321L mouse and humans with SCZ.


Assuntos
Giro Denteado , Redes Reguladoras de Genes , Neuregulina-1 , Neurogênese , Esquizofrenia , Transdução de Sinais , Animais , Feminino , Masculino , Camundongos , Núcleo Celular/metabolismo , Giro Denteado/metabolismo , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Células-Tronco Neurais/metabolismo , Neuregulina-1/genética , Neuregulina-1/metabolismo , Neurogênese/fisiologia , Neurogênese/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
13.
EMBO J ; 40(3): e103701, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33319920

RESUMO

SATB2 is a schizophrenia risk gene and is genetically associated with human intelligence. How it affects cognition at molecular level is currently unknown. Here, we show that interactions between SATB2, a chromosomal scaffolding protein, and the inner nuclear membrane protein LEMD2 orchestrate the response of pyramidal neurons to neuronal activation. Exposure to novel environment in vivo causes changes in nuclear shape of CA1 hippocampal neurons via a SATB2-dependent mechanism. The activity-driven plasticity of the nuclear envelope requires not only SATB2, but also its protein interactor LEMD2 and the ESCRT-III/VPS4 membrane-remodeling complex. Furthermore, LEMD2 depletion in cortical neurons, similar to SATB2 ablation, affects neuronal activity-dependent regulation of multiple rapid and delayed primary response genes. In human genetic data, LEMD2-regulated genes are enriched for de novo mutations reported in intellectual disability and schizophrenia and are, like SATB2-regulated genes, enriched for common variants associated with schizophrenia and cognitive function. Hence, interactions between SATB2 and the inner nuclear membrane protein LEMD2 influence gene expression programs in pyramidal neurons that are linked to cognitive ability and psychiatric disorder etiology.


Assuntos
Redes Reguladoras de Genes , Hipocampo/citologia , Deficiência Intelectual/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Esquizofrenia/genética , Fatores de Transcrição/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Núcleo Celular/metabolismo , Plasticidade Celular , Células Cultivadas , Cognição , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células HeLa , Hipocampo/metabolismo , Humanos , Deficiência Intelectual/metabolismo , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/química , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Esquizofrenia/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
14.
Am J Hum Genet ; 109(8): 1500-1519, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931052

RESUMO

Identifying causative gene(s) within disease-associated large genomic regions of copy-number variants (CNVs) is challenging. Here, by targeted sequencing of genes within schizophrenia (SZ)-associated CNVs in 1,779 SZ cases and 1,418 controls, we identified three rare putative loss-of-function (LoF) mutations in OTU deubiquitinase 7A (OTUD7A) within the 15q13.3 deletion in cases but none in controls. To tie OTUD7A LoF with any SZ-relevant cellular phenotypes, we modeled the OTUD7A LoF mutation, rs757148409, in human induced pluripotent stem cell (hiPSC)-derived induced excitatory neurons (iNs) by CRISPR-Cas9 engineering. The mutant iNs showed a ∼50% decrease in OTUD7A expression without undergoing nonsense-mediated mRNA decay. The mutant iNs also exhibited marked reduction of dendritic complexity, density of synaptic proteins GluA1 and PSD-95, and neuronal network activity. Congruent with the neuronal phenotypes in mutant iNs, our transcriptomic analysis showed that the set of OTUD7A LoF-downregulated genes was enriched for those relating to synapse development and function and was associated with SZ and other neuropsychiatric disorders. These results suggest that OTUD7A LoF impairs synapse development and neuronal function in human neurons, providing mechanistic insight into the possible role of OTUD7A in driving neuropsychiatric phenotypes associated with the 15q13.3 deletion.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Variações do Número de Cópias de DNA , Humanos , Neurônios , Esquizofrenia/metabolismo , Sinapses/metabolismo
15.
Annu Rev Genet ; 51: 413-433, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28934590

RESUMO

The body's microbiome, composed of microbial cells that number in the trillions, is involved in human health and disease in ways that are just starting to emerge. The microbiome is assembled at birth, develops with its host, and is greatly influenced by environmental factors such as diet and other exposures. Recently, a role for human genetic variation has emerged as also influential in accounting for interpersonal differences in microbiomes. Thus, human genes may influence health directly or by promoting a beneficial microbiome. Studies of the heritability of gut microbiotas reveal a subset of microbes whose abundances are partly genetically determined by the host. However, the use of genome-wide association studies (GWASs) to identify human genetic variants associated with microbiome phenotypes has proven challenging. Studies to date are small by GWAS standards, and cross-study comparisons are hampered by differences in analytical approaches. Nevertheless, associations between microbes or microbial genes and human genes have emerged that are consistent between human populations. Most notably, higher levels of beneficial gut bacteria called Bifidobacteria are associated with the human lactase nonpersister genotype, which typically confers lactose intolerance, in several different human populations. It is time for the microbiome to be incorporated into studies that quantify interactions among genotype, environment, and the microbiome in order to predict human disease susceptibility.


Assuntos
Esclerose Lateral Amiotrófica/genética , Microbioma Gastrointestinal/fisiologia , Genoma Humano , Intolerância à Lactose/genética , Obesidade/genética , Esquizofrenia/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/microbiologia , Esclerose Lateral Amiotrófica/patologia , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/metabolismo , Dieta/métodos , Trato Gastrointestinal/microbiologia , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Genética Humana , Humanos , Intolerância à Lactose/metabolismo , Intolerância à Lactose/microbiologia , Intolerância à Lactose/patologia , Obesidade/metabolismo , Obesidade/microbiologia , Obesidade/patologia , Fenótipo , Característica Quantitativa Herdável , Esquizofrenia/metabolismo , Esquizofrenia/microbiologia , Esquizofrenia/patologia
16.
FASEB J ; 38(17): e70016, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39225388

RESUMO

Traumatic brain injury (TBI), which is characterized by acute neurological dysfunction, is also one of the most widely recognized environmental risk factors for various neurological and psychiatric disorders. However, the role of TBI in neurological perturbation and the mechanisms underlying these disorders remain unknown. We evaluated transcriptional changes in cells of the frontal cortex after TBI by exploiting single-cell RNA sequencing (scRNA-Seq). We adopted the gene expression omnibus and scRNA-Seq to identify the mediation by secretogranin II (SCG2) of TBI-induced schizophrenia. Astrocytes are a principal source of SCG2 in the frontal cortex after TBI. Our analysis indicated that SCG2-triggered disruption of the blood-brain barrier (BBB) via the CypA-MMP-9 signaling pathway. Furthermore, astrocytic SCG2 knockout in the frontal cortex reduced BBB damage, mitigated inflammation, and inhibited schizophrenia after TBI. In conclusion, we identified the SCG2-CypA-MMP-9 signaling pathway in reactive astrocytes as a key switch in the protection of the BBB and provided a novel therapeutic avenue for treating psychiatric disorders after TBI.


Assuntos
Barreira Hematoencefálica , Lesões Encefálicas Traumáticas , Camundongos Endogâmicos C57BL , Esquizofrenia , Animais , Masculino , Camundongos , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Camundongos Knockout , Esquizofrenia/metabolismo , Transdução de Sinais
17.
Mol Psychiatry ; 29(5): 1440-1449, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38302561

RESUMO

Schizophrenia (SZ) is a serious mental illness and neuropsychiatric brain disorder with behavioral symptoms that include hallucinations, delusions, disorganized behavior, and cognitive impairment. Regulation of such behaviors requires utilization of neurotransmitters released to mediate cell-cell communication which are essential to brain functions in health and disease. We hypothesized that SZ may involve dysregulation of neurotransmitters secreted from neurons. To gain an understanding of human SZ, induced neurons (iNs) were derived from SZ patients and healthy control subjects to investigate peptide neurotransmitters, known as neuropeptides, which represent the major class of transmitters. The iNs were subjected to depolarization by high KCl in the culture medium and the secreted neuropeptides were identified and quantitated by nano-LC-MS/MS tandem mass spectrometry. Several neuropeptides were identified from schizophrenia patient-derived neurons, including chromogranin B (CHGB), neurotensin, and natriuretic peptide. Focusing on the main secreted CHGB neuropeptides, results revealed differences in SZ iNs compared to control iN neurons. Lower numbers of distinct CHGB peptides were found in the SZ secretion media compared to controls. Mapping of the peptides to the CHGB precursor revealed peptides unique to either SZ or control, and peptides common to both conditions. Also, the iNs secreted neuropeptides under both KCl and basal (no KCl) conditions. These findings are consistent with reports that chromogranin B levels are reduced in the cerebrospinal fluid and specific brain regions of SZ patients. These findings suggest that iNs derived from SZ patients can model the decreased CHGB neuropeptides observed in human SZ.


Assuntos
Cromogranina B , Neurônios , Neuropeptídeos , Neurotransmissores , Esquizofrenia , Humanos , Esquizofrenia/metabolismo , Neuropeptídeos/metabolismo , Neurônios/metabolismo , Cromogranina B/metabolismo , Masculino , Neurotransmissores/metabolismo , Feminino , Espectrometria de Massas em Tandem/métodos , Adulto , Pessoa de Meia-Idade , Neurotensina/metabolismo , Células Cultivadas , Encéfalo/metabolismo
18.
Mol Psychiatry ; 29(9): 2622-2633, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38519640

RESUMO

Several lines of evidence indicate the involvement of neuroinflammatory processes in the pathophysiology of schizophrenia (SCZ). Microglia are brain resident immune cells responding toward invading pathogens and injury-related products, and additionally, have a critical role in improving neurogenesis and synaptic functions. Aberrant activation of microglia in SCZ is one of the leading hypotheses for disease pathogenesis, but due to the lack of proper human cell models, the role of microglia in SCZ is not well studied. We used monozygotic twins discordant for SCZ and healthy individuals to generate human induced pluripotent stem cell-derived microglia to assess the transcriptional and functional differences in microglia between healthy controls, affected twins and unaffected twins. The microglia from affected twins had increased expression of several common inflammation-related genes compared to healthy individuals. Microglia from affected twins had also reduced response to interleukin 1 beta (IL1ß) treatment, but no significant differences in migration or phagocytotic activity. Ingenuity Pathway Analysis (IPA) showed abnormalities related to extracellular matrix signaling. RNA sequencing predicted downregulation of extracellular matrix structure constituent Gene Ontology (GO) terms and hepatic fibrosis pathway activation that were shared by microglia of both affected and unaffected twins, but the upregulation of major histocompatibility complex (MHC) class II receptors was observed only in affected twin microglia. Also, the microglia of affected twins had heterogeneous response to clozapine, minocycline, and sulforaphane treatments. Overall, despite the increased expression of inflammatory genes, we observed no clear functional signs of hyperactivation in microglia from patients with SCZ. We conclude that microglia of the patients with SCZ have gene expression aberrations related to inflammation response and extracellular matrix without contributing to increased microglial activation.


Assuntos
Microglia , Esquizofrenia , Gêmeos Monozigóticos , Humanos , Microglia/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Masculino , Feminino , Adulto , Células-Tronco Pluripotentes Induzidas/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Sulfóxidos/farmacologia , Inflamação/genética , Inflamação/metabolismo , Pessoa de Meia-Idade , Isotiocianatos
19.
Mol Psychiatry ; 29(10): 3128-3140, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38684795

RESUMO

Schizophrenia (SCZ) is a neuropsychiatric disorder, caused by a combination of genetic and environmental factors. The etiology behind the disorder remains elusive although it is hypothesized to be associated with the aberrant response to neurotransmitters, such as dopamine and glutamate. Therefore, investigating the link between dysregulated metabolites and distorted neurodevelopment holds promise to offer valuable insights into the underlying mechanism of this complex disorder. In this study, we aimed to explore a presumed correlation between the transcriptome and the metabolome in a SCZ model based on patient-derived induced pluripotent stem cells (iPSCs). For this, iPSCs were differentiated towards cortical neurons and samples were collected longitudinally at various developmental stages, reflecting neuroepithelial-like cells, radial glia, young and mature neurons. The samples were analyzed by both RNA-sequencing and targeted metabolomics and the two modalities were used to construct integrative networks in silico. This multi-omics analysis revealed significant perturbations in the polyamine and gamma-aminobutyric acid (GABA) biosynthetic pathways during rosette maturation in SCZ lines. We particularly observed the downregulation of the glutamate decarboxylase encoding genes GAD1 and GAD2, as well as their protein product GAD65/67 and their biochemical product GABA in SCZ samples. Inhibition of ornithine decarboxylase resulted in further decrease of GABA levels suggesting a compensatory activation of the ornithine/putrescine pathway as an alternative route for GABA production. These findings indicate an imbalance of cortical excitatory/inhibitory dynamics occurring during early neurodevelopmental stages in SCZ. Our study supports the hypothesis of disruption of inhibitory circuits to be causative for SCZ and establishes a novel in silico approach that enables for integrative correlation of metabolic and transcriptomic data of psychiatric disease models.


Assuntos
Células-Tronco Pluripotentes Induzidas , Metabolômica , Neurônios , Esquizofrenia , Ácido gama-Aminobutírico , Esquizofrenia/metabolismo , Esquizofrenia/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Metabolômica/métodos , Ácido gama-Aminobutírico/metabolismo , Neurônios/metabolismo , Transcriptoma/genética , Genômica/métodos , Diferenciação Celular/fisiologia , Glutamato Descarboxilase/metabolismo , Glutamato Descarboxilase/genética , Metaboloma
20.
Mol Psychiatry ; 29(5): 1453-1464, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38321120

RESUMO

Smell deficits and neurobiological changes in the olfactory bulb (OB) and olfactory epithelium (OE) have been observed in schizophrenia and related disorders. The OE is the most peripheral olfactory system located outside the cranium, and is connected with the brain via direct neuronal projections to the OB. Nevertheless, it is unknown whether and how a disturbance of the OE affects the OB in schizophrenia and related disorders. Addressing this gap would be the first step in studying the impact of OE pathology in the disease pathophysiology in the brain. In this cross-species study, we observed that chronic, local OE inflammation with a set of upregulated genes in an inducible olfactory inflammation (IOI) mouse model led to a volume reduction, layer structure changes, and alterations of neuron functionality in the OB. Furthermore, IOI model also displayed behavioral deficits relevant to negative symptoms (avolition) in parallel to smell deficits. In first episode psychosis (FEP) patients, we observed a significant alteration in immune/inflammation-related molecular signatures in olfactory neuronal cells (ONCs) enriched from biopsied OE and a significant reduction in the OB volume, compared with those of healthy controls (HC). The increased expression of immune/inflammation-related molecules in ONCs was significantly correlated to the OB volume reduction in FEP patients, but no correlation was found in HCs. Moreover, the increased expression of human orthologues of the IOI genes in ONCs was significantly correlated with the OB volume reduction in FEP, but not in HCs. Together, our study implies a potential mechanism of the OE-OB pathology in patients with psychotic disorders (schizophrenia and related disorders). We hope that this mechanism may have a cross-disease implication, including COVID-19-elicited mental conditions that include smell deficits.


Assuntos
Modelos Animais de Doenças , Inflamação , Bulbo Olfatório , Mucosa Olfatória , Transtornos Psicóticos , Esquizofrenia , Animais , Mucosa Olfatória/patologia , Mucosa Olfatória/metabolismo , Transtornos Psicóticos/patologia , Camundongos , Humanos , Masculino , Inflamação/metabolismo , Inflamação/patologia , Bulbo Olfatório/patologia , Bulbo Olfatório/metabolismo , Feminino , Esquizofrenia/patologia , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Esquizofrenia/genética , Transtornos do Olfato/etiologia , Transtornos do Olfato/fisiopatologia , Olfato/fisiologia , Adulto , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA